/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Blender Foundation (2008). * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/makesrna/intern/makesrna.c * \ingroup RNA */ #include #include #include #include #include #include #include "MEM_guardedalloc.h" #include "RNA_access.h" #include "RNA_define.h" #include "RNA_types.h" #include "rna_internal.h" #define RNA_VERSION_DATE "$Id$" #ifdef _WIN32 #ifndef snprintf #define snprintf _snprintf #endif #endif /* Replace if different */ #define TMP_EXT ".tmp" /* copied from BLI_file_older */ #include static int file_older(const char *file1, const char *file2) { struct stat st1, st2; // printf("compare: %s %s\n", file1, file2); if(stat(file1, &st1)) return 0; if(stat(file2, &st2)) return 0; return (st1.st_mtime < st2.st_mtime); } const char *makesrna_path= NULL; static int replace_if_different(char *tmpfile, const char *dep_files[]) { // return 0; // use for testing had edited rna #define REN_IF_DIFF \ { \ FILE *file_test= fopen(orgfile, "rb"); \ if(file_test) { \ fclose(file_test); \ if(fp_org) fclose(fp_org); \ if(fp_new) fclose(fp_new); \ if(remove(orgfile) != 0) { \ fprintf(stderr, "%s:%d, Remove Error (%s): \"%s\"\n", __FILE__, __LINE__, strerror(errno), orgfile); \ return -1; \ } \ } \ } \ if(rename(tmpfile, orgfile) != 0) { \ fprintf(stderr, "%s:%d, Rename Error (%s): \"%s\" -> \"%s\"\n", __FILE__, __LINE__, strerror(errno), tmpfile, orgfile); \ return -1; \ } \ remove(tmpfile); \ return 1; \ /* end REN_IF_DIFF */ FILE *fp_new= NULL, *fp_org= NULL; int len_new, len_org; char *arr_new, *arr_org; int cmp; char orgfile[4096]; strcpy(orgfile, tmpfile); orgfile[strlen(orgfile) - strlen(TMP_EXT)] = '\0'; /* strip '.tmp' */ fp_org= fopen(orgfile, "rb"); if(fp_org==NULL) { REN_IF_DIFF; } /* XXX, trick to work around dependancy problem * assumes dep_files is in the same dir as makesrna.c, which is true for now. */ if(1) { /* first check if makesrna.c is newer then generated files * for development on makesrna.c you may want to disable this */ if(file_older(orgfile, __FILE__)) { REN_IF_DIFF; } if(file_older(orgfile, makesrna_path)) { REN_IF_DIFF; } /* now check if any files we depend on are newer then any generated files */ if(dep_files) { int pass; for(pass=0; dep_files[pass]; pass++) { char from_path[4096]= __FILE__; char *p1, *p2; /* dir only */ p1= strrchr(from_path, '/'); p2= strrchr(from_path, '\\'); strcpy((p1 > p2 ? p1 : p2)+1, dep_files[pass]); /* account for build deps, if makesrna.c (this file) is newer */ if(file_older(orgfile, from_path)) { REN_IF_DIFF; } } } } /* XXX end dep trick */ fp_new= fopen(tmpfile, "rb"); if(fp_new==NULL) { /* shouldn't happen, just to be safe */ fprintf(stderr, "%s:%d, open error: \"%s\"\n", __FILE__, __LINE__, tmpfile); fclose(fp_org); return -1; } fseek(fp_new, 0L, SEEK_END); len_new = ftell(fp_new); fseek(fp_new, 0L, SEEK_SET); fseek(fp_org, 0L, SEEK_END); len_org = ftell(fp_org); fseek(fp_org, 0L, SEEK_SET); if(len_new != len_org) { fclose(fp_new); fclose(fp_org); REN_IF_DIFF; } /* now compare the files... */ arr_new= MEM_mallocN(sizeof(char)*len_new, "rna_cmp_file_new"); arr_org= MEM_mallocN(sizeof(char)*len_org, "rna_cmp_file_org"); if(fread(arr_new, sizeof(char), len_new, fp_new) != len_new) fprintf(stderr, "%s:%d, error reading file %s for comparison.\n", __FILE__, __LINE__, tmpfile); if(fread(arr_org, sizeof(char), len_org, fp_org) != len_org) fprintf(stderr, "%s:%d, error reading file %s for comparison.\n", __FILE__, __LINE__, orgfile); fclose(fp_new); fclose(fp_org); cmp= memcmp(arr_new, arr_org, len_new); MEM_freeN(arr_new); MEM_freeN(arr_org); if(cmp) { REN_IF_DIFF; } else { remove(tmpfile); return 0; } #undef REN_IF_DIFF } /* Helper to solve keyword problems with C/C++ */ static const char *rna_safe_id(const char *id) { if(strcmp(id, "default") == 0) return "default_value"; else if(strcmp(id, "operator") == 0) return "operator_value"; return id; } /* Sorting */ static int cmp_struct(const void *a, const void *b) { const StructRNA *structa= *(const StructRNA**)a; const StructRNA *structb= *(const StructRNA**)b; return strcmp(structa->identifier, structb->identifier); } static int cmp_property(const void *a, const void *b) { const PropertyRNA *propa= *(const PropertyRNA**)a; const PropertyRNA *propb= *(const PropertyRNA**)b; if(strcmp(propa->identifier, "rna_type") == 0) return -1; else if(strcmp(propb->identifier, "rna_type") == 0) return 1; if(strcmp(propa->identifier, "name") == 0) return -1; else if(strcmp(propb->identifier, "name") == 0) return 1; return strcmp(propa->name, propb->name); } static int cmp_def_struct(const void *a, const void *b) { const StructDefRNA *dsa= *(const StructDefRNA**)a; const StructDefRNA *dsb= *(const StructDefRNA**)b; return cmp_struct(&dsa->srna, &dsb->srna); } static int cmp_def_property(const void *a, const void *b) { const PropertyDefRNA *dpa= *(const PropertyDefRNA**)a; const PropertyDefRNA *dpb= *(const PropertyDefRNA**)b; return cmp_property(&dpa->prop, &dpb->prop); } static void rna_sortlist(ListBase *listbase, int(*cmp)(const void*, const void*)) { Link *link; void **array; int a, size; if(listbase->first == listbase->last) return; for(size=0, link=listbase->first; link; link=link->next) size++; array= MEM_mallocN(sizeof(void*)*size, "rna_sortlist"); for(a=0, link=listbase->first; link; link=link->next, a++) array[a]= link; qsort(array, size, sizeof(void*), cmp); listbase->first= listbase->last= NULL; for(a=0; anext= link->prev= NULL; rna_addtail(listbase, link); } MEM_freeN(array); } /* Preprocessing */ static void rna_print_c_string(FILE *f, const char *str) { static const char *escape[] = {"\''", "\"\"", "\??", "\\\\","\aa", "\bb", "\ff", "\nn", "\rr", "\tt", "\vv", NULL}; int i, j; if(!str) { fprintf(f, "NULL"); return; } fprintf(f, "\""); for(i=0; str[i]; i++) { for(j=0; escape[j]; j++) if(str[i] == escape[j][0]) break; if(escape[j]) fprintf(f, "\\%c", escape[j][1]); else fprintf(f, "%c", str[i]); } fprintf(f, "\""); } static void rna_print_data_get(FILE *f, PropertyDefRNA *dp) { if(dp->dnastructfromname && dp->dnastructfromprop) fprintf(f, " %s *data= (%s*)(((%s*)ptr->data)->%s);\n", dp->dnastructname, dp->dnastructname, dp->dnastructfromname, dp->dnastructfromprop); else fprintf(f, " %s *data= (%s*)(ptr->data);\n", dp->dnastructname, dp->dnastructname); } static void rna_print_id_get(FILE *f, PropertyDefRNA *dp) { fprintf(f, " ID *id= ptr->id.data;\n"); } static char *rna_alloc_function_name(const char *structname, const char *propname, const char *type) { AllocDefRNA *alloc; char buffer[2048]; char *result; snprintf(buffer, sizeof(buffer), "%s_%s_%s", structname, propname, type); result= MEM_callocN(sizeof(char)*strlen(buffer)+1, "rna_alloc_function_name"); strcpy(result, buffer); alloc= MEM_callocN(sizeof(AllocDefRNA), "AllocDefRNA"); alloc->mem= result; rna_addtail(&DefRNA.allocs, alloc); return