/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup imbuf */ /** * Provides TIFF file loading and saving for Blender, via libtiff. * * The task of loading is complicated somewhat by the fact that Blender has * already loaded the file into a memory buffer. libtiff is not well * configured to handle files in memory, so a client wrapper is written to * surround the memory and turn it into a virtual file. Currently, reading * of TIFF files is done using libtiff's RGBAImage support. This is a * high-level routine that loads all images as 32-bit RGBA, handling all the * required conversions between many different TIFF types internally. * * Saving supports RGB, RGBA and BW (gray-scale) images correctly, with * 8 bits per channel in all cases. The "deflate" compression algorithm is * used to compress images. */ #include #include "imbuf.h" #include "BLI_endian_defines.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BKE_global.h" #include "IMB_imbuf.h" #include "IMB_imbuf_types.h" #include "IMB_filetype.h" #include "IMB_colormanagement.h" #include "IMB_colormanagement_intern.h" #include #ifdef WIN32 # include "utfconv.h" #endif /* -------------------------------------------------------------------- */ /** \name Local Declarations * \{ */ /* Reading and writing of an in-memory TIFF file. */ static tsize_t imb_tiff_ReadProc(thandle_t handle, tdata_t data, tsize_t n); static tsize_t imb_tiff_WriteProc(thandle_t handle, tdata_t data, tsize_t n); static toff_t imb_tiff_SeekProc(thandle_t handle, toff_t ofs, int whence); static int imb_tiff_CloseProc(thandle_t handle); static toff_t imb_tiff_SizeProc(thandle_t handle); static int imb_tiff_DummyMapProc(thandle_t fd, tdata_t *pbase, toff_t *psize); static void imb_tiff_DummyUnmapProc(thandle_t fd, tdata_t base, toff_t size); /** Structure for in-memory TIFF file. */ typedef struct ImbTIFFMemFile { /** Location of first byte of TIFF file. */ const uchar *mem; /** Current offset within the file. */ toff_t offset; /** Size of the TIFF file. */ tsize_t size; } ImbTIFFMemFile; #define IMB_TIFF_GET_MEMFILE(x) ((ImbTIFFMemFile *)(x)) /** \} */ /* -------------------------------------------------------------------- */ /** \name Function Implementations * \{ */ static void imb_tiff_DummyUnmapProc( thandle_t fd, tdata_t base, /* Cannot be const, because this function implements #TIFFUnmapFileProc. * NOLINTNEXTLINE: readability-non-const-parameter. */ toff_t size) { (void)fd; (void)base; (void)size; } static int imb_tiff_DummyMapProc( thandle_t fd, tdata_t *pbase, /* Cannot be const, because this function implements #TIFFMapFileProc. * NOLINTNEXTLINE: readability-non-const-parameter. */ toff_t *psize) { (void)fd; (void)pbase; (void)psize; return 0; } /** * Reads data from an in-memory TIFF file. * * \param handle: Handle of the TIFF file (pointer to #ImbTIFFMemFile). * \param data: Buffer to contain data (treat as (void *)). * \param n: Number of bytes to read. * * \return Number of bytes actually read. * 0 = EOF. */ static tsize_t imb_tiff_ReadProc(thandle_t handle, tdata_t data, tsize_t n) { tsize_t nRemaining, nCopy; ImbTIFFMemFile *mfile; void *srcAddr; /* get the pointer to the in-memory file */ mfile = IMB_TIFF_GET_MEMFILE(handle); if (!mfile || !mfile->mem) { fprintf(stderr, "imb_tiff_ReadProc: !mfile || !mfile->mem!