/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Original author: Benoit Bolsee * Contributor(s): * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/ikplugin/intern/iksolver_plugin.c * \ingroup ikplugin */ #include "MEM_guardedalloc.h" #include "BIK_api.h" #include "BLI_blenlib.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BKE_armature.h" #include "BKE_constraint.h" #include "DNA_object_types.h" #include "DNA_action_types.h" #include "DNA_constraint_types.h" #include "DNA_armature_types.h" #include "IK_solver.h" #include "iksolver_plugin.h" #include /* memcpy */ /* ********************** THE IK SOLVER ******************* */ /* allocates PoseTree, and links that to root bone/channel */ /* Note: detecting the IK chain is duplicate code... in drawarmature.c and in transform_conversions.c */ static void initialize_posetree(struct Object *UNUSED(ob), bPoseChannel *pchan_tip) { bPoseChannel *curchan, *pchan_root=NULL, *chanlist[256], **oldchan; PoseTree *tree; PoseTarget *target; bConstraint *con; bKinematicConstraint *data; int a, t, segcount= 0, size, newsize, *oldparent, parent; /* find IK constraint, and validate it */ for (con= pchan_tip->constraints.first; con; con= con->next) { if (con->type==CONSTRAINT_TYPE_KINEMATIC) { data=(bKinematicConstraint*)con->data; if (data->flag & CONSTRAINT_IK_AUTO) break; if (data->tar==NULL) continue; if (data->tar->type==OB_ARMATURE && data->subtarget[0]==0) continue; if ((con->flag & (CONSTRAINT_DISABLE|CONSTRAINT_OFF))==0 && (con->enforce != 0.0f)) break; } } if (con==NULL) return; /* exclude tip from chain? */ if (!(data->flag & CONSTRAINT_IK_TIP)) pchan_tip= pchan_tip->parent; /* Find the chain's root & count the segments needed */ for (curchan = pchan_tip; curchan; curchan=curchan->parent) { pchan_root = curchan; curchan->flag |= POSE_CHAIN; // don't forget to clear this chanlist[segcount]=curchan; segcount++; if (segcount==data->rootbone || segcount>255) break; // 255 is weak } if (!segcount) return; /* setup the chain data */ /* we make tree-IK, unless all existing targets are in this chain */ for (tree= pchan_root->iktree.first; tree; tree= tree->next) { for (target= tree->targets.first; target; target= target->next) { curchan= tree->pchan[target->tip]; if (curchan->flag & POSE_CHAIN) curchan->flag &= ~POSE_CHAIN; else break; } if (target) break; } /* create a target */ target= MEM_callocN(sizeof(PoseTarget), "posetarget"); target->con= con; pchan_tip->flag &= ~POSE_CHAIN; if (tree==NULL) { /* make new tree */ tree= MEM_callocN(sizeof(PoseTree), "posetree"); tree->type= CONSTRAINT_TYPE_KINEMATIC; tree->iterations= data->iterations; tree->totchannel= segcount; tree->stretch = (data->flag & CONSTRAINT_IK_STRETCH); tree->pchan= MEM_callocN(segcount*sizeof(void*), "ik tree pchan"); tree->parent= MEM_callocN(segcount*sizeof(int), "ik tree parent"); for (a=0; apchan[a]= chanlist[segcount-a-1]; tree->parent[a]= a-1; } target->tip= segcount-1; /* AND! link the tree to the root */ BLI_addtail(&pchan_root->iktree, tree); } else { tree->iterations= MAX2(data->iterations, tree->iterations); tree->stretch= tree->stretch && !(data->flag & CONSTRAINT_IK_STRETCH); /* skip common pose channels and add remaining*/ size= MIN2(segcount, tree->totchannel); a = t = 0; while (atotchannel) { // locate first matching channel for (;ttotchannel && tree->pchan[t]!