/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2001-2002 NaN Holding BV. All rights reserved. */ /** \file * \ingroup ikplugin */ #include "MEM_guardedalloc.h" #include "BIK_api.h" #include "BLI_blenlib.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BKE_armature.h" #include "BKE_constraint.h" #include "DNA_action_types.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_object_types.h" #include "IK_solver.h" #include "iksolver_plugin.h" #include /* memcpy */ #define USE_NONUNIFORM_SCALE /* ********************** THE IK SOLVER ******************* */ /* allocates PoseTree, and links that to root bone/channel */ /* NOTE: detecting the IK chain is duplicate code... * in drawarmature.c and in transform_conversions.c */ static void initialize_posetree(struct Object *UNUSED(ob), bPoseChannel *pchan_tip) { bPoseChannel *curchan, *pchan_root = NULL, *chanlist[256], **oldchan; PoseTree *tree; PoseTarget *target; bConstraint *con; bKinematicConstraint *data; int a, t, segcount = 0, size, newsize, *oldparent, parent; /* find IK constraint, and validate it */ for (con = pchan_tip->constraints.first; con; con = con->next) { if (con->type == CONSTRAINT_TYPE_KINEMATIC) { data = (bKinematicConstraint *)con->data; if (data->flag & CONSTRAINT_IK_AUTO) { break; } if (data->tar == NULL) { continue; } if (data->tar->type == OB_ARMATURE && data->subtarget[0] == 0) { continue; } if ((con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) == 0 && (con->enforce != 0.0f)) { break; } } } if (con == NULL) { return; } /* exclude tip from chain? */ if (!(data->flag & CONSTRAINT_IK_TIP)) { pchan_tip = pchan_tip->parent; } /* Find the chain's root & count the segments needed */ for (curchan = pchan_tip; curchan; curchan = curchan->parent) { pchan_root = curchan; curchan->flag |= POSE_CHAIN; /* don't forget to clear this */ chanlist[segcount] = curchan; segcount++; if (segcount == data->rootbone || segcount > 255) { break; /* 255 is weak */ } } if (!segcount) { return; } /* setup the chain data */ /* we make tree-IK, unless all existing targets are in this chain */ for (tree = pchan_root->iktree.first; tree; tree = tree->next) { for (target = tree->targets.first; target; target = target->next) { curchan = tree->pchan[target->tip]; if (curchan->flag & POSE_CHAIN) { curchan->flag &= ~POSE_CHAIN; } else { break; } } if (target) { break; } } /* create a target */ target = MEM_callocN(sizeof(PoseTarget), "posetarget"); target->con = con; pchan_tip->flag &= ~POSE_CHAIN; if (tree == NULL) { /* make new tree */ tree = MEM_callocN(sizeof(PoseTree), "posetree"); tree->type = CONSTRAINT_TYPE_KINEMATIC; tree->iterations = data->iterations; tree->totchannel = segcount; tree->stretch = (data->flag & CONSTRAINT_IK_STRETCH); tree->pchan = MEM_callocN(segcount * sizeof(void *), "ik tree pchan"); tree->parent = MEM_callocN(segcount * sizeof(int), "ik tree parent"); for (a = 0; a < segcount; a++) { tree->pchan[a] = chanlist[segcount - a - 1]; tree->parent[a] = a - 1; } target->tip = segcount - 1; /* AND! link the tree to the root */ BLI_addtail(&pchan_root->iktree, tree); } else { tree->iterations = MAX2(data->iterations, tree->iterations); tree->stretch = tree->stretch && !