result; } static StructRNA *rna_find_struct(const char *identifier) { StructDefRNA *ds; for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) if(strcmp(ds->srna->identifier, identifier)==0) return ds->srna; return NULL; } static const char *rna_find_type(const char *type) { StructDefRNA *ds; for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) if(ds->dnaname && strcmp(ds->dnaname, type)==0) return ds->srna->identifier; return NULL; } static const char *rna_find_dna_type(const char *type) { StructDefRNA *ds; for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) if(strcmp(ds->srna->identifier, type)==0) return ds->dnaname; return NULL; } static const char *rna_type_type_name(PropertyRNA *prop) { switch(prop->type) { case PROP_BOOLEAN: case PROP_INT: case PROP_ENUM: return "int"; case PROP_FLOAT: return "float"; case PROP_STRING: if(prop->flag & PROP_THICK_WRAP) { return "char*"; } else { return "const char*"; } default: return NULL; } } static const char *rna_type_type(PropertyRNA *prop) { const char *type; type= rna_type_type_name(prop); if(type) return type; return "PointerRNA"; } static const char *rna_type_struct(PropertyRNA *prop) { const char *type; type= rna_type_type_name(prop); if(type) return ""; return "struct "; } static const char *rna_parameter_type_name(PropertyRNA *parm) { const char *type; type= rna_type_type_name(parm); if(type) return type; switch(parm->type) { case PROP_POINTER: { PointerPropertyRNA *pparm= (PointerPropertyRNA*)parm; if(parm->flag & PROP_RNAPTR) return "PointerRNA"; else return rna_find_dna_type((const char *)pparm->type); } case PROP_COLLECTION: { return "ListBase"; } default: return ""; } } static int rna_enum_bitmask(PropertyRNA *prop) { EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop; int a, mask= 0; if(eprop->item) { for(a=0; atotitem; a++) if(eprop->item[a].identifier[0]) mask |= eprop->item[a].value; } return mask; } static int rna_color_quantize(PropertyRNA *prop, PropertyDefRNA *dp) { if(prop->type == PROP_FLOAT && (prop->subtype==PROP_COLOR || prop->subtype==PROP_COLOR_GAMMA)) if(strcmp(dp->dnatype, "float") != 0 && strcmp(dp->dnatype, "double") != 0) return 1; return 0; } static const char *rna_function_string(void *func) { return (func)? (const char*)func: "NULL"; } static void rna_float_print(FILE *f, float num) { if(num == -FLT_MAX) fprintf(f, "-FLT_MAX"); else if(num == FLT_MAX) fprintf(f, "FLT_MAX"); else if((int)num == num) fprintf(f, "%.1ff", num); else fprintf(f, "%.10ff", num); } static void rna_int_print(FILE *f, int num) { if(num == INT_MIN) fprintf(f, "INT_MIN"); else if(num == INT_MAX) fprintf(f, "INT_MAX"); else fprintf(f, "%d", num); } static char *rna_def_property_get_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc) { char *func; if(prop->flag & PROP_IDPROPERTY && manualfunc==NULL) return NULL; if(!manualfunc) { if(!dp->dnastructname || !dp->dnaname) { fprintf(stderr, "rna_def_property_get_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier); DefRNA.error= 1; return NULL; } /* typecheck, */ if(dp->dnatype && *dp->dnatype) { if(prop->type == PROP_FLOAT) { if(IS_DNATYPE_FLOAT_COMPAT(dp->dnatype) == 0) { if(prop->subtype != PROP_COLOR_GAMMA) { /* colors are an exception. these get translated */ fprintf(stderr, "rna_def_property_get_func1: %s.%s is a '%s' but wrapped as type '%s'.\n", srna->identifier, prop->identifier, dp->dnatype, RNA_property_typename(prop->type)); DefRNA.error= 1; return NULL; } } } else if(prop->type == PROP_INT || prop->type == PROP_BOOLEAN || prop->type == PROP_ENUM) { if(IS_DNATYPE_INT_COMPAT(dp->dnatype) == 0) { fprintf(stderr, "rna_def_property_get_func2: %s.%s is a '%s' but wrapped as type '%s'.\n", srna->identifier, prop->identifier, dp->dnatype, RNA_property_typename(prop->type)); DefRNA.error= 1; return NULL; } } } } func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get"); switch(prop->type) { case PROP_STRING: { StringPropertyRNA *sprop= (StringPropertyRNA*)prop; fprintf(f, "void %s(PointerRNA *ptr, char *value)\n", func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " %s(ptr, value);\n", manualfunc); } else { rna_print_data_get(f, dp); if(sprop->maxlength) fprintf(f, " BLI_strncpy(value, data->%s, %d);\n", dp->dnaname, sprop->maxlength); else fprintf(f, " BLI_strncpy(value, data->%s, sizeof(data->%s));\n", dp->dnaname, dp->dnaname); } fprintf(f, "}\n\n"); break; } case PROP_POINTER: { fprintf(f, "PointerRNA %s(PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " return %s(ptr);\n", manualfunc); } else { PointerPropertyRNA *pprop= (PointerPropertyRNA*)prop; rna_print_data_get(f, dp); if(dp->dnapointerlevel == 0) fprintf(f, " return rna_pointer_inherit_refine(ptr, &RNA_%s, &data->%s);\n", (char*)pprop->type, dp->dnaname); else fprintf(f, " return rna_pointer_inherit_refine(ptr, &RNA_%s, data->%s);\n", (char*)pprop->type, dp->dnaname); } fprintf(f, "}\n\n"); break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)prop; fprintf(f, "static PointerRNA %s(CollectionPropertyIterator *iter)\n", func); fprintf(f, "{\n"); if(manualfunc) { if(strcmp(manualfunc, "rna_iterator_listbase_get") == 0 || strcmp(manualfunc, "rna_iterator_array_get") == 0 || strcmp(manualfunc, "rna_iterator_array_dereference_get") == 0) fprintf(f, " return rna_pointer_inherit_refine(&iter->parent, &RNA_%s, %s(iter));\n", (cprop->item_type)? (char*)cprop->item_type: "UnknownType", manualfunc); else fprintf(f, " return %s(iter);\n", manualfunc); } fprintf(f, "}\n\n"); break; } default: if(prop->arraydimension) { if(prop->flag & PROP_DYNAMIC) fprintf(f, "void %s(PointerRNA *ptr, %s values[])\n", func, rna_type_type(prop)); else fprintf(f, "void %s(PointerRNA *ptr, %s values[%d])\n", func, rna_type_type(prop), prop->totarraylength); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " %s(ptr, values);\n", manualfunc); } else { rna_print_data_get(f, dp); if(prop->flag & PROP_DYNAMIC) { char *lenfunc= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get_length"); fprintf(f, " int i, arraylen[RNA_MAX_ARRAY_DIMENSION];\n"); fprintf(f, " int len= %s(ptr, arraylen);\n\n", lenfunc); fprintf(f, " for(i=0; itotarraylength); } if(dp->dnaarraylength == 1) { if(prop->type == PROP_BOOLEAN && dp->booleanbit) fprintf(f, " values[i]= %s((data->%s & (%d<booleannegative)? "!": "", dp->dnaname, dp->booleanbit); else fprintf(f, " values[i]= (%s)%s((&data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnaname); } else { if(prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " values[i]= %s((data->%s[i] & ", (dp->booleannegative)? "!": "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ") != 