\n"); return 0; } /* find the actual number of bytes to read (copy) */ nCopy = n; if ((tsize_t)mfile->offset >= mfile->size) { nRemaining = 0; } else { nRemaining = mfile->size - mfile->offset; } if (nCopy > nRemaining) { nCopy = nRemaining; } /* on EOF, return immediately and read (copy) nothing */ if (nCopy <= 0) { return 0; } /* all set -> do the read (copy) */ srcAddr = (void *)&(mfile->mem[mfile->offset]); memcpy((void *)data, srcAddr, nCopy); mfile->offset += nCopy; /* advance file ptr by copied bytes */ return nCopy; } /** * Writes data to an in-memory TIFF file. * * NOTE: The current Blender implementation should not need this function. * It is simply a stub. */ static tsize_t imb_tiff_WriteProc(thandle_t handle, tdata_t data, tsize_t n) { (void)handle; (void)data; (void)n; printf("imb_tiff_WriteProc: this function should not be called.\n"); return (-1); } /** * Seeks to a new location in an in-memory TIFF file. * * \param handle: Handle of the TIFF file (pointer to #ImbTIFFMemFile). * \param ofs: Offset value (interpreted according to whence below). * \param whence: This can be one of three values: * SEEK_SET - The offset is set to ofs bytes. * SEEK_CUR - The offset is set to its current location plus ofs bytes. * SEEK_END - (This is unsupported and will return -1, indicating an * error). * * \return Resulting offset location within the file, measured in bytes from * the beginning of the file. (-1) indicates an error. */ static toff_t imb_tiff_SeekProc(thandle_t handle, toff_t ofs, int whence) { ImbTIFFMemFile *mfile; toff_t new_offset; /* get the pointer to the in-memory file */ mfile = IMB_TIFF_GET_MEMFILE(handle); if (!mfile || !mfile->mem) { fprintf(stderr, "imb_tiff_SeekProc: !mfile || !mfile->mem!\n"); return (-1); } /* find the location we plan to seek to */ switch (whence) { case SEEK_SET: new_offset = ofs; break; case SEEK_CUR: new_offset = mfile->offset + ofs; break; default: /* no other types are supported - return an error */ fprintf(stderr, "imb_tiff_SeekProc: " "Unsupported TIFF SEEK type.\n"); return (-1); } /* set the new location */ mfile->offset = new_offset; return mfile->offset; } /** * Closes (virtually) an in-memory TIFF file. * * NOTE: All this function actually does is sets the data pointer within the * TIFF file to NULL. That should trigger assertion errors if attempts * are made to access the file after that point. However, no such * attempts should ever be made (in theory). * * \param handle: Handle of the TIFF file (pointer to #ImbTIFFMemFile). * * \return 0 */ static int imb_tiff_CloseProc(thandle_t handle) { ImbTIFFMemFile *mfile; /* get the pointer to the in-memory file */ mfile = IMB_TIFF_GET_MEMFILE(handle); if (!mfile || !mfile->mem) { fprintf(stderr, "imb_tiff_CloseProc: !mfile || !mfile->mem!\n"); return 0; } /* virtually close the file */ mfile->mem = NULL; mfile->offset = 0; mfile->size = 0; return 0; } /** * Returns the size of an in-memory TIFF file in bytes. * * \return Size of file (in bytes). */ static toff_t imb_tiff_SizeProc(thandle_t handle) { ImbTIFFMemFile *mfile; /* get the pointer to the in-memory file */ mfile = IMB_TIFF_GET_MEMFILE(handle); if (!mfile || !mfile->mem) { fprintf(stderr, "imb_tiff_SizeProc: !mfile || !mfile->mem!