=chanlist[segcount-a-1];t++); if (t>=tree->totchannel) break; for (; atotchannel && tree->pchan[t]==chanlist[segcount-a-1]; a++, t++); } segcount= segcount-a; target->tip= tree->totchannel + segcount - 1; if (segcount > 0) { for (parent = a - 1; parent < tree->totchannel; parent++) if (tree->pchan[parent] == chanlist[segcount-1]->parent) break; /* shouldn't happen, but could with dependency cycles */ if (parent == tree->totchannel) parent = a - 1; /* resize array */ newsize= tree->totchannel + segcount; oldchan= tree->pchan; oldparent= tree->parent; tree->pchan= MEM_callocN(newsize*sizeof(void*), "ik tree pchan"); tree->parent= MEM_callocN(newsize*sizeof(int), "ik tree parent"); memcpy(tree->pchan, oldchan, sizeof(void*)*tree->totchannel); memcpy(tree->parent, oldparent, sizeof(int)*tree->totchannel); MEM_freeN(oldchan); MEM_freeN(oldparent); /* add new pose channels at the end, in reverse order */ for (a=0; apchan[tree->totchannel+a]= chanlist[segcount-a-1]; tree->parent[tree->totchannel+a]= tree->totchannel+a-1; } tree->parent[tree->totchannel]= parent; tree->totchannel= newsize; } /* move tree to end of list, for correct evaluation order */ BLI_remlink(&pchan_root->iktree, tree); BLI_addtail(&pchan_root->iktree, tree); } /* add target to the tree */ BLI_addtail(&tree->targets, target); /* mark root channel having an IK tree */ pchan_root->flag |= POSE_IKTREE; } /* transform from bone(b) to bone(b+1), store in chan_mat */ static void make_dmats(bPoseChannel *pchan) { if (pchan->parent) { float iR_parmat[4][4]; invert_m4_m4(iR_parmat, pchan->parent->pose_mat); mult_m4_m4m4(pchan->chan_mat, iR_parmat, pchan->pose_mat); // delta mat } else copy_m4_m4(pchan->chan_mat, pchan->pose_mat); } /* applies IK matrix to pchan, IK is done separated */ /* formula: pose_mat(b) = pose_mat(b-1) * diffmat(b-1, b) * ik_mat(b) */ /* to make this work, the diffmats have to be precalculated! Stored in chan_mat */ static void where_is_ik_bone(bPoseChannel *pchan, float ik_mat[][3]) // nr = to detect if this is first bone { float vec[3], ikmat[4][4]; copy_m4_m3(ikmat, ik_mat); if (pchan->parent) mul_serie_m4(pchan->pose_mat, pchan->parent->pose_mat, pchan->chan_mat, ikmat, NULL, NULL, NULL, NULL, NULL); else mult_m4_m4m4(pchan->pose_mat, pchan->chan_mat, ikmat); /* calculate head */ copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]); /* calculate tail */ copy_v3_v3(vec, pchan->pose_mat[1]); mul_v3_fl(vec, pchan->bone->length); add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec); pchan->flag |= POSE_DONE; } /* called from within the core BKE_pose_where_is loop, all animsystems and constraints * were executed & assigned. Now as last we do an IK pass */ static void execute_posetree(struct Scene *scene, Object *ob, PoseTree *tree) { float R_parmat[3][3], identity[3][3]; float iR_parmat[3][3]; float R_bonemat[3][3]; float goalrot[3][3], goalpos[3]; float rootmat[4][4], imat[4][4]; float goal[4][4], goalinv[4][4]; float irest_basis[3][3], full_basis[3][3]; float end_pose[4][4], world_pose[4][4]; float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch=NULL; float resultinf=0.0f; int a, flag, hasstretch=0, resultblend=0; bPoseChannel *pchan; IK_Segment *seg, *parent, **iktree, *iktarget; IK_Solver *solver; PoseTarget *target; bKinematicConstraint *data, *poleangledata=NULL; Bone *bone; if (tree->totchannel == 0) return; iktree= MEM_mallocN(sizeof(void*)*tree->totchannel, "ik tree"); for (a=0; atotchannel; a++) { pchan= tree->pchan[a]; bone= pchan->bone; /* set DoF flag */ flag= 0; if (!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP)) flag |= IK_XDOF; if (!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP)) flag |= IK_YDOF; if (!