0);\n"); } else if(rna_color_quantize(prop, dp)) fprintf(f, " values[i]= (%s)(data->%s[i]*(1.0f/255.0f));\n", rna_type_type(prop), dp->dnaname); else if(dp->dnatype) fprintf(f, " values[i]= (%s)%s(((%s*)data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnatype, dp->dnaname); else fprintf(f, " values[i]= (%s)%s((data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnaname); } fprintf(f, " }\n"); } fprintf(f, "}\n\n"); } else { fprintf(f, "%s %s(PointerRNA *ptr)\n", rna_type_type(prop), func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " return %s(ptr);\n", manualfunc); } else { rna_print_data_get(f, dp); if(prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " return %s(((data->%s) & ", (dp->booleannegative)? "!": "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ") != 0);\n"); } else if(prop->type == PROP_ENUM && dp->enumbitflags) { fprintf(f, " return ((data->%s) & ", dp->dnaname); rna_int_print(f, rna_enum_bitmask(prop)); fprintf(f, ");\n"); } else fprintf(f, " return (%s)%s(data->%s);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnaname); } fprintf(f, "}\n\n"); } break; } return func; } /* defined min/max variables to be used by rna_clamp_value() */ static void rna_clamp_value_range(FILE *f, PropertyRNA *prop) { if(prop->type == PROP_FLOAT) { FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop; if(fprop->range) { fprintf(f, " float prop_clamp_min, prop_clamp_max;\n"); fprintf(f, " %s(ptr, &prop_clamp_min, &prop_clamp_max);\n", rna_function_string(fprop->range)); } } else if(prop->type == PROP_INT) { IntPropertyRNA *iprop= (IntPropertyRNA*)prop; if(iprop->range) { fprintf(f, " int prop_clamp_min, prop_clamp_max;\n"); fprintf(f, " %s(ptr, &prop_clamp_min, &prop_clamp_max);\n", rna_function_string(iprop->range)); } } } static void rna_clamp_value(FILE *f, PropertyRNA *prop, int array) { if(prop->type == PROP_INT) { IntPropertyRNA *iprop= (IntPropertyRNA*)prop; if(iprop->hardmin != INT_MIN || iprop->hardmax != INT_MAX) { if(array) fprintf(f, "CLAMPIS(values[i], "); else fprintf(f, "CLAMPIS(value, "); if(iprop->range) { fprintf(f, "prop_clamp_min, prop_clamp_max);"); } else { rna_int_print(f, iprop->hardmin); fprintf(f, ", "); rna_int_print(f, iprop->hardmax); fprintf(f, ");\n"); } return; } } else if(prop->type == PROP_FLOAT) { FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop; if(fprop->hardmin != -FLT_MAX || fprop->hardmax != FLT_MAX) { if(array) fprintf(f, "CLAMPIS(values[i], "); else fprintf(f, "CLAMPIS(value, "); if(fprop->range) { fprintf(f, "prop_clamp_min, prop_clamp_max);"); } else { rna_float_print(f, fprop->hardmin); fprintf(f, ", "); rna_float_print(f, fprop->hardmax); fprintf(f, ");\n"); } return; } } if(array) fprintf(f, "values[i];\n"); else fprintf(f, "value;\n"); } static char *rna_def_property_set_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc) { char *func; if(!(prop->flag & PROP_EDITABLE)) return NULL; if(prop->flag & PROP_IDPROPERTY && manualfunc==NULL) return NULL; if(!manualfunc) { if(!dp->dnastructname || !dp->dnaname) { if(prop->flag & PROP_EDITABLE) { fprintf(stderr, "rna_def_property_set_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier); DefRNA.error= 1; } return NULL; } } func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "set"); switch(prop->type) { case PROP_STRING: { StringPropertyRNA *sprop= (StringPropertyRNA*)prop; fprintf(f, "void %s(PointerRNA *ptr, const char *value)\n", func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " %s(ptr, value);\n", manualfunc); } else { rna_print_data_get(f, dp); if(sprop->maxlength) fprintf(f, " BLI_strncpy(data->%s, value, %d);\n", dp->dnaname, sprop->maxlength); else fprintf(f, " BLI_strncpy(data->%s, value, sizeof(data->%s));\n", dp->dnaname, dp->dnaname); } fprintf(f, "}\n\n"); break; } case PROP_POINTER: { fprintf(f, "void %s(PointerRNA *ptr, PointerRNA value)\n", func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " %s(ptr, value);\n", manualfunc); } else { rna_print_data_get(f, dp); if(prop->flag & PROP_ID_SELF_CHECK) { rna_print_id_get(f, dp); fprintf(f, " if(id==value.data) return;\n\n"); } if(prop->flag & PROP_ID_REFCOUNT) { fprintf(f, "\n if(data->%s)\n", dp->dnaname); fprintf(f, " id_us_min((ID*)data->%s);\n", dp->dnaname); fprintf(f, " if(value.data)\n"); fprintf(f, " id_us_plus((ID*)value.data);\n\n"); } else { PointerPropertyRNA *pprop= (PointerPropertyRNA*)dp->prop; StructRNA *type= rna_find_struct((char*)pprop->type); if(type && (type->flag & STRUCT_ID)) { fprintf(f, " if(value.data)\n"); fprintf(f, " id_lib_extern((ID*)value.data);\n\n"); } } fprintf(f, " data->%s= value.data;\n", dp->dnaname); } fprintf(f, "}\n\n"); break; } default: if(prop->arraydimension) { if(prop->flag & PROP_DYNAMIC) fprintf(f, "void %s(PointerRNA *ptr, const %s values[])\n", func, rna_type_type(prop)); else fprintf(f, "void %s(PointerRNA *ptr, const %s values[%d])\n", func, rna_type_type(prop), prop->totarraylength); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " %s(ptr, values);\n", manualfunc); } else { rna_print_data_get(f, dp); if(prop->flag & PROP_DYNAMIC) { char *lenfunc= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "set_length"); fprintf(f, " int i, arraylen[RNA_MAX_ARRAY_DIMENSION];\n"); fprintf(f, " int len= %s(ptr, arraylen);\n\n", lenfunc); rna_clamp_value_range(f, prop); fprintf(f, " for(i=0; itotarraylength); } if(dp->dnaarraylength == 1) { if(prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " if(%svalues[i]) data->%s |= (%d<booleannegative)? "!": "", dp->dnaname, dp->booleanbit); fprintf(f, " else data->%s &= ~(%d<dnaname, dp->booleanbit); } else { fprintf(f, " (&data->%s)[i]= %s", dp->dnaname, (dp->booleannegative)? "!": ""); rna_clamp_value(f, prop, 1); } } else { if(prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " if(%svalues[i]) data->%s[i] |= ", (dp->booleannegative)? "!": "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ";\n"); fprintf(f, " else data->%s[i] &= ~", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ";\n"); } else if(rna_color_quantize(prop, dp)) { fprintf(f, " data->%s[i]= FTOCHAR(values[i]);\n", dp->dnaname); } else { if(dp->dnatype) fprintf(f, " ((%s*)data->%s)[i]= %s", dp->dnatype, dp->dnaname, (dp->booleannegative)? "!": ""); else fprintf(f, " (data->%s)[i]= %s", dp->dnaname, (dp->booleannegative)? "!": ""); rna_clamp_value(f, prop, 1); } } fprintf(f, " }\n"); } fprintf(f, "}\n\n"); } else { fprintf(f, "void %s(PointerRNA *ptr, %s value)\n", func, rna_type_type(prop)); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " %s(ptr, value);\n", manualfunc); } else { rna_print_data_get(f, dp); if(prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " if(%svalue) data->%s |= ", (dp->booleannegative)? "!": "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ";\n"); fprintf(f, " else data->%s &= ~", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ";\n"); } else if(prop->type == PROP_ENUM && dp->enumbitflags) { fprintf(f, " data->%s &= ~", dp->dnaname); rna_int_print(f, rna_enum_bitmask(prop)); fprintf(f, ";\n"); fprintf(f, " data->%s |= value;\n", dp->dnaname); } else { rna_clamp_value_range(f, prop); fprintf(f, " data->%s= %s", dp->dnaname, (dp->booleannegative)? "!": ""); rna_clamp_value(f, prop, 0); } } fprintf(f, "}\n\n"); } break; } return func; } static char *rna_def_property_length_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc) { char *func= NULL; if(prop->flag & PROP_IDPROPERTY && manualfunc==NULL) return NULL; if(prop->type == PROP_STRING) { if(!manualfunc) { if(!dp->dnastructname || !dp->dnaname) { fprintf(stderr, "rna_def_property_length_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier); DefRNA.error= 1; return NULL; } } func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "length"); fprintf(f, "int %s(PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " return %s(ptr);\n", manualfunc); } else { rna_print_data_get(f, dp); fprintf(f, " return strlen(data->%s);\n", dp->dnaname); } fprintf(f, "}\n\n"); } else if(prop->type == PROP_COLLECTION) { if(!manualfunc) { if(prop->type == PROP_COLLECTION && (!(dp->dnalengthname || dp->dnalengthfixed)|| !dp->dnaname)) { fprintf(stderr, "rna_def_property_length_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier); DefRNA.error= 1; return NULL; } } func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "length"); fprintf(f, "int %s(PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, " return %s(ptr);\n", manualfunc); } else { rna_print_data_get(f, dp); if(dp->dnalengthname) fprintf(f, " return (data->%s == NULL)? 0: data->%s;\n", dp->dnaname, dp->dnalengthname); else fprintf(f, " return (data->%s == NULL)? 0: %d;\n", dp->dnaname, dp->dnalengthfixed); } fprintf(f, "}\n\n"); } return func; } static char *rna_def_property_begin_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc) { char *func, *getfunc; if(prop->flag & PROP_IDPROPERTY && manualfunc==NULL) return NULL; if(!manualfunc) { if(!dp->dnastructname || !dp->dnaname) { fprintf(stderr, "rna_def_property_begin_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier); DefRNA.error= 1; return NULL; } } func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "begin"); fprintf(f, "void %s(CollectionPropertyIterator *iter, PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if(!manualfunc) rna_print_data_get(f, dp); fprintf(f, "\n memset(iter, 0, sizeof(*iter));\n"); fprintf(f, " iter->parent= *ptr;\n"); fprintf(f, " iter->prop= (PropertyRNA*)&rna_%s_%s;\n", srna->identifier, prop->identifier); if(dp->dnalengthname || dp->dnalengthfixed) { if(manualfunc) { fprintf(f, "\n %s(iter, ptr);\n", manualfunc); } else { if(dp->dnalengthname) fprintf(f, "\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), data->%s, 0, NULL);\n", dp->dnaname, dp->dnaname, dp->dnalengthname); else fprintf(f, "\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), %d, 0, NULL);\n", dp->dnaname, dp->dnaname, dp->dnalengthfixed); } } else { if(manualfunc) fprintf(f, "\n %s(iter, ptr);\n", manualfunc); else if(dp->dnapointerlevel == 0) fprintf(f, "\n rna_iterator_listbase_begin(iter, &data->%s, NULL);\n", dp->dnaname); else fprintf(f, "\n rna_iterator_listbase_begin(iter, data->%s, NULL);\n", dp->dnaname); } getfunc= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get"); fprintf(f, "\n if(iter->valid)\n"); fprintf(f, " iter->ptr= %s(iter);\n", getfunc); fprintf(f, "}\n\n"); return func; } static char *rna_def_property_lookup_int_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc, char *nextfunc) { /* note on indices, this is for external functions and ignores skipped values. * so the the index can only be checked against the length when there is no 'skip' funcion. */ char *func; if(prop->flag & PROP_IDPROPERTY && manualfunc==NULL) return NULL; if(!manualfunc) { if(!dp->dnastructname || !dp->dnaname) return NULL; /* only supported in case of standard next functions */ if(strcmp(nextfunc, "rna_iterator_array_next") == 0); else if(strcmp(nextfunc, "rna_iterator_listbase_next") == 0); else return NULL; } func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "lookup_int"); fprintf(f, "int %s(PointerRNA *ptr, int index, PointerRNA *r_ptr)\n", func); fprintf(f, "{\n"); if(manualfunc) { fprintf(f, "\n return %s(ptr, index, r_ptr);\n", manualfunc); fprintf(f, "}\n\n"); return func; } fprintf(f, " int found= 0;\n"); fprintf(f, " CollectionPropertyIterator iter;\n\n"); fprintf(f, " %s_%s_begin(&iter, ptr);\n\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " if(iter.valid){\n"); if(strcmp(nextfunc, "rna_iterator_array_next") == 0) { fprintf(f, " ArrayIterator *internal= iter.internal;\n"); fprintf(f, " if(index < 0 || index >= internal->length) {\n"); fprintf(f, "#ifdef __GNUC__\n"); fprintf(f, " printf(\"Array iterator out of range: %%s (index %%d)\\n\", __func__, index);\n"); fprintf(f, "#else\n"); fprintf(f, " printf(\"Array iterator out of range: (index %%d)\\n\", index);\n"); fprintf(f, "#endif\n"); fprintf(f, " }\n"); fprintf(f, " else if(internal->skip) {\n"); fprintf(f, " while(index-- > 0 && iter.valid) {\n"); fprintf(f, " rna_iterator_array_next(&iter);\n"); fprintf(f, " }\n"); fprintf(f, " found= (index == -1 && iter.valid);\n"); fprintf(f, " }\n"); fprintf(f, " else {\n"); fprintf(f, " internal->ptr += internal->itemsize*index;\n"); fprintf(f, " found= 1;\n"); fprintf(f, " }\n"); } else if(strcmp(nextfunc, "rna_iterator_listbase_next") == 0) { fprintf(f, " ListBaseIterator *internal= iter.internal;\n"); fprintf(f, " if(internal->skip) {\n"); fprintf(f, " while(index-- > 0 && iter.valid) {\n"); fprintf(f, " rna_iterator_listbase_next(&iter);\n"); fprintf(f, " }\n"); fprintf(f, " found= (index == -1 && iter.valid);\n"); fprintf(f, " }\n"); fprintf(f, " else {\n"); fprintf(f, " while(index-- > 0 && internal->link)\n"); fprintf(f, " internal->link= internal->link->next;\n"); fprintf(f, " found= (index == -1 && internal->link);\n"); fprintf(f, " }\n"); } fprintf(f, " if(found) *r_ptr = %s_%s_get(&iter);\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " }\n\n"); fprintf(f, " %s_%s_end(&iter);\n\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " return found;\n"); #if 0 rna_print_data_get(f, dp); item_type= (cprop->item_type)? (char*)cprop->item_type: "UnknownType"; if(dp->dnalengthname || dp->dnalengthfixed) { if(dp->dnalengthname) fprintf(f, "\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), data->%s, index);\n", item_type, dp->dnaname, dp->dnaname, dp->dnalengthname); else