\n"); return 0; } /* return the size */ return (toff_t)(mfile->size); } static TIFF *imb_tiff_client_open(ImbTIFFMemFile *memFile, const uchar *mem, size_t size) { /* open the TIFF client layer interface to the in-memory file */ memFile->mem = mem; memFile->offset = 0; memFile->size = size; return TIFFClientOpen("(Blender TIFF Interface Layer)", "r", (thandle_t)(memFile), imb_tiff_ReadProc, imb_tiff_WriteProc, imb_tiff_SeekProc, imb_tiff_CloseProc, imb_tiff_SizeProc, imb_tiff_DummyMapProc, imb_tiff_DummyUnmapProc); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Load TIFF * \{ */ /** * Checks whether a given memory buffer contains a TIFF file. * * This method uses the format identifiers from: * http://www.faqs.org/faqs/graphics/fileformats-faq/part4/section-9.html * The first four bytes of big-endian and little-endian TIFF files * respectively are (hex): * 4d 4d 00 2a * 49 49 2a 00 * Note that TIFF files on *any* platform can be either big- or little-endian; * it's not platform-specific. * * AFAICT, libtiff doesn't provide a method to do this automatically, and * hence my manual comparison. - Jonathan Merritt (lancelet) 4th Sept 2005. */ #define IMB_TIFF_NCB 4 /* number of comparison bytes used */ bool imb_is_a_tiff(const uchar *buf, size_t size) { const char big_endian[IMB_TIFF_NCB] = {0x4d, 0x4d, 0x00, 0x2a}; const char lil_endian[IMB_TIFF_NCB] = {0x49, 0x49, 0x2a, 0x00}; if (size < IMB_TIFF_NCB) { return false; } return ((memcmp(big_endian, buf, IMB_TIFF_NCB) == 0) || (memcmp(lil_endian, buf, IMB_TIFF_NCB) == 0)); } static void scanline_contig_16bit(float *rectf, const ushort *sbuf, int scanline_w, int spp) { int i; for (i = 0; i < scanline_w; i++) { rectf[i * 4 + 0] = sbuf[i * spp + 0] / 65535.0; rectf[i * 4 + 1] = (spp >= 3) ? sbuf[i * spp + 1] / 65535.0 : sbuf[i * spp + 0] / 65535.0; rectf[i * 4 + 2] = (spp >= 3) ? sbuf[i * spp + 2] / 65535.0 : sbuf[i * spp + 0] / 65535.0; rectf[i * 4 + 3] = (spp == 4) ? (sbuf[i * spp + 3] / 65535.0) : 1.0; } } static void scanline_contig_32bit(float *rectf, const float *fbuf, int scanline_w, int spp) { int i; for (i = 0; i < scanline_w; i++) { rectf[i * 4 + 0] = fbuf[i * spp + 0]; rectf[i * 4 + 1] = (spp >= 3) ? fbuf[i * spp + 1] : fbuf[i * spp + 0]; rectf[i * 4 + 2] = (spp >= 3) ? fbuf[i * spp + 2] : fbuf[i * spp + 0]; rectf[i * 4 + 3] = (spp == 4) ? fbuf[i * spp + 3] : 1.0f; } } static void scanline_separate_16bit(float *rectf, const ushort *sbuf, int scanline_w, int chan) { int i; for (i = 0; i < scanline_w; i++) { rectf[i * 4 + chan] = sbuf[i] / 65535.0; } } static void scanline_separate_32bit(float *rectf, const float *fbuf, int scanline_w, int chan) { int i; for (i = 0; i < scanline_w; i++) { rectf[i * 4 + chan] = fbuf[i]; } } static void imb_read_tiff_resolution(ImBuf *ibuf, TIFF *image) { uint16_t unit; float xres; float yres; TIFFGetFieldDefaulted(image, TIFFTAG_RESOLUTIONUNIT, &unit); TIFFGetFieldDefaulted(image, TIFFTAG_XRESOLUTION, &xres); TIFFGetFieldDefaulted(image, TIFFTAG_YRESOLUTION, &yres); if (unit == RESUNIT_CENTIMETER) { ibuf->ppm[0] = (double)xres * 100.0; ibuf->ppm[1] = (double)yres * 100.0; } else { ibuf->ppm[0] = (double)xres / 0.0254; ibuf->ppm[1] = (double)yres / 0.0254; } } /* * Use the libTIFF scanline API to read a TIFF image. * This method is most flexible and can handle multiple different bit depths * and RGB channel orderings. */ static int imb_read_tiff_pixels(ImBuf *ibuf, TIFF *image) { ImBuf *tmpibuf = NULL; int success = 0; short bitspersample, spp, config; size_t scanline; int ib_flag = 0, row, chan; float *fbuf = NULL; ushort *sbuf = NULL; TIFFGetField(image, TIFFTAG_BITSPERSAMPLE, &bitspersample); TIFFGetField(image, TIFFTAG_SAMPLESPERPIXEL, &spp); /* number of 'channels' */ TIFFGetField(image, TIFFTAG_PLANARCONFIG, &config); if (spp == 4) { /* HACK: this is really tricky hack, which is only needed to force libtiff * do not touch RGB channels when there's alpha channel present * The thing is: libtiff will premul RGB if alpha mode is set to * unassociated, which really conflicts with blender's assumptions * * Alternative would be to unpremul after load, but it'll be really * lossy and unwanted behavior * * So let's keep this thing here for until proper solution is found (sergey) */ ushort extraSampleTypes[1]; extraSampleTypes[0] = EXTRASAMPLE_ASSOCALPHA; TIFFSetField(image, TIFFTAG_EXTRASAMPLES, 1, extraSampleTypes); } imb_read_tiff_resolution(ibuf, image); scanline = TIFFScanlineSize(image); if (bitspersample == 32) { ib_flag = IB_rectfloat; fbuf = (float *)_TIFFmalloc(scanline); if (!fbuf) { goto cleanup; } } else if (bitspersample == 16) { ib_flag = IB_rectfloat; sbuf = (ushort *)_TIFFmalloc(scanline); if (!sbuf) { goto cleanup; } } else { ib_flag = IB_rect; } tmpibuf = IMB_allocImBuf(ibuf->x, ibuf->y, ibuf->planes, ib_flag); if (!tmpibuf) { goto cleanup; } /* simple RGBA image */ if (!ELEM(bitspersample, 32, 16)) { success |= TIFFReadRGBAImage(image, ibuf->x, ibuf->y, tmpibuf->rect, 0); } /* contiguous channels: RGBRGBRGB */ else if (config == PLANARCONFIG_CONTIG) { for (row = 0; row < ibuf->y; row++) { size_t ib_offset = (size_t)ibuf->x * 4 * ((size_t)ibuf->y - ((size_t)row + 1)); if (bitspersample == 32) { success |= TIFFReadScanline(image, fbuf, row, 0); scanline_contig_32bit(tmpibuf->rect_float + ib_offset, fbuf, ibuf->x, spp); } else if (bitspersample == 16) { success |= TIFFReadScanline(image, sbuf, row, 0); scanline_contig_16bit(tmpibuf->rect_float + ib_offset, sbuf, ibuf->x, spp); } } /* Separate channels: RRRGGGBBB. */ } else if (config == PLANARCONFIG_SEPARATE) { /* imbufs always have 4 channels of data, so we iterate over all of them * but only fill in from the TIFF scanline where necessary. */ for (chan = 0; chan < 4; chan++) { for (row = 0; row < ibuf->y; row++) { size_t ib_offset = (size_t)ibuf->x * 4 * ((size_t)ibuf->y - ((size_t)row + 1)); if (bitspersample == 32) { if (chan == 3 && spp == 3) { /* fill alpha if only RGB TIFF */ copy_vn_fl(fbuf, ibuf->x, 1.0f); } else if (chan >= spp) { /* For gray-scale, duplicate first channel into G and B. */ success |= TIFFReadScanline(image, fbuf, row, 0); } else { success |= TIFFReadScanline(image, fbuf, row, chan); } scanline_separate_32bit(tmpibuf->rect_float + ib_offset, fbuf, ibuf->x, chan); } else if (bitspersample == 16) { if (chan == 3 && spp == 3) { /* fill alpha if only RGB TIFF */ copy_vn_ushort(sbuf, ibuf->x, 65535); } else if (chan >= spp) { /* For gray-scale, duplicate first channel into G and B. */ success |= TIFFReadScanline(image, fbuf, row, 0); } else { success |= TIFFReadScanline(image, sbuf, row, chan); } scanline_separate_16bit(tmpibuf->rect_float + ib_offset, sbuf, ibuf->x, chan); } } } } if (success) { /* Code seems to be not needed for 16 bits TIFF, on PPC G5 OSX (ton) */ if (bitspersample < 16) { if (ENDIAN_ORDER == B_ENDIAN) { IMB_convert_rgba_to_abgr(tmpibuf); } } /* assign rect last */ if (tmpibuf->rect_float) { ibuf->rect_float = tmpibuf->rect_float; } else { ibuf->rect = tmpibuf->rect; } ibuf->mall |= ib_flag; ibuf->flags |= ib_flag; tmpibuf->mall &= ~ib_flag; } cleanup: if (bitspersample == 32) { _TIFFfree(fbuf); } else if (bitspersample == 16) { _TIFFfree(sbuf); } IMB_freeImBuf(tmpibuf); return success; } void imb_inittiff(void) { if (!