(data->flag & CONSTRAINT_IK_STRETCH); /* Skip common pose channels and add remaining. */ size = MIN2(segcount, tree->totchannel); a = t = 0; while (a < size && t < tree->totchannel) { /* locate first matching channel */ for (; t < tree->totchannel && tree->pchan[t] != chanlist[segcount - a - 1]; t++) { /* pass */ } if (t >= tree->totchannel) { break; } for (; a < size && t < tree->totchannel && tree->pchan[t] == chanlist[segcount - a - 1]; a++, t++) { /* pass */ } } segcount = segcount - a; target->tip = tree->totchannel + segcount - 1; if (segcount > 0) { for (parent = a - 1; parent < tree->totchannel; parent++) { if (tree->pchan[parent] == chanlist[segcount - 1]->parent) { break; } } /* shouldn't happen, but could with dependency cycles */ if (parent == tree->totchannel) { parent = a - 1; } /* resize array */ newsize = tree->totchannel + segcount; oldchan = tree->pchan; oldparent = tree->parent; tree->pchan = MEM_callocN(newsize * sizeof(void *), "ik tree pchan"); tree->parent = MEM_callocN(newsize * sizeof(int), "ik tree parent"); memcpy(tree->pchan, oldchan, sizeof(void *) * tree->totchannel); memcpy(tree->parent, oldparent, sizeof(int) * tree->totchannel); MEM_freeN(oldchan); MEM_freeN(oldparent); /* add new pose channels at the end, in reverse order */ for (a = 0; a < segcount; a++) { tree->pchan[tree->totchannel + a] = chanlist[segcount - a - 1]; tree->parent[tree->totchannel + a] = tree->totchannel + a - 1; } tree->parent[tree->totchannel] = parent; tree->totchannel = newsize; } /* move tree to end of list, for correct evaluation order */ BLI_remlink(&pchan_root->iktree, tree); BLI_addtail(&pchan_root->iktree, tree); } /* add target to the tree */ BLI_addtail(&tree->targets, target); /* mark root channel having an IK tree */ pchan_root->flag |= POSE_IKTREE; } /* transform from bone(b) to bone(b+1), store in chan_mat */ static void make_dmats(bPoseChannel *pchan) { if (pchan->parent) { float iR_parmat[4][4]; invert_m4_m4(iR_parmat, pchan->parent->pose_mat); mul_m4_m4m4(pchan->chan_mat, iR_parmat, pchan->pose_mat); /* delta mat */ } else { copy_m4_m4(pchan->chan_mat, pchan->pose_mat); } } /* applies IK matrix to pchan, IK is done separated */ /* formula: pose_mat(b) = pose_mat(b-1) * diffmat(b-1, b) * ik_mat(b) */ /* to make this work, the diffmats have to be precalculated! Stored in chan_mat */ static void where_is_ik_bone(bPoseChannel *pchan, float ik_mat[3][3]) /* nr = to detect if this is first bone */ { float vec[3], ikmat[4][4]; copy_m4_m3(ikmat, ik_mat); if (pchan->parent) { mul_m4_m4m4(pchan->pose_mat, pchan->parent->pose_mat, pchan->chan_mat); } else { copy_m4_m4(pchan->pose_mat, pchan->chan_mat); } #ifdef USE_NONUNIFORM_SCALE /* apply IK mat, but as if the bones have uniform scale since the IK solver * is not aware of non-uniform scale */ float scale[3]; mat4_to_size(scale, pchan->pose_mat); normalize_v3_length(pchan->pose_mat[0], scale[1]); normalize_v3_length(pchan->pose_mat[2], scale[1]); #endif mul_m4_m4m4(pchan->pose_mat, pchan->pose_mat, ikmat); #ifdef USE_NONUNIFORM_SCALE float ik_scale[3]; mat3_to_size(ik_scale, ik_mat); normalize_v3_length(pchan->pose_mat[0], scale[0] * ik_scale[0]); normalize_v3_length(pchan->pose_mat[2], scale[2] * ik_scale[2]); #endif /* calculate head */ copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]); /* calculate tail */ copy_v3_v3(vec, pchan->pose_mat[1]); mul_v3_fl(vec, pchan->bone->length); add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec); pchan->flag |= POSE_DONE; } /** * Called from within the core #BKE_pose_where_is loop, all