fprintf(f, "\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), %d, index);\n", item_type, dp->dnaname, dp->dnaname, dp->dnalengthfixed); } else { if(dp->dnapointerlevel == 0) fprintf(f, "\n return rna_listbase_lookup_int(ptr, &RNA_%s, &data->%s, index);\n", item_type, dp->dnaname); else fprintf(f, "\n return rna_listbase_lookup_int(ptr, &RNA_%s, data->%s, index);\n", item_type, dp->dnaname); } #endif fprintf(f, "}\n\n"); return func; } static char *rna_def_property_next_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc) { char *func, *getfunc; if(prop->flag & PROP_IDPROPERTY && manualfunc==NULL) return NULL; if(!manualfunc) return NULL; func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "next"); fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func); fprintf(f, "{\n"); fprintf(f, " %s(iter);\n", manualfunc); getfunc= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get"); fprintf(f, "\n if(iter->valid)\n"); fprintf(f, " iter->ptr= %s(iter);\n", getfunc); fprintf(f, "}\n\n"); return func; } static char *rna_def_property_end_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc) { char *func; if(prop->flag & PROP_IDPROPERTY && manualfunc==NULL) return NULL; func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "end"); fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func); fprintf(f, "{\n"); if(manualfunc) fprintf(f, " %s(iter);\n", manualfunc); fprintf(f, "}\n\n"); return func; } static void rna_set_raw_property(PropertyDefRNA *dp, PropertyRNA *prop) { if(dp->dnapointerlevel != 0) return; if(!dp->dnatype || !dp->dnaname || !dp->dnastructname) return; if(strcmp(dp->dnatype, "char") == 0) { prop->rawtype= PROP_RAW_CHAR; prop->flag |= PROP_RAW_ACCESS; } else if(strcmp(dp->dnatype, "short") == 0) { prop->rawtype= PROP_RAW_SHORT; prop->flag |= PROP_RAW_ACCESS; } else if(strcmp(dp->dnatype, "int") == 0) { prop->rawtype= PROP_RAW_INT; prop->flag |= PROP_RAW_ACCESS; } else if(strcmp(dp->dnatype, "float") == 0) { prop->rawtype= PROP_RAW_FLOAT; prop->flag |= PROP_RAW_ACCESS; } else if(strcmp(dp->dnatype, "double") == 0) { prop->rawtype= PROP_RAW_DOUBLE; prop->flag |= PROP_RAW_ACCESS; } } static void rna_set_raw_offset(FILE *f, StructRNA *srna, PropertyRNA *prop) { PropertyDefRNA *dp= rna_find_struct_property_def(srna, prop); fprintf(f, "\toffsetof(%s, %s), %d", dp->dnastructname, dp->dnaname, prop->rawtype); } static void rna_def_property_funcs(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; prop= dp->prop; switch(prop->type) { case PROP_BOOLEAN: { BooleanPropertyRNA *bprop= (BooleanPropertyRNA*)prop; if(!prop->arraydimension) { if(!bprop->get && !bprop->set && !dp->booleanbit) rna_set_raw_property(dp, prop); bprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)bprop->get); bprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)bprop->set); } else { bprop->getarray= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)bprop->getarray); bprop->setarray= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)bprop->setarray); } break; } case PROP_INT: { IntPropertyRNA *iprop= (IntPropertyRNA*)prop; if(!prop->arraydimension) { if(!iprop->get && !iprop->set) rna_set_raw_property(dp, prop); iprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)iprop->get); iprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)iprop->set); } else { if(!iprop->getarray && !iprop->setarray) rna_set_raw_property(dp, prop); iprop->getarray= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)iprop->getarray); iprop->setarray= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)iprop->setarray); } break; } case PROP_FLOAT: { FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop; if(!prop->arraydimension) { if(!fprop->get && !fprop->set) rna_set_raw_property(dp, prop); fprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)fprop->get); fprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)fprop->set); } else { if(!fprop->getarray && !fprop->setarray) rna_set_raw_property(dp, prop); fprop->getarray= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)fprop->getarray); fprop->setarray= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)fprop->setarray); } break; } case PROP_ENUM: { EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop; eprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)eprop->get); eprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)eprop->set); break; } case PROP_STRING: { StringPropertyRNA *sprop= (StringPropertyRNA*)prop; sprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)sprop->get); sprop->length= (void*)rna_def_property_length_func(f, srna, prop, dp, (char*)sprop->length); sprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)sprop->set); break; } case PROP_POINTER: { PointerPropertyRNA *pprop= (PointerPropertyRNA*)prop; pprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)pprop->get); pprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)pprop->set); if(!pprop->type) { fprintf(stderr, "rna_def_property_funcs: %s.%s, pointer must have a struct type.\n", srna->identifier, prop->identifier); DefRNA.error= 1; } break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)prop; char *nextfunc= (char*)cprop->next; if(dp->dnatype && strcmp(dp->dnatype, "ListBase")==0); else if(dp->dnalengthname || dp->dnalengthfixed) cprop->length= (void*)rna_def_property_length_func(f, srna, prop, dp, (char*)cprop->length); /* test if we can allow raw array access, if it is using our standard * array get/next function, we can be sure it is an actual array */ if(cprop->next && cprop->get) if(strcmp((char*)cprop->next, "rna_iterator_array_next") == 0 && strcmp((char*)cprop->get, "rna_iterator_array_get") == 0) prop->flag |= PROP_RAW_ARRAY; cprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)cprop->get); cprop->begin= (void*)rna_def_property_begin_func(f, srna, prop, dp, (char*)cprop->begin); cprop->next= (void*)rna_def_property_next_func(f, srna, prop, dp, (char*)cprop->next); cprop->end= (void*)rna_def_property_end_func(f, srna, prop, dp, (char*)cprop->end); cprop->lookupint= (void*)rna_def_property_lookup_int_func(f, srna, prop, dp, (char*)cprop->lookupint, nextfunc); if(!(prop->flag & PROP_IDPROPERTY)) { if(!cprop->begin) { fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a begin function.\n", srna->identifier, prop->identifier); DefRNA.error= 1; } if(!cprop->next) { fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a next function.\n", srna->identifier, prop->identifier); DefRNA.error= 1; } if(!cprop->get) { fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a get function.\n", srna->identifier, prop->identifier); DefRNA.error= 1; } } if(!cprop->item_type) { fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a struct type.