(G.debug & G_DEBUG)) { TIFFSetErrorHandler(NULL); } } ImBuf *imb_loadtiff(const uchar *mem, size_t size, int flags, char colorspace[IM_MAX_SPACE]) { TIFF *image = NULL; ImBuf *ibuf = NULL, *hbuf; ImbTIFFMemFile memFile; uint32_t width, height; char *format = NULL; short spp; int ib_depth; /* Check whether or not we have a TIFF file. */ if (imb_is_a_tiff(mem, size) == 0) { return NULL; } /* both 8 and 16 bit PNGs are default to standard byte colorspace */ colorspace_set_default_role(colorspace, IM_MAX_SPACE, COLOR_ROLE_DEFAULT_BYTE); image = imb_tiff_client_open(&memFile, mem, size); if (image == NULL) { printf("imb_loadtiff: could not open TIFF IO layer.\n"); return NULL; } /* allocate the image buffer */ TIFFGetField(image, TIFFTAG_IMAGEWIDTH, &width); TIFFGetField(image, TIFFTAG_IMAGELENGTH, &height); TIFFGetField(image, TIFFTAG_SAMPLESPERPIXEL, &spp); ib_depth = spp * 8; ibuf = IMB_allocImBuf(width, height, ib_depth, 0); if (ibuf) { ibuf->ftype = IMB_FTYPE_TIF; } else { fprintf(stderr, "imb_loadtiff: could not allocate memory for TIFF " "image.\n"); TIFFClose(image); return NULL; } /* get alpha mode from file header */ if (flags & IB_alphamode_detect) { if (spp == 4) { ushort extra, *extraSampleTypes; const int found = TIFFGetField(image, TIFFTAG_EXTRASAMPLES, &extra, &extraSampleTypes); if (found && (extraSampleTypes[0] == EXTRASAMPLE_ASSOCALPHA)) { ibuf->flags |= IB_alphamode_premul; } } } /* if testing, we're done */ if (flags & IB_test) { TIFFClose(image); return ibuf; } /* detect if we are reading a tiled/mipmapped texture, in that case * we don't read pixels but leave it to the cache to load tiles */ if (flags & IB_tilecache) { format = NULL; TIFFGetField(image, TIFFTAG_PIXAR_TEXTUREFORMAT, &format); if (format && STREQ(format, "Plain Texture") && TIFFIsTiled(image)) { int numlevel = TIFFNumberOfDirectories(image); /* create empty mipmap levels in advance */ for (int level = 0; level < numlevel; level++) { if (!TIFFSetDirectory(image, level)) { break; } if (level > 0) { width = (width > 1) ? width / 2 : 1; height = (height > 1) ? height / 2 : 1; hbuf = IMB_allocImBuf(width, height, 32, 0); hbuf->miplevel = level; hbuf->ftype = ibuf->ftype; ibuf->mipmap[level - 1] = hbuf; } else { hbuf = ibuf; } hbuf->flags |= IB_tilecache; TIFFGetField(image, TIFFTAG_TILEWIDTH, &hbuf->tilex); TIFFGetField(image, TIFFTAG_TILELENGTH, &hbuf->tiley); hbuf->xtiles = ceil(hbuf->x / (float)hbuf->tilex); hbuf->ytiles = ceil(hbuf->y / (float)hbuf->tiley); imb_addtilesImBuf(hbuf); ibuf->miptot++; } } } /* read pixels */ if (!(ibuf->flags & IB_tilecache) && !imb_read_tiff_pixels(ibuf, image)) { fprintf(stderr, "imb_loadtiff: Failed to read tiff image.