animation-systems and constraints * were executed & assigned. Now as last we do an IK pass. */ static void execute_posetree(struct Depsgraph *depsgraph, struct Scene *scene, Object *ob, PoseTree *tree) { float R_parmat[3][3], identity[3][3]; float iR_parmat[3][3]; float R_bonemat[3][3]; float goalrot[3][3], goalpos[3]; float rootmat[4][4], imat[4][4]; float goal[4][4], goalinv[4][4]; float irest_basis[3][3], full_basis[3][3]; float end_pose[4][4], world_pose[4][4]; float basis[3][3], rest_basis[3][3], start[3], *ikstretch = NULL; float resultinf = 0.0f; int a, flag, hasstretch = 0, resultblend = 0; bPoseChannel *pchan; IK_Segment *seg, *parent, **iktree, *iktarget; IK_Solver *solver; PoseTarget *target; bKinematicConstraint *data, *poleangledata = NULL; Bone *bone; if (tree->totchannel == 0) { return; } iktree = MEM_mallocN(sizeof(void *) * tree->totchannel, "ik tree"); for (a = 0; a < tree->totchannel; a++) { float length; pchan = tree->pchan[a]; bone = pchan->bone; /* set DoF flag */ flag = 0; if (!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP)) { flag |= IK_XDOF; } if (!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP)) { flag |= IK_YDOF; } if (!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP)) { flag |= IK_ZDOF; } if (tree->stretch && (pchan->ikstretch > 0.0f)) { flag |= IK_TRANS_YDOF; hasstretch = 1; } seg = iktree[a] = IK_CreateSegment(flag); /* find parent */ if (a == 0) { parent = NULL; } else { parent = iktree[tree->parent[a]]; } IK_SetParent(seg, parent); /* get the matrix that transforms from prevbone into this bone */ copy_m3_m4(R_bonemat, pchan->pose_mat); /* gather transformations for this IK segment */ if (pchan->parent) { copy_m3_m4(R_parmat, pchan->parent->pose_mat); } else { unit_m3(R_parmat); } /* bone offset */ if (pchan->parent && (a > 0)) { sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail); } else { /* only root bone (a = 0) has no parent */ start[0] = start[1] = start[2] = 0.0f; } /* change length based on bone size */ length = bone->length * len_v3(R_bonemat[1]); /* basis must be pure rotation */ normalize_m3(R_bonemat); normalize_m3(R_parmat); /* compute rest basis and its inverse */ copy_m3_m3(rest_basis, bone->bone_mat); transpose_m3_m3(irest_basis, bone->bone_mat); /* compute basis with rest_basis removed */ invert_m3_m3(iR_parmat, R_parmat); mul_m3_m3m3(full_basis, iR_parmat, R_bonemat); mul_m3_m3m3(basis, irest_basis, full_basis); /* transform offset into local bone space */ mul_m3_v3(iR_parmat, start); IK_SetTransform(seg, start, rest_basis, basis, length); if (pchan->ikflag & BONE_IK_XLIMIT) { IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]); } if (pchan->ikflag & BONE_IK_YLIMIT) { IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]); } if (pchan->ikflag & BONE_IK_ZLIMIT) { IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]); } IK_SetStiffness(seg, IK_X, pchan->stiffness[0]); IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]); IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]); if (tree->stretch && (pchan->ikstretch > 0.0f)) { const float ikstretch_sq = square_f(pchan->ikstretch); /* this function does its own clamping */ IK_SetStiffness(seg, IK_TRANS_Y, 1.0f - ikstretch_sq); IK_SetLimit(seg, IK_TRANS_Y, IK_STRETCH_STIFF_MIN, IK_STRETCH_STIFF_MAX); } } solver = IK_CreateSolver(iktree[0]); /* set solver goals */ /* first set the goal