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP)) flag |= IK_ZDOF; if (tree->stretch && (pchan->ikstretch > 0.0f)) { flag |= IK_TRANS_YDOF; hasstretch = 1; } seg= iktree[a]= IK_CreateSegment(flag); /* find parent */ if (a == 0) parent= NULL; else parent= iktree[tree->parent[a]]; IK_SetParent(seg, parent); /* get the matrix that transforms from prevbone into this bone */ copy_m3_m4(R_bonemat, pchan->pose_mat); /* gather transformations for this IK segment */ if (pchan->parent) copy_m3_m4(R_parmat, pchan->parent->pose_mat); else unit_m3(R_parmat); /* bone offset */ if (pchan->parent && (a > 0)) sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail); else /* only root bone (a = 0) has no parent */ start[0]= start[1]= start[2]= 0.0f; /* change length based on bone size */ length= bone->length*len_v3(R_bonemat[1]); /* compute rest basis and its inverse */ copy_m3_m3(rest_basis, bone->bone_mat); copy_m3_m3(irest_basis, bone->bone_mat); transpose_m3(irest_basis); /* compute basis with rest_basis removed */ invert_m3_m3(iR_parmat, R_parmat); mul_m3_m3m3(full_basis, iR_parmat, R_bonemat); mul_m3_m3m3(basis, irest_basis, full_basis); /* basis must be pure rotation */ normalize_m3(basis); /* transform offset into local bone space */ normalize_m3(iR_parmat); mul_m3_v3(iR_parmat, start); IK_SetTransform(seg, start, rest_basis, basis, length); if (pchan->ikflag & BONE_IK_XLIMIT) IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]); if (pchan->ikflag & BONE_IK_YLIMIT) IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]); if (pchan->ikflag & BONE_IK_ZLIMIT) IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]); IK_SetStiffness(seg, IK_X, pchan->stiffness[0]); IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]); IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]); if (tree->stretch && (pchan->ikstretch > 0.0f)) { float ikstretch = pchan->ikstretch*pchan->ikstretch; IK_SetStiffness(seg, IK_TRANS_Y, MIN2(1.0f-ikstretch, 0.99f)); IK_SetLimit(seg, IK_TRANS_Y, 0.001, 1e10); } } solver= IK_CreateSolver(iktree[0]); /* set solver goals */ /* first set the goal inverse transform, assuming the root of tree was done ok! */ pchan= tree->pchan[0]; if (pchan->parent) { /* transform goal by parent mat, so this rotation is not part of the * segment's basis. otherwise rotation limits do not work on the * local transform of the segment itself. */ copy_m4_m4(rootmat, pchan->parent->pose_mat); /* However, we do not want to get (i.e. reverse) parent's scale, as it generates [#31008] * kind of nasty bugs... */ normalize_m4(rootmat); } else unit_m4(rootmat); copy_v3_v3(rootmat[3], pchan->pose_head); mult_m4_m4m4(imat, ob->obmat, rootmat); invert_m4_m4(goalinv, imat); for (target=tree->targets.first; target; target=target->next) { float polepos[3]; int poleconstrain= 0; data= (bKinematicConstraint*)target->con->data; /* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though * strictly speaking, it is a posechannel) */ get_constraint_target_matrix(scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0); /* and set and transform goal */ mult_m4_m4m4(goal, goalinv, rootmat); copy_v3_v3(goalpos, goal[3]); copy_m3_m4(goalrot, goal); /* same for pole vector target */ if (data->poletar) { get_constraint_target_matrix(scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0); if (data->flag & CONSTRAINT_IK_SETANGLE) { /* don't solve IK when we are setting the pole angle */ break; } else { mult_m4_m4m4(goal, goalinv, rootmat); copy_v3_v3(polepos, goal[3]); poleconstrain= 1; /* for pole targets, we blend the result of the ik solver * instead of the target position, otherwise we can't get * a smooth transition */ resultblend= 1; resultinf= target->con->enforce; if (data->flag & CONSTRAINT_IK_GETANGLE) { poleangledata= data; data->flag &= ~CONSTRAINT_IK_GETANGLE; } } } /* do we need blending? */ if (!resultblend && target->con->enforce != 1.0f) { float q1[4], q2[4], q[4]; float fac= target->con->enforce; float mfac= 1.0f-fac; pchan= tree->pchan[target->tip]; /* end effector in world space */ copy_m4_m4(end_pose, pchan->pose_mat); copy_v3_v3(end_pose[3], pchan->pose_tail); mul_serie_m4(world_pose, goalinv, ob->obmat, end_pose, NULL, NULL, NULL, NULL, NULL); /* blend position */ goalpos[0]= fac*goalpos[0] + mfac*world_pose[3][0]; goalpos[1]= fac*goalpos[1] + mfac*world_pose[3][1]; goalpos[2]= fac*goalpos[2] + mfac*world_pose[3][2]; /* blend rotation */ mat3_to_quat(q1, goalrot); mat4_to_quat(q2, world_pose); interp_qt_qtqt(q, q1, q2, mfac); quat_to_mat3(goalrot, q); } iktarget= iktree[target->tip]; if (data->weight != 0.0f) { if (poleconstrain) IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos, polepos, data->poleangle, (poleangledata == data)); IK_SolverAddGoal(solver, iktarget, goalpos, data->weight); } if ((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0f)) if ((data->flag & CONSTRAINT_IK_AUTO)==0) IK_SolverAddGoalOrientation(solver, iktarget, goalrot, data->orientweight); } /* solve */ IK_Solve(solver, 0.0f, tree->iterations); if (poleangledata) poleangledata->poleangle= IK_SolverGetPoleAngle(solver); IK_FreeSolver(solver); /* gather basis changes */ tree->basis_change= MEM_mallocN(sizeof(float[3][3])*tree->totchannel, "ik basis change"); if (hasstretch) ikstretch= MEM_mallocN(sizeof(float)*tree->totchannel, "ik stretch"); for (a=0; atotchannel; a++) { IK_GetBasisChange(iktree[a], tree->basis_change[a]); if (hasstretch) { /* have to compensate for scaling received from parent */ float parentstretch, stretch; pchan= tree->pchan[a]; parentstretch= (tree->parent[a] >= 0)? ikstretch[tree->parent[a]]: 1.0f; if (tree->stretch && (pchan->ikstretch > 0.0f)) { float trans[3], length; IK_GetTranslationChange(iktree[a], trans); length= pchan->bone->length*len_v3(pchan->pose_mat[1]); ikstretch[a]= (length == 0.0f)? 1.0f: (trans[1]+length)/length; } else ikstretch[a] = 1.0; stretch= (parentstretch == 0.0f)? 1.0f: ikstretch[a]/parentstretch; mul_v3_fl(tree->basis_change[a][0], stretch); mul_v3_fl(tree->basis_change[a][1], stretch); mul_v3_fl(tree->basis_change[a][2], stretch); } if (resultblend && resultinf!=1.0f) { unit_m3(identity); blend_m3_m3m3(tree->basis_change[a], identity, tree->basis_change[a], resultinf); } IK_FreeSegment(iktree[a]); } MEM_freeN(iktree); if (ikstretch) MEM_freeN(ikstretch); } static void free_posetree(PoseTree *tree) { BLI_freelistN(&tree->targets); if (tree->pchan) MEM_freeN(tree->pchan); if (tree->parent) MEM_freeN(tree->parent); if (tree->basis_change) MEM_freeN(tree->basis_change); MEM_freeN(tree); } ///---------------------------------------- /// Plugin API for legacy iksolver void iksolver_initialize_tree(struct Scene *UNUSED(scene), struct Object *ob, float UNUSED(ctime)) { bPoseChannel *pchan; for (pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) { if (pchan->constflag & PCHAN_HAS_IK) // flag is set on editing constraints initialize_posetree(ob, pchan); // will attach it to root! } ob->pose->flag &= ~POSE_WAS_REBUILT; } void iksolver_execute_tree(struct Scene *scene, struct Object *ob, struct bPoseChannel *pchan, float ctime) { while (pchan->iktree.first) { PoseTree *tree= pchan->iktree.first; int a; /* stop on the first tree that isn't a standard IK chain */ if (tree->type != CONSTRAINT_TYPE_KINEMATIC) return; /* 4. walk over the tree for regular solving */ for (a=0; atotchannel; a++) { if (!(tree->pchan[a]->flag & POSE_DONE)) // successive trees can set the flag BKE_pose_where_is_bone(scene, ob, tree->pchan[a], ctime, 1); // tell blender that this channel was controlled by IK, it's cleared on each BKE_pose_where_is() tree->pchan[a]->flag |= POSE_CHAIN; } /* 5. execute the IK solver */ execute_posetree(scene, ob, tree); /* 6. apply the differences to the channels, * we need to calculate the original differences first */ for (a=0; atotchannel; a++) { make_dmats(tree->pchan[a]); } for (a=0; atotchannel; a++) { /* sets POSE_DONE */ where_is_ik_bone(tree->pchan[a], tree->basis_change[a]); } /* 7. and free */ BLI_remlink(&pchan->iktree, tree); free_posetree(tree); } }