/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** * DNA handling */ /** \file blender/makesdna/intern/dna_genfile.c * \ingroup DNA * * Lowest-level functions for decoding the parts of a saved .blend * file, including interpretation of its SDNA block and conversion of * contents of other parts according to the differences between that * SDNA and the SDNA of the current (running) version of Blender. */ #include #include #include #include "MEM_guardedalloc.h" // for MEM_freeN MEM_mallocN MEM_callocN #include "BLI_utildefines.h" #ifdef WITH_DNA_GHASH # include "BLI_ghash.h" #endif #include "DNA_genfile.h" #include "DNA_sdna_types.h" // for SDNA ;-) /** * \section dna_genfile Overview * * - please note: no builtin security to detect input of double structs * - if you want a struct not to be in DNA file: add two hash marks above it (##) * * Structure DNA data is added to each blender file and to each executable, this to detect * in .blend files new variables in structs, changed array sizes, etc. It's also used for * converting endian and pointer size (32-64 bits) * As an extra, Python uses a call to detect run-time the contents of a blender struct. * * Create a structDNA: only needed when one of the input include (.h) files change. * File Syntax: *
 *     SDNA (4 bytes) (magic number)
 *     NAME (4 bytes)
 *      (4 bytes) amount of names (int)
 *     
 *     
 *     ...
 *     ...
 *     TYPE (4 bytes)
 *      amount of types (int)
 *     
 *     
 *     ...
 *     ...
 *     TLEN (4 bytes)
 *      (short) the lengths of types
 *     
 *     ...
 *     ...
 *     STRC (4 bytes)
 *      amount of structs (int)
 *        ...
 *
* * **Remember to read/write integer and short aligned!** * * While writing a file, the names of a struct is indicated with a type number, * to be found with: ``type = DNA_struct_find_nr(SDNA *, const char *)`` * The value of ``type`` corresponds with the the index within the structs array * * For the moment: the complete DNA file is included in a .blend file. For * the future we can think of smarter methods, like only included the used * structs. Only needed to keep a file short though... * * ALLOWED AND TESTED CHANGES IN STRUCTS: * - type change (a char to float will be divided by 255) * - location within a struct (everthing can be randomly mixed up) * - struct within struct (within struct etc), this is recursive * - adding new elements, will be default initialized zero * - removing elements * - change of array sizes * - change of a pointer type: when the name doesn't change the contents is copied * * NOT YET: * - array (``vec[3]``) to float struct (``vec3f``) * * DONE: * - endian compatibility * - pointer conversion (32-64 bits) * * IMPORTANT: * - do not use #defines in structs for array lengths, this cannot be read by the dna functions * - do not use uint, but unsigned int instead, ushort and ulong are allowed * - only use a long in Blender if you want this to be the size of a pointer. so it is * 32 bits or 64 bits, dependent at the cpu architecture * - chars are always unsigned * - alignment of variables has to be done in such a way, that any system does * not create 'padding' (gaps) in structures. So make sure that: * - short: 2 aligned * - int: 4 aligned * - float: 4 aligned * - double: 8 aligned * - long: 8 aligned * - struct: 8 aligned * - the sdna functions have several error prints builtin, always check blender running from a console. * */ /* ************************* ENDIAN STUFF ********************** */ /** * converts a short between big/little endian. */ static short le_short(short temp) { short new; char *rt = (char *)&temp, *rtn = (char *)&new; rtn[0] = rt[1]; rtn[1] = rt[0]; return new; } /** * converts an int between big/little endian. */ static int le_int(int temp) { int new; char *rt = (char *)&temp, *rtn = (char *)&new; rtn[0] = rt[3]; rtn[1] = rt[2]; rtn[2] = rt[1]; rtn[3] = rt[0]; return new; } /* ************************* MAKE DNA ********************** */ /* allowed duplicate code from makesdna.c */ /** * parses the "[n]" on the end of an array name and returns the number of array elements n. */ int DNA_elem_array_size(const char *str) { int a, mul = 1; const char *cp = NULL; for (a = 0; str[a]; a++) { if (str[a] == '[') { cp = &(str[a + 1]); } else if (str[a] == ']' && cp) { mul *= atoi(cp); } } return mul; } /* ************************* END MAKE DNA ********************** */ /* ************************* DIV ********************** */ void DNA_sdna_free(SDNA *sdna) { MEM_freeN(sdna->data); MEM_freeN((void *)sdna->names); MEM_freeN(sdna->types); MEM_freeN(sdna->structs); #ifdef WITH_DNA_GHASH BLI_ghash_free(sdna->structs_map, NULL, NULL); #endif MEM_freeN(sdna); } /** * Return true if the name indicates a pointer of some kind. */ static bool ispointer(const char *name) { /* check if pointer or function pointer */ return (name[0] == '*' || (name[0] == '(' && name[1] == '*')); } /** * Returns the size of struct fields of the specified type and name. * * \param type Index into sdna->types/typelens * \param name Index into sdna->names, * needed to extract possible pointer/array information. */ static int elementsize(const SDNA *sdna, short type, short name) { int mul, namelen, len; const char *cp; cp = sdna->names[name]; len = 0; namelen = strlen(cp); /* is it a pointer or function pointer? */ if (ispointer(cp)) { /* has the name an extra length? (array) */ mul = 1; if (cp[namelen - 1] == ']') { mul = DNA_elem_array_size(cp); } len = sdna->pointerlen * mul; } else if (sdna->typelens[type]) { /* has the name an extra length? (array) */ mul = 1; if (cp[namelen - 1] == ']') { mul = DNA_elem_array_size(cp); } len = mul * sdna->typelens[type]; } return len; } #if 0 static void printstruct(SDNA *sdna, short strnr) { /* is for debug */ int b, nr; short *sp; sp = sdna->structs[strnr]; printf("struct %s\n", sdna->types[sp[0]]); nr = sp[1]; sp += 2; for (b = 0; b < nr; b++, sp += 2) { printf(" %s %s\n", sdna->types[sp[0]], sdna->names[sp[1]]); } } #endif /** * Returns a pointer to the start of the struct info for the struct with the specified name. */ static short *findstruct_name(SDNA *sdna, const char *str) { int a; short *sp = NULL; for (a = 0; a < sdna->nr_structs; a++) { sp = sdna->structs[a]; if (strcmp(sdna->types[sp[0]], str) == 0) { return sp; } } return NULL; } /** * Returns the index of the struct info for the struct with the specified name. */ int DNA_struct_find_nr(SDNA *sdna, const char *str) { const short *sp = NULL; if (sdna->lastfind < sdna->nr_structs) { sp = sdna->structs[sdna->lastfind]; if (strcmp(sdna->types[sp[0]], str) == 0) { return sdna->lastfind; } } #ifdef WITH_DNA_GHASH return (intptr_t)BLI_ghash_lookup(sdna->structs_map, str) - 1; #else { int a; for (a = 0; a < sdna->nr_structs; a++) { sp = sdna->structs[a]; if (strcmp(sdna->types[sp[0]], str) == 0) { sdna->lastfind = a; return a; } } } return -1; #endif } /* ************************* END DIV ********************** */ /* ************************* READ DNA ********************** */ /** * In sdna->data the data, now we convert that to something understandable */ static void init_structDNA(SDNA *sdna, bool do_endian_swap) { int *data, *verg, gravity_fix = -1; intptr_t nr; short *sp; char str[8], *cp; verg = (int *)str; data = (int *)sdna->data; strcpy(str, "SDNA"); if (*data == *verg) { data++; /* load names array */ strcpy(str, "NAME"); if (*data == *verg) { data++; if (do_endian_swap) sdna->nr_names = le_int(*data); else sdna->nr_names = *data; data++; sdna->names = MEM_callocN(sizeof(void *) * sdna->nr_names, "sdnanames"); } else { printf("NAME error in SDNA file\n"); return; } nr = 0; cp = (char *)data; while (nr < sdna->nr_names) { sdna->names[nr] = cp; /* "float gravity [3]" was parsed wrong giving both "gravity" and * "[3]" members. we rename "[3]", and later set the type of * "gravity" to "void" so the offsets work out correct */ if (*cp == '[' && strcmp(cp, "[3]") == 0) { if (nr && strcmp(sdna->names[nr - 1], "Cvi") == 0) { sdna->names[nr] = "gravity[3]"; gravity_fix = nr; } } while (*cp) cp++; cp++; nr++; } nr = (intptr_t)cp; /* prevent BUS error */ nr = (nr + 3) & ~3; cp = (char *)nr; /* load type names array */ data = (int *)cp; strcpy(str, "TYPE"); if (*data == *verg) { data++; if (do_endian_swap) sdna->nr_types = le_int(*data); else sdna->nr_types = *data; data++; sdna->types = MEM_callocN(sizeof(void *) * sdna->nr_types, "sdnatypes"); } else { printf("TYPE error in SDNA file\n"); return; } nr = 0; cp = (char *)data; while (nr < sdna->nr_types) { sdna->types[nr] = cp; /* this is a patch, to change struct names without a conflict with SDNA */ /* be careful to use it, in this case for a system-struct (opengl/X) */ if (*cp == 'b') { /* struct Screen was already used by X, 'bScreen' replaces the old IrisGL 'Screen' struct */ if (strcmp("bScreen", cp) == 0) sdna->types[nr] = cp + 1; } while (*cp) cp++; cp++; nr++; } nr = (intptr_t)cp; /* prevent BUS error */ nr = (nr + 3) & ~3; cp = (char *)nr; /* load typelen array */ data = (int *)cp; strcpy(str, "TLEN"); if (*data == *verg) { data++; sp = (short *)data; sdna->typelens = sp; if (do_endian_swap) { short a, *spo = sp; a = sdna->nr_types; while (a--) { spo[0] = le_short(spo[0]); spo++; } } sp += sdna->nr_types; } else { printf("TLEN error in SDNA file\n"); return; } if (sdna->nr_types & 1) sp++; /* prevent BUS error */ /* load struct array */ data = (int *)sp; strcpy(str, "STRC"); if (*data == *verg) { data++; if (do_endian_swap) sdna->nr_structs = le_int(*data); else sdna->nr_structs = *data; data++; sdna->structs = MEM_callocN(sizeof(void *) * sdna->nr_structs, "sdnastrcs"); } else { printf("STRC error in SDNA file\n"); return; } nr = 0; sp = (short *)data; while (nr < sdna->nr_structs) { sdna->structs[nr] = sp; if (do_endian_swap) { short a; sp[0] = le_short(sp[0]); sp[1] = le_short(sp[1]); a = sp[1]; sp += 2; while (a--) { sp[0] = le_short(sp[0]); sp[1] = le_short(sp[1]); sp += 2; } } else { sp += 2 * sp[1] + 2; } nr++; } /* finally pointerlen: use struct ListBase to test it, never change the size of it! */ sp = findstruct_name(sdna, "ListBase"); /* weird; i have no memory of that... I think I used sizeof(void *) before... (ton) */ sdna->pointerlen = sdna->typelens[sp[0]] / 2; if (sp[1] != 2 || (sdna->pointerlen != 4 && sdna->pointerlen != 8)) { printf("ListBase struct error! Needs it to calculate pointerize.\n"); exit(1); /* well, at least sizeof(ListBase) is error proof! (ton) */ } /* second part of gravity problem, setting "gravity" type to void */ if (gravity_fix > -1) { for (nr = 0; nr < sdna->nr_structs; nr++) { sp = sdna->structs[nr]; if (strcmp(sdna->types[sp[0]], "ClothSimSettings") == 0) sp[10] = SDNA_TYPE_VOID; } } #ifdef WITH_DNA_GHASH /* create a ghash lookup to speed up */ sdna->structs_map = BLI_ghash_str_new_ex("init_structDNA gh", sdna->nr_structs); for (nr = 0; nr < sdna->nr_structs; nr++) { sp = sdna->structs[nr]; BLI_ghash_insert(sdna->structs_map, (void *)sdna->types[sp[0]], (void *)(nr + 1)); } #endif } } /** * Constructs and returns a decoded SDNA structure from the given encoded SDNA data block. */ SDNA *DNA_sdna_from_data(const void *data, const int datalen, bool do_endian_swap) { SDNA *sdna = MEM_mallocN(sizeof(*sdna), "sdna"); sdna->lastfind = 0; sdna->datalen = datalen; sdna->data = MEM_mallocN(datalen, "sdna_data"); memcpy(sdna->data, data, datalen); init_structDNA(sdna, do_endian_swap); return sdna; } /* ******************** END READ DNA ********************** */ /* ******************* HANDLE DNA ***************** */ /** * Used by #DNA_struct_get_compareflags (below) to recursively mark all structs * containing a field of type structnr as changed between old and current SDNAs. */ static void recurs_test_compflags(const SDNA *sdna, char *compflags, int structnr) { int a, b, typenr, elems; const short *sp; const char *cp; /* check all structs, test if it's inside another struct */ sp = sdna->structs[structnr]; typenr = sp[0]; for (a = 0; a < sdna->nr_structs; a++) { if (a != structnr && compflags[a] == 1) { sp = sdna->structs[a]; elems = sp[1]; sp += 2; for (b = 0; b < elems; b++, sp += 2) { if (sp[0] == typenr) { cp = sdna->names[sp[1]]; if (!ispointer(cp)) { compflags[a] = 2; recurs_test_compflags(sdna, compflags, a); } } } } } } /** * Constructs and returns an array of byte flags with one element for each struct in oldsdna, * indicating how it compares to newsdna: * * flag value: * - 0 Struct has disappeared (values of this struct type will not be loaded by the current Blender) * - 1 Struct is the same (can be loaded with straight memory copy after any necessary endian conversion) * - 2 Struct is different in some way (needs to be copied/converted field by field) */ char *DNA_struct_get_compareflags(SDNA *oldsdna, SDNA *newsdna) { int a, b; const short *sp_old, *sp_new; const char *str1, *str2; char *compflags; if (oldsdna->nr_structs == 0) { printf("error: file without SDNA\n"); return NULL; } compflags = MEM_callocN(oldsdna->nr_structs, "compflags"); /* we check all structs in 'oldsdna' and compare them with * the structs in 'newsdna' */ for (a = 0; a < oldsdna->nr_structs; a++) { sp_old = oldsdna->structs[a]; /* search for type in cur */ sp_new = findstruct_name(newsdna, oldsdna->types[sp_old[0]]); if (sp_new) { compflags[a] = 2; /* initial assumption */ /* compare length and amount of elems */ if (sp_new[1] == sp_old[1]) { if (newsdna->typelens[sp_new[0]] == oldsdna->typelens[sp_old[0]]) { /* same length, same amount of elems, now per type and name */ b = sp_old[1]; sp_old += 2; sp_new += 2; while (b > 0) { str1 = newsdna->types[sp_new[0]]; str2 = oldsdna->types[sp_old[0]]; if (strcmp(str1, str2) != 0) break; str1 = newsdna->names[sp_new[1]]; str2 = oldsdna->names[sp_old[1]]; if (strcmp(str1, str2) != 0) break; /* same type and same name, now pointersize */ if (ispointer(str1)) { if (oldsdna->pointerlen != newsdna->pointerlen) break; } b--; sp_old += 2; sp_new += 2; } if (b == 0) compflags[a] = 1; /* no differences found */ } } } } /* first struct in util.h is struct Link, this is skipped in compflags (als # 0). * was a bug, and this way dirty patched! Solve this later.... */ compflags[0] = 1; /* Because structs can be inside structs, we recursively * set flags when a struct is altered */ for (a = 0; a < oldsdna->nr_structs; a++) { if (compflags[a] == 2) recurs_test_compflags(oldsdna, compflags, a); } #if 0 for (a = 0; a < oldsdna->nr_structs; a++) { if (compflags[a] == 2) { spold = oldsdna->structs[a]; printf("changed: %s\n", oldsdna->types[spold[0]]); } } #endif return compflags; } /** * Converts the name of a primitive type to its enumeration code. */ static eSDNA_Type sdna_type_nr(const char *dna_type) { if ((strcmp(dna_type, "char") == 0) || (strcmp(dna_type, "const char") == 0)) return SDNA_TYPE_CHAR; else if ((strcmp(dna_type, "uchar") == 0) || (strcmp(dna_type, "unsigned char") == 0)) return SDNA_TYPE_UCHAR; else if ( strcmp(dna_type, "short") == 0) return SDNA_TYPE_SHORT; else if ((strcmp(dna_type, "ushort") == 0) || (strcmp(dna_type, "unsigned short") == 0)) return SDNA_TYPE_USHORT; else if ( strcmp(dna_type, "int") == 0) return SDNA_TYPE_INT; else if ( strcmp(dna_type, "long") == 0) return SDNA_TYPE_LONG; else if ((strcmp(dna_type, "ulong") == 0) || (strcmp(dna_type, "unsigned long") == 