inverse transform, assuming the root of tree was done ok! */ pchan = tree->pchan[0]; if (pchan->parent) { /* transform goal by parent mat, so this rotation is not part of the * segment's basis. otherwise rotation limits do not work on the * local transform of the segment itself. */ copy_m4_m4(rootmat, pchan->parent->pose_mat); /* However, we do not want to get (i.e. reverse) parent's scale, * as it generates T31008 kind of nasty bugs. */ normalize_m4(rootmat); } else { unit_m4(rootmat); } copy_v3_v3(rootmat[3], pchan->pose_head); mul_m4_m4m4(imat, ob->obmat, rootmat); invert_m4_m4(goalinv, imat); for (target = tree->targets.first; target; target = target->next) { float polepos[3]; int poleconstrain = 0; data = (bKinematicConstraint *)target->con->data; /* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though * strictly speaking, it is a posechannel) */ BKE_constraint_target_matrix_get( depsgraph, scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0); /* and set and transform goal */ mul_m4_m4m4(goal, goalinv, rootmat); copy_v3_v3(goalpos, goal[3]); copy_m3_m4(goalrot, goal); normalize_m3(goalrot); /* same for pole vector target */ if (data->poletar) { BKE_constraint_target_matrix_get( depsgraph, scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0); if (data->flag & CONSTRAINT_IK_SETANGLE) { /* don't solve IK when we are setting the pole angle */ break; } mul_m4_m4m4(goal, goalinv, rootmat); copy_v3_v3(polepos, goal[3]); poleconstrain = 1; /* for pole targets, we blend the result of the ik solver * instead of the target position, otherwise we can't get * a smooth transition */ resultblend = 1; resultinf = target->con->enforce; if (data->flag & CONSTRAINT_IK_GETANGLE) { poleangledata = data; data->flag &= ~CONSTRAINT_IK_GETANGLE; } } /* do we need blending? */ if (!resultblend && target->con->enforce != 1.0f) { float q1[4], q2[4], q[4]; float fac = target->con->enforce; float mfac = 1.0f - fac; pchan = tree->pchan[target->tip]; /* end effector in world space */ copy_m4_m4(end_pose, pchan->pose_mat); copy_v3_v3(end_pose[3], pchan->pose_tail); mul_m4_series(world_pose, goalinv, ob->obmat, end_pose); /* blend position */ goalpos[0] = fac * goalpos[0] + mfac * world_pose[3][0]; goalpos[1] = fac * goalpos[1] + mfac * world_pose[3][1]; goalpos[2] = fac * goalpos[2] + mfac * world_pose[3][2]; /* blend rotation */ mat3_to_quat(q1, goalrot); mat4_to_quat(q2, world_pose); interp_qt_qtqt(q, q1, q2, mfac); quat_to_mat3(goalrot, q); } iktarget = iktree[target->tip]; if ((data->flag & CONSTRAINT_IK_POS) && data->weight != 0.0f) { if (poleconstrain) { IK_SolverSetPoleVectorConstraint( solver, iktarget, goalpos, polepos, data->poleangle, (poleangledata == data)); } IK_SolverAddGoal(solver, iktarget, goalpos, data->weight); } if ((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0f)) { if ((data->flag & CONSTRAINT_IK_AUTO) == 0) { IK_SolverAddGoalOrientation(solver, iktarget, goalrot, data->orientweight); } } } /* solve */ IK_Solve(solver, 0.0f, tree->iterations); if (poleangledata) { poleangledata->poleangle = IK_SolverGetPoleAngle(solver); } IK_FreeSolver(solver); /* gather basis changes */ tree->basis_change = MEM_mallocN(sizeof(float[3][3]) * tree->totchannel, "ik basis change"); if (hasstretch) { ikstretch = MEM_mallocN(sizeof(float) * tree->totchannel, "ik stretch"); } for (a = 0; a < tree->totchannel; a++) { IK_GetBasisChange(iktree[a], tree->basis_change[a]); if (hasstretch) { /* have to compensate for scaling received from parent */ float parentstretch, stretch; pchan = tree->pchan[a]; parentstretch = (tree->parent[a] >= 0) ? ikstretch[tree->parent[a]] : 1.0f; if (tree->stretch && (pchan->ikstretch > 0.0f)) { float trans[3], length; IK_GetTranslationChange(iktree[a], trans); length = pchan->bone->length * len_v3(pchan->pose_mat[1]); ikstretch[a] = (length == 0.0f) ? 