\n"); TIFFClose(image); return NULL; } /* close the client layer interface to the in-memory file */ TIFFClose(image); /* return successfully */ return ibuf; } void imb_loadtiletiff(ImBuf *ibuf, const uchar *mem, size_t size, int tx, int ty, uint *rect) { TIFF *image = NULL; uint32_t width, height; ImbTIFFMemFile memFile; image = imb_tiff_client_open(&memFile, mem, size); if (image == NULL) { printf("imb_loadtiff: could not open TIFF IO layer for loading mipmap level.\n"); return; } if (TIFFSetDirectory(image, ibuf->miplevel)) { /* allocate the image buffer */ TIFFGetField(image, TIFFTAG_IMAGEWIDTH, &width); TIFFGetField(image, TIFFTAG_IMAGELENGTH, &height); if (width == ibuf->x && height == ibuf->y) { if (rect) { /* tiff pixels are bottom to top, tiles are top to bottom */ if (TIFFReadRGBATile( image, tx * ibuf->tilex, (ibuf->ytiles - 1 - ty) * ibuf->tiley, rect) == 1) { if (ibuf->tiley > ibuf->y) { memmove(rect, rect + ibuf->tilex * (ibuf->tiley - ibuf->y), sizeof(int) * ibuf->tilex * ibuf->y); } } else { printf("imb_loadtiff: failed to read tiff tile at mipmap level %d\n", ibuf->miplevel); } } } else { printf("imb_loadtiff: mipmap level %d has unexpected size %ux%u instead of %dx%d\n", ibuf->miplevel, width, height, ibuf->x, ibuf->y); } } else { printf("imb_loadtiff: could not find mipmap level %d\n", ibuf->miplevel); } /* close the client layer interface to the in-memory file */ TIFFClose(image); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Save TIFF * \{ */ bool imb_savetiff(ImBuf *ibuf, const char *filepath, int flags) { TIFF *image = NULL; uint16_t samplesperpixel, bitspersample; size_t npixels; uchar *pixels = NULL; uchar *from = NULL, *to = NULL; ushort *pixels16 = NULL, *to16 = NULL; float *fromf = NULL; float xres, yres; int x, y, from_i, to_i, i; int compress_mode = COMPRESSION_NONE; /* check for a valid number of bytes per pixel. Like the PNG writer, * the TIFF writer supports 1, 3 or 4 bytes per pixel, corresponding * to gray, RGB, RGBA respectively. */ samplesperpixel = (uint16_t)((ibuf->planes + 7) >> 3); if ((samplesperpixel > 4) || (samplesperpixel == 2)) { fprintf(stderr, "imb_savetiff: unsupported number of bytes per " "pixel: %d\n", samplesperpixel); return 0; } if ((ibuf->foptions.flag & TIF_16BIT) && ibuf->rect_float) { bitspersample = 16; } else { bitspersample = 8; } if (ibuf->foptions.flag & TIF_COMPRESS_DEFLATE) { compress_mode = COMPRESSION_DEFLATE; } else if (ibuf->foptions.flag & TIF_COMPRESS_LZW) { compress_mode = COMPRESSION_LZW; } else if (ibuf->foptions.flag & TIF_COMPRESS_PACKBITS) { compress_mode = COMPRESSION_PACKBITS; } /* open TIFF file for writing */ if (flags & IB_mem) { /* Failed to allocate TIFF in memory. */ fprintf(stderr, "imb_savetiff: creation of in-memory TIFF files is " "not yet supported.\n"); return 0; } /* create image as a file */ #ifdef WIN32 wchar_t *wname = alloc_utf16_from_8(filepath, 0); image = TIFFOpenW(wname, "w"); free(wname); #else image = TIFFOpen(filepath, "w"); #endif if (image == NULL) { fprintf(stderr, "imb_savetiff: could not open TIFF for writing.\n"); return 0; } /* allocate array for pixel data */ npixels = ibuf->x * ibuf->y; if (bitspersample == 16) { pixels16 = (ushort *)_TIFFmalloc(npixels * samplesperpixel * sizeof(ushort)); } else { pixels = (uchar *)_TIFFmalloc(npixels * samplesperpixel * sizeof(uchar)); } if (pixels == NULL && pixels16 == NULL) { fprintf(stderr, "imb_savetiff: could not allocate pixels array.