0)) return SDNA_TYPE_ULONG; else if ( strcmp(dna_type, "float") == 0) return SDNA_TYPE_FLOAT; else if ( strcmp(dna_type, "double") == 0) return SDNA_TYPE_DOUBLE; else if ( strcmp(dna_type, "int64_t") == 0) return SDNA_TYPE_INT64; else if ( strcmp(dna_type, "uint64_t") == 0) return SDNA_TYPE_UINT64; else return -1; /* invalid! */ } /** * Converts a value of one primitive type to another. * Note there is no optimization for the case where otype and ctype are the same: * assumption is that caller will handle this case. * * \param ctype Name of type to convert to * \param otype Name of type to convert from * \param name Field name to extract array-size information * \param curdata Where to put converted data * \param olddata Data of type otype to convert */ static void cast_elem( const char *ctype, const char *otype, const char *name, char *curdata, const char *olddata) { double val = 0.0; int arrlen, curlen = 1, oldlen = 1; eSDNA_Type ctypenr, otypenr; arrlen = DNA_elem_array_size(name); if ( (otypenr = sdna_type_nr(otype)) == -1 || (ctypenr = sdna_type_nr(ctype)) == -1) { return; } /* define lengths */ oldlen = DNA_elem_type_size(otypenr); curlen = DNA_elem_type_size(ctypenr); while (arrlen > 0) { switch (otypenr) { case SDNA_TYPE_CHAR: val = *olddata; break; case SDNA_TYPE_UCHAR: val = *( (unsigned char *)olddata); break; case SDNA_TYPE_SHORT: val = *( (short *)olddata); break; case SDNA_TYPE_USHORT: val = *( (unsigned short *)olddata); break; case SDNA_TYPE_INT: val = *( (int *)olddata); break; case SDNA_TYPE_LONG: val = *( (int *)olddata); break; case SDNA_TYPE_ULONG: val = *( (unsigned int *)olddata); break; case SDNA_TYPE_FLOAT: val = *( (float *)olddata); break; case SDNA_TYPE_DOUBLE: val = *( (double *)olddata); break; case SDNA_TYPE_INT64: val = *( (int64_t *)olddata); break; case SDNA_TYPE_UINT64: val = *( (uint64_t *)olddata); break; } switch (ctypenr) { case SDNA_TYPE_CHAR: *curdata = val; break; case SDNA_TYPE_UCHAR: *( (unsigned char *)curdata) = val; break; case SDNA_TYPE_SHORT: *( (short *)curdata) = val; break; case SDNA_TYPE_USHORT: *( (unsigned short *)curdata) = val; break; case SDNA_TYPE_INT: *( (int *)curdata) = val; break; case SDNA_TYPE_LONG: *( (int *)curdata) = val; break; case SDNA_TYPE_ULONG: *( (unsigned int *)curdata) = val; break; case SDNA_TYPE_FLOAT: if (otypenr < 2) val /= 255; *( (float *)curdata) = val; break; case SDNA_TYPE_DOUBLE: if (otypenr < 2) val /= 255; *( (double *)curdata) = val; break; case SDNA_TYPE_INT64: *( (int64_t *)curdata) = val; break; case SDNA_TYPE_UINT64: *( (uint64_t *)curdata) = val; break; } olddata += oldlen; curdata += curlen; arrlen--; } } /** * Converts pointer values between different sizes. These are only used * as lookup keys to identify data blocks in the saved .blend file, not * as actual in-memory pointers. * * \param curlen Pointer length to conver to * \param oldlen Length of pointers in olddata * \param name Field name to extract array-size information * \param curdata Where to put converted data * \param olddata Data to convert */ static void cast_pointer(int curlen, int oldlen, const char *name, char *curdata, const char *olddata) { int64_t lval; int arrlen; arrlen = DNA_elem_array_size(name); while (arrlen > 0) { if (curlen == oldlen) { memcpy(curdata, olddata, curlen); } else if (curlen == 4 && oldlen == 8) { lval = *((int64_t *)olddata); /* WARNING: 32-bit Blender trying to load file saved by 64-bit Blender, * pointers may lose uniqueness on truncation! (Hopefully this wont * happen unless/until we ever get to multi-gigabyte .blend files...) */ *((int *)curdata) = lval >> 3; } else if (curlen == 8 && oldlen == 4) { *((int64_t *)curdata) = *((int *)olddata); } else { /* for debug */ printf("errpr: illegal pointersize!