1.0f : (trans[1] + length) / length; } else { ikstretch[a] = 1.0; } stretch = (parentstretch == 0.0f) ? 1.0f : ikstretch[a] / parentstretch; mul_v3_fl(tree->basis_change[a][0], stretch); mul_v3_fl(tree->basis_change[a][1], stretch); mul_v3_fl(tree->basis_change[a][2], stretch); } if (resultblend && resultinf != 1.0f) { unit_m3(identity); blend_m3_m3m3(tree->basis_change[a], identity, tree->basis_change[a], resultinf); } IK_FreeSegment(iktree[a]); } MEM_freeN(iktree); if (ikstretch) { MEM_freeN(ikstretch); } } static void free_posetree(PoseTree *tree) { BLI_freelistN(&tree->targets); if (tree->pchan) { MEM_freeN(tree->pchan); } if (tree->parent) { MEM_freeN(tree->parent); } if (tree->basis_change) { MEM_freeN(tree->basis_change); } MEM_freeN(tree); } /* ------------------------------ * Plugin API for legacy iksolver */ void iksolver_initialize_tree(struct Depsgraph *UNUSED(depsgraph), struct Scene *UNUSED(scene), struct Object *ob, float UNUSED(ctime)) { bPoseChannel *pchan; for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { if (pchan->constflag & PCHAN_HAS_IK) { /* flag is set on editing constraints */ initialize_posetree(ob, pchan); /* will attach it to root! */ } } ob->pose->flag &= ~POSE_WAS_REBUILT; } void iksolver_execute_tree(struct Depsgraph *depsgraph, struct Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime) { while (pchan_root->iktree.first) { PoseTree *tree = pchan_root->iktree.first; int a; /* stop on the first tree that isn't a standard IK chain */ if (tree->type != CONSTRAINT_TYPE_KINEMATIC) { return; } /* 4. walk over the tree for regular solving */ for (a = 0; a < tree->totchannel; a++) { if (!(tree->pchan[a]->flag & POSE_DONE)) { /* successive trees can set the flag */ BKE_pose_where_is_bone(depsgraph, scene, ob, tree->pchan[a], ctime, 1); } /* Tell blender that this channel was controlled by IK, * it's cleared on each BKE_pose_where_is(). */ tree->pchan[a]->flag |= POSE_CHAIN; } /* 5. execute the IK solver */ execute_posetree(depsgraph, scene, ob, tree); /* 6. apply the differences to the channels, * we need to calculate the original differences first */ for (a = 0; a < tree->totchannel; a++) { make_dmats(tree->pchan[a]); } for (a = 0; a < tree->totchannel; a++) { /* sets POSE_DONE */ where_is_ik_bone(tree->pchan[a], tree->basis_change[a]); } /* 7. and free */ BLI_remlink(&pchan_root->iktree, tree); free_posetree(tree); } } void iksolver_release_tree(struct Scene *UNUSED(scene), struct Object *ob, float UNUSED(ctime)) { iksolver_clear_data(ob->pose); } void iksolver_clear_data(bPose *pose) { LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) { if ((pchan->flag & POSE_IKTREE) == 0) { continue; } while (pchan->iktree.first) { PoseTree *tree = pchan->iktree.first; /* stop on the first tree that isn't a standard IK chain */ if (tree->type != CONSTRAINT_TYPE_KINEMATIC) { break; } BLI_remlink(&pchan->iktree, tree); free_posetree(tree); } } }