/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup collada */ #include "BLI_math.h" #include "BLI_sys_types.h" #include "BKE_object.h" #include "TransformWriter.h" void TransformWriter::add_joint_transform(COLLADASW::Node &node, float mat[4][4], float parent_mat[4][4], BCExportSettings &export_settings, bool has_restmat) { float local[4][4]; if (parent_mat) { float invpar[4][4]; invert_m4_m4(invpar, parent_mat); mul_m4_m4m4(local, invpar, mat); } else { copy_m4_m4(local, mat); } if (!has_restmat && export_settings.get_apply_global_orientation()) { bc_apply_global_transform(local, export_settings.get_global_transform()); } double dmat[4][4]; UnitConverter *converter = new UnitConverter(); converter->mat4_to_dae_double(dmat, local); delete converter; if (export_settings.get_object_transformation_type() == BC_TRANSFORMATION_TYPE_MATRIX) { node.addMatrix("transform", dmat); } else { float loc[3], rot[3], scale[3]; bc_decompose(local, loc, rot, NULL, scale); add_transform(node, loc, rot, scale); } } void TransformWriter::add_node_transform_ob(COLLADASW::Node &node, Object *ob, BCExportSettings &export_settings) { bool limit_precision = export_settings.get_limit_precision(); /* Export the local Matrix (relative to the object parent, * be it an object, bone or vertex(-tices)). */ Matrix f_obmat; BKE_object_matrix_local_get(ob, f_obmat); if (export_settings.get_apply_global_orientation()) { bc_apply_global_transform(f_obmat, export_settings.get_global_transform()); } else { bc_add_global_transform(f_obmat, export_settings.get_global_transform()); } switch (export_settings.get_object_transformation_type()) { case BC_TRANSFORMATION_TYPE_MATRIX: { UnitConverter converter; double d_obmat[4][4]; converter.mat4_to_dae_double(d_obmat, f_obmat); if (limit_precision) { BCMatrix::sanitize(d_obmat, LIMITTED_PRECISION); } node.addMatrix("transform", d_obmat); break; } case BC_TRANSFORMATION_TYPE_DECOMPOSED: { float loc[3], rot[3], scale[3]; bc_decompose(f_obmat, loc, rot, NULL, scale); if (limit_precision) { bc_sanitize_v3(loc, LIMITTED_PRECISION); bc_sanitize_v3(rot, LIMITTED_PRECISION); bc_sanitize_v3(scale, LIMITTED_PRECISION); } add_transform(node, loc, rot, scale); break; } } } void TransformWriter::add_node_transform_identity(COLLADASW::Node &node, BCExportSettings &export_settings) { BC_export_transformation_type transformation_type = export_settings.get_object_transformation_type(); switch (transformation_type) { case BC_TRANSFORMATION_TYPE_MATRIX: { BCMatrix mat; DMatrix d_obmat; mat.get_matrix(d_obmat); node.addMatrix("transform", d_obmat); break; } default: { float loc[3] = {0.0f, 0.0f, 0.0f}; float scale[3] = {1.0f, 1.0f, 1.0f}; float rot[3] = {0.0f, 0.0f, 0.0f}; add_transform(node, loc, rot, scale); break; } } } void TransformWriter::add_transform(COLLADASW::Node &node, float loc[3], float rot[3], float scale[3]) { node.addScale("scale", scale[0], scale[1], scale[2]); node.addRotateZ("rotationZ", RAD2DEGF(rot[2])); node.addRotateY("rotationY", RAD2DEGF(rot[1])); node.addRotateX("rotationX", RAD2DEGF(rot[0])); node.addTranslate("location", loc[0], loc[1], loc[2]); }