\n"); } olddata += oldlen; curdata += curlen; arrlen--; } } /** * Equality test on name and oname excluding any array-size suffix. */ static int elem_strcmp(const char *name, const char *oname) { int a = 0; while (1) { if (name[a] != oname[a]) return 1; if (name[a] == '[' || oname[a] == '[') break; if (name[a] == 0 || oname[a] == 0) break; a++; } return 0; } /** * Returns the address of the data for the specified field within olddata * according to the struct format pointed to by old, or NULL if no such * field can be found. * * \param sdna Old SDNA * \param type Current field type name * \param name Current field name * \param old Pointer to struct information in sdna * \param olddata Struct data * \param sppo Optional place to return pointer to field info in sdna * \return Data address. */ static char *find_elem( const SDNA *sdna, const char *type, const char *name, const short *old, char *olddata, const short **sppo) { int a, elemcount, len; const char *otype, *oname; /* without arraypart, so names can differ: return old namenr and type */ /* in old is the old struct */ elemcount = old[1]; old += 2; for (a = 0; a < elemcount; a++, old += 2) { otype = sdna->types[old[0]]; oname = sdna->names[old[1]]; len = elementsize(sdna, old[0], old[1]); if (elem_strcmp(name, oname) == 0) { /* name equal */ if (strcmp(type, otype) == 0) { /* type equal */ if (sppo) *sppo = old; return olddata; } return NULL; } olddata += len; } return NULL; } /** * Converts the contents of a single field of a struct, of a non-struct type, * from oldsdna to newsdna format. * * \param newsdna SDNA of current Blender * \param oldsdna SDNA of Blender that saved file * \param type current field type name * \param name current field name * \param curdata put field data converted to newsdna here * \param old pointer to struct info in oldsdna * \param olddata struct contents laid out according to oldsdna */ static void reconstruct_elem( const SDNA *newsdna, const SDNA *oldsdna, const char *type, const char *name, char *curdata, const short *old, const char *olddata) { /* rules: test for NAME: * - name equal: * - cast type * - name partially equal (array differs) * - type equal: memcpy * - types casten * (nzc 2-4-2001 I want the 'unsigned' bit to be parsed as well. Where * can I force this?) */ int a, elemcount, len, countpos, oldsize, cursize, mul; const char *otype, *oname, *cp; /* is 'name' an array? */ cp = name; countpos = 0; while (*cp && *cp != '[') { cp++; countpos++; } if (*cp != '[') countpos = 0; /* in old is the old struct */ elemcount = old[1]; old += 2; for (a = 0; a < elemcount; a++, old += 2) { otype = oldsdna->types[old[0]]; oname = oldsdna->names[old[1]]; len = elementsize(oldsdna, old[0], old[1]); if (strcmp(name, oname) == 0) { /* name equal */ if (ispointer(name)) { /* pointer of functionpointer afhandelen */ cast_pointer(newsdna->pointerlen, oldsdna->pointerlen, name, curdata, olddata); } else if (strcmp(type, otype) == 0) { /* type equal */ memcpy(curdata, olddata, len); } else { cast_elem(type, otype, name, curdata, olddata); } return; } else if (countpos != 0) { /* name is an array */ if (oname[countpos] == '[' && strncmp(name, oname, countpos) == 0) { /* basis equal */ cursize = DNA_elem_array_size(name); oldsize = DNA_elem_array_size(oname); if (ispointer(name)) { /* handle pointer or functionpointer */ cast_pointer(newsdna->pointerlen, oldsdna->pointerlen, cursize > oldsize ? oname : name, curdata, olddata); } else if (strcmp(type, otype) == 0) { /* type equal */ mul = len / oldsize; /* size of single old array element */ mul *= (cursize < oldsize) ? cursize : oldsize; /* smaller of sizes of old and new arrays */ memcpy(curdata, olddata, mul); if (oldsize > cursize && strcmp(type, "char") == 0) { /* string had to be truncated, ensure it's still null-terminated */ curdata[mul - 1] = '\0'; } } else { cast_elem(type, otype, cursize > oldsize ? oname : name, curdata, olddata); } return; } } olddata += len; } } /** * Converts the contents of an entire struct from oldsdna to newsdna format. * * \param newsdna SDNA of current Blender * \param oldsdna SDNA of Blender that saved file * \param compflags * * Result from DNA_struct_get_compareflags to avoid needless conversions. * \param oldSDNAnr Index of old struct definition in oldsdna * \param data Struct contents laid out according to oldsdna * \param curSDNAnr Index of current struct definition in newsdna * \param cur Where to put converted struct contents */ static void reconstruct_struct( SDNA *newsdna, SDNA *oldsdna, const char *compflags, int oldSDNAnr, char *data, int curSDNAnr, char *cur) { /* Recursive! * Per element from cur_struct, read data from old_struct. * If element is a struct, call recursive. */ int a, elemcount, elen, eleno, mul, mulo, firststructtypenr; const short *spo, *spc, *sppo; const char *type; char *cpo, *cpc; const char *name, *nameo; if (oldSDNAnr == -1) return; if (curSDNAnr == -1) return; if (compflags[oldSDNAnr] == 1) { /* if recursive: test for equal */ spo = oldsdna->structs[oldSDNAnr]; elen = oldsdna->typelens[spo[0]]; memcpy(cur, data, elen); return; } firststructtypenr = *(newsdna->structs[0]); spo = oldsdna->structs[oldSDNAnr]; spc = newsdna->structs[curSDNAnr]; elemcount = spc[1]; spc += 2; cpc = cur; for (a = 0; a < elemcount; a++, spc += 2) { /* convert each field */ type = newsdna->types[spc[0]]; name = newsdna->names[spc[1]]; elen = elementsize(newsdna, spc[0], spc[1]); /* test: is type a struct? */ if (spc[0] >= firststructtypenr && !ispointer(name)) { /* struct field type */ /* where does the old struct data start (and is there an old one?) */ cpo = find_elem(oldsdna, type, name, spo, data, &sppo); if (cpo) { oldSDNAnr = DNA_struct_find_nr(oldsdna, type); curSDNAnr = DNA_struct_find_nr(newsdna, type); /* array! */ mul = DNA_elem_array_size(name); nameo = oldsdna->names[sppo[1]]; mulo = DNA_elem_array_size(nameo); eleno = elementsize(oldsdna, sppo[0], sppo[1]); elen /= mul; eleno /= mulo; while (mul--) { reconstruct_struct(newsdna, oldsdna, compflags, oldSDNAnr, cpo, curSDNAnr, cpc); cpo += eleno; cpc += elen; /* new struct array larger than old */ mulo--; if (mulo <= 0) break; } } else { cpc += elen; /* skip field no longer present */ } } else { /* non-struct field type */ reconstruct_elem(newsdna, oldsdna, type, name, cpc, spo, data); cpc += elen; } } } /** * Does endian swapping on the fields of a struct value. * * \param oldsdna SDNA of Blender that saved file * \param oldSDNAnr Index of struct info within oldsdna * \param data Struct data */ void DNA_struct_switch_endian(SDNA *oldsdna, int oldSDNAnr, char *data) { /* Recursive! * If element is a struct, call recursive. */ int a, mul, elemcount, elen, elena, firststructtypenr; const short *spo, *spc; char *cpo, *cur, cval; const char *type, *name; if (oldSDNAnr == -1) return; firststructtypenr = *(oldsdna->structs[0]); spo = spc = oldsdna->structs[oldSDNAnr]; elemcount = spo[1]; spc += 2; cur = data; for (a = 0; a < elemcount; a++, spc += 2) { type = oldsdna->types[spc[0]]; name = oldsdna->names[spc[1]]; /* elementsize = including arraysize */ elen = elementsize(oldsdna, spc[0], spc[1]); /* test: is type a struct? */ if (spc[0] >= firststructtypenr && !ispointer(name)) { /* struct field type */ /* where does the old data start (is there one?) */ cpo = find_elem(oldsdna, type, name, spo, data, NULL); if (cpo) { oldSDNAnr = DNA_struct_find_nr(oldsdna, type); mul = DNA_elem_array_size(name); elena = elen / mul; while (mul--) { DNA_struct_switch_endian(oldsdna, oldSDNAnr, cpo); cpo += elena; } } } else { /* non-struct field type */ if (ispointer(name)) { if (oldsdna->pointerlen == 8) { mul = DNA_elem_array_size(name); cpo = cur; while (mul--) { cval = cpo[0]; cpo[0] = cpo[7]; cpo[7] = cval; cval = cpo[1]; cpo[1] = cpo[6]; cpo[6] = cval; cval = cpo[2]; cpo[2] = cpo[5]; cpo[5] = cval; cval = cpo[3]; cpo[3] = cpo[4]; cpo[4] = cval; cpo += 8; } } } else { if (spc[0] == SDNA_TYPE_SHORT || spc[0] == SDNA_TYPE_USHORT) { /* exception: variable called blocktype/ipowin: derived from ID_ */ bool skip = false; if (name[0] == 'b' && name[1] == 'l') { if (strcmp(name, "blocktype") == 0) skip = true; } else if (name[0] == 'i' && name[1] == 'p') { if (strcmp(name, "ipowin") == 0) skip = true; } if (skip == false) { mul = DNA_elem_array_size(name); cpo = cur; while (mul--) { cval = cpo[0]; cpo[0] = cpo[1]; cpo[1] = cval; cpo += 2; } } } else if ( (spc[0] == SDNA_TYPE_INT || spc[0] == SDNA_TYPE_LONG || spc[0] == SDNA_TYPE_ULONG || spc[0] == SDNA_TYPE_FLOAT)) { mul = DNA_elem_array_size(name); cpo = cur; while (mul--) { cval = cpo[0]; cpo[0] = cpo[3]; cpo[3] = cval; cval = cpo[1]; cpo[1] = cpo[2]; cpo[2] = cval; cpo += 4; } } else if ( (spc[0] == SDNA_TYPE_INT64) || (spc[0] == SDNA_TYPE_UINT64)) { mul = DNA_elem_array_size(name); cpo = cur; while (mul--) { cval = cpo[0]; cpo[0] = cpo[7]; cpo[7] = cval; cval = cpo[1]; cpo[1] = cpo[6]; cpo[6] = cval; cval = cpo[2]; cpo[2] = cpo[5]; cpo[5] = cval; cval = cpo[3]; cpo[3] = cpo[4]; cpo[4] = cval; cpo += 8; } } /* FIXME: no conversion for SDNA_TYPE_DOUBLE? */ } } cur += elen; } } /** * \param newsdna SDNA of current Blender * \param oldsdna SDNA of Blender that saved file * \param compflags * * Result from DNA_struct_get_compareflags to avoid needless conversions * \param oldSDNAnr Index of struct info within oldsdna * \param blocks The number of array elements * \param data Array of struct data * \return An allocated reconstructed struct */ void *DNA_struct_reconstruct(SDNA *newsdna, SDNA *oldsdna, char *compflags, int oldSDNAnr, int blocks, void *data) { int a, curSDNAnr, curlen = 0, oldlen; const short *spo, *spc; char *cur, *cpc, *cpo; const char *type; /* oldSDNAnr == structnr, we're looking for the corresponding 'cur' number */ spo = oldsdna->structs[oldSDNAnr]; type = oldsdna->types[spo[0]]; oldlen = oldsdna->typelens[spo[0]]; curSDNAnr = DNA_struct_find_nr(newsdna, type); /* init data and alloc */ if (curSDNAnr != -1) { spc = newsdna->structs[curSDNAnr]; curlen = newsdna->typelens[spc[0]]; } if (curlen == 0) { return NULL; } cur = MEM_callocN(blocks * curlen, "reconstruct"); cpc = cur; cpo = data; for (a = 0; a < blocks; a++) { reconstruct_struct(newsdna, oldsdna, compflags, oldSDNAnr, cpo, curSDNAnr, cpc); cpc += curlen; cpo += oldlen; } return cur; } /** * Returns the offset of the field with the specified name and type within the specified * struct type in sdna. */ int DNA_elem_offset(SDNA *sdna, const char *stype, const char *vartype, const char *name) { const int SDNAnr = DNA_struct_find_nr(sdna, stype); const short * const spo = sdna->structs[SDNAnr]; const char * const cp = find_elem(sdna, vartype, name, spo, NULL, NULL); BLI_assert(SDNAnr != -1); return (int)((intptr_t)cp); } bool DNA_struct_elem_find(SDNA *sdna, const char *stype, const char *vartype, const char *name) { const int SDNAnr = DNA_struct_find_nr(sdna, stype); if (SDNAnr != -1) { const short * const spo = sdna->structs[SDNAnr]; const char * const cp = find_elem(sdna, vartype, name, spo, NULL, NULL); if (cp) { return true; } } return false; } /** * Returns the size in bytes of a primitive type. */ int DNA_elem_type_size(const eSDNA_Type elem_nr) { /* should contain all enum types */ switch (elem_nr) { case SDNA_TYPE_CHAR: case SDNA_TYPE_UCHAR: return 1; case SDNA_TYPE_SHORT: case SDNA_TYPE_USHORT: return 2; case SDNA_TYPE_INT: case SDNA_TYPE_LONG: case SDNA_TYPE_ULONG: case SDNA_TYPE_FLOAT: return 4; case SDNA_TYPE_DOUBLE: case SDNA_TYPE_INT64: case SDNA_TYPE_UINT64: return 8; } /* weak */ return 8; }