\n"); TIFFClose(image); return 0; } /* setup pointers */ if (bitspersample == 16) { fromf = ibuf->rect_float; to16 = pixels16; } else { from = (uchar *)ibuf->rect; to = pixels; } /* setup samples per pixel */ TIFFSetField(image, TIFFTAG_BITSPERSAMPLE, bitspersample); TIFFSetField(image, TIFFTAG_SAMPLESPERPIXEL, samplesperpixel); if (samplesperpixel == 4) { ushort extraSampleTypes[1]; if (bitspersample == 16) { extraSampleTypes[0] = EXTRASAMPLE_ASSOCALPHA; } else { extraSampleTypes[0] = EXTRASAMPLE_UNASSALPHA; } /* RGBA images */ TIFFSetField(image, TIFFTAG_EXTRASAMPLES, 1, extraSampleTypes); TIFFSetField(image, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB); } else if (samplesperpixel == 3) { /* RGB images */ TIFFSetField(image, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB); } else if (samplesperpixel == 1) { /* Gray-scale images, 1 channel */ TIFFSetField(image, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK); } /* copy pixel data. While copying, we flip the image vertically. */ const int channels_in_float = ibuf->channels ? ibuf->channels : 4; for (x = 0; x < ibuf->x; x++) { for (y = 0; y < ibuf->y; y++) { from_i = ((size_t)channels_in_float) * (y * ibuf->x + x); to_i = samplesperpixel * ((ibuf->y - y - 1) * ibuf->x + x); if (pixels16) { /* convert from float source */ float rgb[4]; if (ELEM(channels_in_float, 3, 4)) { if (ibuf->float_colorspace || (ibuf->colormanage_flag & IMB_COLORMANAGE_IS_DATA)) { /* Float buffer was managed already, no need in color * space conversion. */ copy_v3_v3(rgb, &fromf[from_i]); } else { /* Standard linear-to-SRGB conversion if float buffer wasn't managed. */ linearrgb_to_srgb_v3_v3(rgb, &fromf[from_i]); } if (channels_in_float == 4) { rgb[3] = fromf[from_i + 3]; } else { rgb[3] = 1.0f; } } else { if (ibuf->float_colorspace || (ibuf->colormanage_flag & IMB_COLORMANAGE_IS_DATA)) { rgb[0] = fromf[from_i]; } else { rgb[0] = linearrgb_to_srgb(fromf[from_i]); } rgb[1] = rgb[2] = rgb[0]; rgb[3] = 1.0f; } for (i = 0; i < samplesperpixel; i++, to_i++) { to16[to_i] = unit_float_to_ushort_clamp(rgb[i]); } } else { for (i = 0; i < samplesperpixel; i++, to_i++, from_i++) { to[to_i] = from[from_i]; } } } } /* write the actual TIFF file */ TIFFSetField(image, TIFFTAG_IMAGEWIDTH, ibuf->x); TIFFSetField(image, TIFFTAG_IMAGELENGTH, ibuf->y); TIFFSetField(image, TIFFTAG_ROWSPERSTRIP, ibuf->y); TIFFSetField(image, TIFFTAG_COMPRESSION, compress_mode); TIFFSetField(image, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB); TIFFSetField(image, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); if (ibuf->ppm[0] > 0.0 && ibuf->ppm[1] > 0.0) { xres = (float)(ibuf->ppm[0] * 0.0254); yres = (float)(ibuf->ppm[1] * 0.0254); } else { xres = yres = IMB_DPI_DEFAULT; } TIFFSetField(image, TIFFTAG_XRESOLUTION, xres); TIFFSetField(image, TIFFTAG_YRESOLUTION, yres); TIFFSetField(image, TIFFTAG_RESOLUTIONUNIT, RESUNIT_INCH); if (TIFFWriteEncodedStrip(image, 0, (bitspersample == 16) ? (uchar *)pixels16 : pixels, (size_t)ibuf->x * ibuf->y * samplesperpixel * bitspersample / 8) == -1) { fprintf(stderr, "imb_savetiff: Could not write encoded TIFF.\n"); TIFFClose(image); if (pixels) { _TIFFfree(pixels); } if (pixels16) { _TIFFfree(pixels16); } return 1; } /* close the TIFF file */ TIFFClose(image); if (pixels) { _TIFFfree(pixels); } if (pixels16) { _TIFFfree(pixels16); } return 1; } /** \} */