\n", srna->identifier, prop->identifier); DefRNA.error= 1; } break; } } } static void rna_def_property_funcs_header(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; char *func; prop= dp->prop; if(prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN)) return; func= rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), ""); switch(prop->type) { case PROP_BOOLEAN: case PROP_INT: { if(!prop->arraydimension) { fprintf(f, "int %sget(PointerRNA *ptr);\n", func); //fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func); } else if(prop->arraydimension && prop->totarraylength) { fprintf(f, "void %sget(PointerRNA *ptr, int values[%d]);\n", func, prop->totarraylength); //fprintf(f, "void %sset(PointerRNA *ptr, const int values[%d]);\n", func, prop->arraylength); } else { fprintf(f, "void %sget(PointerRNA *ptr, int values[]);\n", func); //fprintf(f, "void %sset(PointerRNA *ptr, const int values[]);\n", func); } break; } case PROP_FLOAT: { if(!prop->arraydimension) { fprintf(f, "float %sget(PointerRNA *ptr);\n", func); //fprintf(f, "void %sset(PointerRNA *ptr, float value);\n", func); } else if(prop->arraydimension && prop->totarraylength) { fprintf(f, "void %sget(PointerRNA *ptr, float values[%d]);\n", func, prop->totarraylength); //fprintf(f, "void %sset(PointerRNA *ptr, const float values[%d]);\n", func, prop->arraylength); } else { fprintf(f, "void %sget(PointerRNA *ptr, float values[]);\n", func); //fprintf(f, "void %sset(PointerRNA *ptr, const float values[]);\n", func); } break; } case PROP_ENUM: { EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop; int i; if(eprop->item) { fprintf(f, "enum {\n"); for(i=0; itotitem; i++) if(eprop->item[i].identifier[0]) fprintf(f, "\t%s_%s_%s = %d,\n", srna->identifier, prop->identifier, eprop->item[i].identifier, eprop->item[i].value); fprintf(f, "};\n\n"); } fprintf(f, "int %sget(PointerRNA *ptr);\n", func); //fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func); break; } case PROP_STRING: { StringPropertyRNA *sprop= (StringPropertyRNA*)prop; if(sprop->maxlength) { fprintf(f, "#define %s_%s_MAX %d\n\n", srna->identifier, prop->identifier, sprop->maxlength); } fprintf(f, "void %sget(PointerRNA *ptr, char *value);\n", func); fprintf(f, "int %slength(PointerRNA *ptr);\n", func); //fprintf(f, "void %sset(PointerRNA *ptr, const char *value);\n", func); break; } case PROP_POINTER: { fprintf(f, "PointerRNA %sget(PointerRNA *ptr);\n", func); //fprintf(f, "void %sset(PointerRNA *ptr, PointerRNA value);\n", func); break; } case PROP_COLLECTION: { fprintf(f, "void %sbegin(CollectionPropertyIterator *iter, PointerRNA *ptr);\n", func); fprintf(f, "void %snext(CollectionPropertyIterator *iter);\n", func); fprintf(f, "void %send(CollectionPropertyIterator *iter);\n", func); //fprintf(f, "int %slength(PointerRNA *ptr);\n", func); //fprintf(f, "void %slookup_int(PointerRNA *ptr, int key, StructRNA **type);\n", func); //fprintf(f, "void %slookup_string(PointerRNA *ptr, const char *key, StructRNA **type);\n", func); break; } } fprintf(f, "\n"); } static void rna_def_property_funcs_header_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; prop= dp->prop; if(prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN)) return; if(prop->name && prop->description && strcmp(prop->description, "") != 0) fprintf(f, "\t/* %s: %s */\n", prop->name, prop->description); else if(prop->name) fprintf(f, "\t/* %s */\n", prop->name); else fprintf(f, "\t/* */\n"); switch(prop->type) { case PROP_BOOLEAN: { if(!prop->arraydimension) fprintf(f, "\tinline bool %s(void);", rna_safe_id(prop->identifier)); else fprintf(f, "\tinline Array %s(void);", prop->totarraylength, rna_safe_id(prop->identifier)); break; } case PROP_INT: { if(!prop->arraydimension) fprintf(f, "\tinline int %s(void);", rna_safe_id(prop->identifier)); else fprintf(f, "\tinline Array %s(void);", prop->totarraylength, rna_safe_id(prop->identifier)); break; } case PROP_FLOAT: { if(!prop->arraydimension) fprintf(f, "\tinline float %s(void);", rna_safe_id(prop->identifier)); else fprintf(f, "\tinline Array %s(void);", prop->totarraylength, rna_safe_id(prop->identifier)); break; } case PROP_ENUM: { EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop; int i; if(eprop->item) { fprintf(f, "\tenum %s_enum {\n", rna_safe_id(prop->identifier)); for(i=0; itotitem; i++) if(eprop->item[i].identifier[0]) fprintf(f, "\t\t%s_%s = %d,\n", rna_safe_id(prop->identifier), eprop->item[i].identifier, eprop->item[i].value); fprintf(f, "\t};\n"); } fprintf(f, "\tinline %s_enum %s(void);", rna_safe_id(prop->identifier), rna_safe_id(prop->identifier)); break; } case PROP_STRING: { fprintf(f, "\tinline std::string %s(void);", rna_safe_id(prop->identifier)); break; } case PROP_POINTER: { PointerPropertyRNA *pprop= (PointerPropertyRNA*)dp->prop; if(pprop->type) fprintf(f, "\tinline %s %s(void);", (char*)pprop->type, rna_safe_id(prop->identifier)); else fprintf(f, "\tinline %s %s(void);", "UnknownType", rna_safe_id(prop->identifier)); break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)dp->prop; if(cprop->item_type) fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", (char*)cprop->item_type, srna->identifier, rna_safe_id(prop->identifier)); else fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", "UnknownType", srna->identifier, rna_safe_id(prop->identifier)); break; } } fprintf(f, "\n"); } static void rna_def_property_funcs_impl_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; prop= dp->prop; if(prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN)) return; switch(prop->type) { case PROP_BOOLEAN: { if(!prop->arraydimension) fprintf(f, "\tBOOLEAN_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); else fprintf(f, "\tBOOLEAN_ARRAY_PROPERTY(%s, %d, %s)", srna->identifier, prop->totarraylength, rna_safe_id(prop->identifier)); break; } case PROP_INT: { if(!prop->arraydimension) fprintf(f, "\tINT_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); else fprintf(f, "\tINT_ARRAY_PROPERTY(%s, %d, %s)", srna->identifier, prop->totarraylength, rna_safe_id(prop->identifier)); break; } case PROP_FLOAT: { if(!prop->arraydimension) fprintf(f, "\tFLOAT_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); else fprintf(f, "\tFLOAT_ARRAY_PROPERTY(%s, %d, %s)", srna->identifier, prop->totarraylength, rna_safe_id(prop->identifier)); break; } case PROP_ENUM: { fprintf(f, "\tENUM_PROPERTY(%s_enum, %s, %s)", rna_safe_id(prop->identifier), srna->identifier, rna_safe_id(prop->identifier)); break; } case PROP_STRING: { fprintf(f, "\tSTRING_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); break; } case PROP_POINTER: { PointerPropertyRNA *pprop= (PointerPropertyRNA*)dp->prop; if(pprop->type) fprintf(f, "\tPOINTER_PROPERTY(%s, %s, %s)", (char*)pprop->type, srna->identifier, rna_safe_id(prop->identifier)); else fprintf(f, "\tPOINTER_PROPERTY(%s, %s, %s)", "UnknownType", srna->identifier, rna_safe_id(prop->identifier)); break; } case PROP_COLLECTION: { /*CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)dp->prop; if(cprop->type) fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", (char*)cprop->type, srna->identifier, prop->identifier); else fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", "UnknownType", srna->identifier, prop->identifier);*/ break; } } fprintf(f, "\n"); } static void rna_def_function_funcs(FILE *f, StructDefRNA *dsrna, FunctionDefRNA *dfunc) { StructRNA *srna; FunctionRNA *func; PropertyDefRNA *dparm; PropertyType type; const char *funcname, *valstr; const char *ptrstr; const short has_data= (dfunc->cont.properties.first != NULL); int flag, pout, cptr, first; srna= dsrna->srna; func= dfunc->func; if(!dfunc->call) return; funcname= rna_alloc_function_name(srna->identifier, func->identifier, "call"); /* function definition */ fprintf(f, "void %s(bContext *C, ReportList *reports, PointerRNA *_ptr, ParameterList *_parms)", funcname); fprintf(f, "\n{\n"); /* variable definitions */ if(func->flag & FUNC_USE_SELF_ID) { fprintf(f, "\tstruct ID *_selfid;\n"); } if((func->flag & FUNC_NO_SELF)==0) { if(dsrna->dnaname) fprintf(f, "\tstruct %s *_self;\n", dsrna->dnaname); else fprintf(f, "\tstruct %s *_self;\n", srna->identifier); } dparm= dfunc->cont.properties.first; for(; dparm; dparm= dparm->next) { type = dparm->prop->type; flag = dparm->prop->flag; pout = (flag & PROP_OUTPUT); cptr = ((type == PROP_POINTER) && !(flag & PROP_RNAPTR)); if(dparm->prop==func->c_ret) ptrstr= cptr || dparm->prop->arraydimension ? "*" : ""; /* XXX only arrays and strings are allowed to be dynamic, is this checked anywhere? */ else if (cptr || (flag & PROP_DYNAMIC)) ptrstr= pout ? "**" : "*"; /* fixed size arrays and RNA pointers are pre-allocated on the ParameterList stack, pass a pointer to it */ else if (type == PROP_POINTER || dparm->prop->arraydimension) ptrstr= "*"; /* PROP_THICK_WRAP strings are pre-allocated on the ParameterList stack, but type name for string props is already char*, so leave empty */ else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) ptrstr= ""; else ptrstr= pout ? "*" : ""; /* for dynamic parameters we pass an additional int for the length of the parameter */ if (flag & PROP_DYNAMIC) fprintf(f, "\tint %s%s_len;\n", pout ? "*" : "", dparm->prop->identifier); fprintf(f, "\t%s%s %s%s;\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, dparm->prop->identifier); } if(has_data) { fprintf(f, "\tchar *_data"); if(func->c_ret) fprintf(f, ", *_retdata"); fprintf(f, ";\n"); fprintf(f, "\t\n"); } /* assign self */ if(func->flag & FUNC_USE_SELF_ID) { fprintf(f, "\t_selfid= (struct ID*)_ptr->id.data;\n"); } if((func->flag & FUNC_NO_SELF)==0) { if(dsrna->dnaname) fprintf(f, "\t_self= (struct %s *)_ptr->data;\n", dsrna->dnaname); else fprintf(f, "\t_self= (struct %s *)_ptr->data;\n", srna->identifier); } if(has_data) { fprintf(f, "\t_data= (char *)_parms->data;\n"); } dparm= dfunc->cont.properties.first; for(; dparm; dparm= dparm->next) { type = dparm->prop->type; flag = dparm->prop->flag; pout = (flag & PROP_OUTPUT); cptr = ((type == PROP_POINTER) && !(flag & PROP_RNAPTR)); if(dparm->prop==func->c_ret) fprintf(f, "\t_retdata= _data;\n"); else { const char *data_str; if (cptr || (flag & PROP_DYNAMIC)) { ptrstr= "**"; valstr= "*"; } else if (type == PROP_POINTER || dparm->prop->arraydimension) { ptrstr= "*"; valstr= ""; } else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) { ptrstr= ""; valstr= ""; } else { ptrstr= "*"; valstr= "*"; } /* this must be kept in sync with RNA_parameter_length_get_data, we could just call the function directly, but this is faster */ if (flag & PROP_DYNAMIC) { fprintf(f, "\t%s_len= %s((int *)_data);\n", dparm->prop->identifier, pout ? "" : "*"); data_str= "(&(((char *)_data)[sizeof(void *)]))"; } else { data_str= "_data"; } fprintf(f, "\t%s= ", dparm->prop->identifier); if (!pout) fprintf(f, "%s", valstr); fprintf(f, "((%s%s%s)%s);\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, data_str); } if(dparm->next) fprintf(f, "\t_data+= %d;\n", rna_parameter_size_alloc(dparm->prop)); } if(dfunc->call) { fprintf(f, "\t\n"); fprintf(f, "\t"); if(func->c_ret) fprintf(f, "%s= ", func->c_ret->identifier); fprintf(f, "%s(", dfunc->call); first= 1; if(func->flag & FUNC_USE_SELF_ID) { fprintf(f, "_selfid"); first= 0; } if((func->flag & FUNC_NO_SELF)==0) { if(!first) fprintf(f, ", "); fprintf(f, "_self"); first= 0; } if(func->flag & FUNC_USE_CONTEXT) { if(!first) fprintf(f, ", "); first= 0; fprintf(f, "C"); } if(func->flag & FUNC_USE_REPORTS) { if(!first) fprintf(f, ", "); first= 0; fprintf(f, "reports"); } dparm= dfunc->cont.properties.first; for(; dparm; dparm= dparm->next) { if(dparm->prop==func->c_ret) continue; if(!first) fprintf(f, ", "); first= 0; if (dparm->prop->flag & PROP_DYNAMIC) fprintf(f, "%s_len, %s", dparm->prop->identifier, dparm->prop->identifier); else fprintf(f, "%s", dparm->prop->identifier); } fprintf(f, ");\n"); if(func->c_ret) { dparm= rna_find_parameter_def(func->c_ret); ptrstr= (((dparm->prop->type == PROP_POINTER) && !(dparm->prop->flag & PROP_RNAPTR)) || (dparm->prop->arraydimension))? "*": ""; fprintf(f, "\t*((%s%s%s*)_retdata)= %s;\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, func->c_ret->identifier); } } fprintf(f, "}\n\n"); dfunc->gencall= funcname; } static void rna_auto_types(void) { StructDefRNA *ds; PropertyDefRNA *dp; for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) { /* DNA name for Screen is patched in 2.5, we do the reverse here .. */ if(ds->dnaname && strcmp(ds->dnaname, "Screen") == 0) ds->dnaname= "bScreen"; for(dp=ds->cont.properties.first; dp; dp=dp->next) { if(dp->dnastructname && strcmp(dp->dnastructname, "Screen") == 0) dp->dnastructname= "bScreen"; if(dp->dnatype) { if(dp->prop->type == PROP_POINTER) { PointerPropertyRNA *pprop= (PointerPropertyRNA*)dp->prop; StructRNA *type; if(!pprop->type && !pprop->get) pprop->type= (StructRNA*)rna_find_type(dp->dnatype); if(pprop->type) { type= rna_find_struct((char*)pprop->type); if(type && (type->flag & STRUCT_ID_REFCOUNT)) pprop->property.flag |= PROP_ID_REFCOUNT; } } else if(dp->prop->type== PROP_COLLECTION) { CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)dp->prop; if(!cprop->item_type && !cprop->get && strcmp(dp->dnatype, "ListBase")==0) cprop->item_type= (StructRNA*)rna_find_type(dp->dnatype); } } } } } static void rna_sort(BlenderRNA *brna) { StructDefRNA *ds; StructRNA *srna; rna_sortlist(&brna->structs, cmp_struct); rna_sortlist(&DefRNA.structs, cmp_def_struct); for(srna=brna->structs.first; srna; srna=srna->cont.next) rna_sortlist(&srna->cont.properties, cmp_property); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) rna_sortlist(&ds->cont.properties, cmp_def_property); } static const char *rna_property_structname(PropertyType type) { switch(type) { case PROP_BOOLEAN: return "BooleanPropertyRNA"; case PROP_INT: return "IntPropertyRNA"; case PROP_FLOAT: return "FloatPropertyRNA"; case PROP_STRING: return "StringPropertyRNA"; case PROP_ENUM: return "EnumPropertyRNA"; case PROP_POINTER: return "PointerPropertyRNA"; case PROP_COLLECTION: return "CollectionPropertyRNA"; default: return "UnknownPropertyRNA"; } } static const char *rna_property_subtypename(PropertySubType type) { switch(type) { case PROP_NONE: return "PROP_NONE"; case PROP_FILEPATH: return "PROP_FILEPATH"; case PROP_FILENAME: return "PROP_FILENAME"; case PROP_DIRPATH: return "PROP_DIRPATH"; case PROP_UNSIGNED: return "PROP_UNSIGNED"; case PROP_PERCENTAGE: return "PROP_PERCENTAGE"; case PROP_FACTOR: return "PROP_FACTOR"; case PROP_ANGLE: return "PROP_ANGLE"; case PROP_TIME: return "PROP_TIME"; case PROP_DISTANCE: return "PROP_DISTANCE"; case PROP_COLOR: return "PROP_COLOR"; case PROP_TRANSLATION: return "PROP_TRANSLATION"; case PROP_DIRECTION: return "PROP_DIRECTION"; case PROP_MATRIX: return "PROP_MATRIX"; case PROP_EULER: return "PROP_EULER"; case PROP_QUATERNION: return "PROP_QUATERNION"; case PROP_AXISANGLE: return "PROP_AXISANGLE"; case PROP_VELOCITY: return "PROP_VELOCITY"; case PROP_ACCELERATION: return "PROP_ACCELERATION"; case PROP_XYZ: return "PROP_XYZ"; case PROP_COLOR_GAMMA: return "PROP_COLOR_GAMMA"; case PROP_COORDS: return "PROP_COORDS"; case PROP_LAYER: return "PROP_LAYER"; case PROP_LAYER_MEMBER: return "PROP_LAYER_MEMBER"; default: { /* incase we dont have a type preset that includes the subtype */ if(RNA_SUBTYPE_UNIT(type)) { return rna_property_subtypename(type & ~RNA_SUBTYPE_UNIT(type)); } else { return "PROP_SUBTYPE_UNKNOWN"; } } } } static const char *rna_property_subtype_unit(PropertySubType type) { switch(RNA_SUBTYPE_UNIT(type)) { case PROP_UNIT_NONE: return "PROP_UNIT_NONE"; case PROP_UNIT_LENGTH: return "PROP_UNIT_LENGTH"; case PROP_UNIT_AREA: return "PROP_UNIT_AREA"; case PROP_UNIT_VOLUME: return "PROP_UNIT_VOLUME"; case PROP_UNIT_MASS: return "PROP_UNIT_MASS"; case PROP_UNIT_ROTATION: return "PROP_UNIT_ROTATION"; case PROP_UNIT_TIME: return "PROP_UNIT_TIME"; case PROP_UNIT_VELOCITY: return "PROP_UNIT_VELOCITY"; case PROP_UNIT_ACCELERATION:return "PROP_UNIT_ACCELERATION"; default: return "PROP_UNIT_UNKNOWN"; } } static void rna_generate_prototypes(BlenderRNA *brna, FILE *f) { StructRNA *srna; for(srna=brna->structs.first; srna; srna=srna->cont.next) fprintf(f, "extern StructRNA RNA_%s;\n", srna->identifier); fprintf(f, "\n"); } static void rna_generate_blender(BlenderRNA *brna, FILE *f) { StructRNA *srna; fprintf(f, "BlenderRNA BLENDER_RNA = {"); srna= brna->structs.first; if(srna) fprintf(f, "{&RNA_%s, ", srna->identifier); else fprintf(f, "{NULL, "); srna= brna->structs.last; if(srna) fprintf(f, "&RNA_%s}", srna->identifier); else fprintf(f, "NULL}"); fprintf(f, "};\n\n"); } static void rna_generate_property_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f) { PropertyRNA *prop; StructRNA *base; base= srna->base; while (base) { fprintf(f, "\n"); for(prop=base->cont.properties.first; prop; prop=prop->next) fprintf(f, "%s%s rna_%s_%s;\n", "extern ", rna_property_structname(prop->type), base->identifier, prop->identifier); base= base->base; } if(srna->cont.properties.first) fprintf(f, "\n"); for(prop=srna->cont.properties.first; prop; prop=prop->next) fprintf(f, "%s%s rna_%s_%s;\n", (prop->flag & PROP_EXPORT)? "": "", rna_property_structname(prop->type), srna->identifier, prop->identifier); fprintf(f, "\n"); } static void rna_generate_parameter_prototypes(BlenderRNA *brna, StructRNA *srna, FunctionRNA *func, FILE *f) { PropertyRNA *parm; for(parm= func->cont.properties.first; parm; parm= parm->next) fprintf(f, "%s%s rna_%s_%s_%s;\n", "extern ", rna_property_structname(parm->type), srna->identifier, func->identifier, parm->identifier); if(func->cont.properties.first) fprintf(f, "\n"); } static void rna_generate_function_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f) { FunctionRNA *func; StructRNA *base; base= srna->base; while (base) { for(func= base->functions.first; func; func= func->cont.next) { fprintf(f, "%s%s rna_%s_%s_func;\n", "extern ", "FunctionRNA", base->identifier, func->identifier); rna_generate_parameter_prototypes(brna, base, func, f); } if(base->functions.first) fprintf(f, "\n"); base= base->base; } for(func= srna->functions.first; func; func= func->cont.next) { fprintf(f, "%s%s rna_%s_%s_func;\n", "extern ", "FunctionRNA", srna->identifier, func->identifier); rna_generate_parameter_prototypes(brna, srna, func, f); } if(srna->functions.first) fprintf(f, "\n"); } static void rna_generate_static_parameter_prototypes(BlenderRNA *brna, StructRNA *srna, FunctionDefRNA *dfunc, FILE *f) { FunctionRNA *func; PropertyDefRNA *dparm; StructDefRNA *dsrna; PropertyType type; int flag, pout, cptr, first; const char *ptrstr; dsrna= rna_find_struct_def(srna); func= dfunc->func; /* return type */ for(dparm= dfunc->cont.properties.first; dparm; dparm= dparm->next) { if(dparm->prop==func->c_ret) { if(dparm->prop->arraydimension) fprintf(f, "XXX no array return types yet"); /* XXX not supported */ else if(dparm->prop->type == PROP_POINTER && !(dparm->prop->flag & PROP_RNAPTR)) fprintf(f, "%s%s *", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop)); else fprintf(f, "%s%s ", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop)); break; } } /* void if nothing to return */ if(!dparm) fprintf(f, "void "); /* function name */ fprintf(f, "%s(", dfunc->call); first= 1; /* self, context and reports parameters */ if(func->flag & FUNC_USE_SELF_ID) { fprintf(f, "struct ID *_selfid"); first= 0; } if((func->flag & FUNC_NO_SELF)==0) { if(!first) fprintf(f, ", "); if(dsrna->dnaname) fprintf(f, "struct %s *_self", dsrna->dnaname); else fprintf(f, "struct %s *_self", srna->identifier); first= 0; } if(func->flag & FUNC_USE_CONTEXT) { if(!first) fprintf(f, ", "); first= 0; fprintf(f, "bContext *C"); } if(func->flag & FUNC_USE_REPORTS) { if(!first) fprintf(f, ", "); first= 0; fprintf(f, "ReportList *reports"); } /* defined parameters */ for(dparm= dfunc->cont.properties.first; dparm; dparm= dparm->next) { type = dparm->prop->type; flag = dparm->prop->flag; pout = (flag & PROP_OUTPUT); cptr = ((type == PROP_POINTER) && !(flag & PROP_RNAPTR)); if(dparm->prop==func->c_ret) continue; if (cptr || (flag & PROP_DYNAMIC)) ptrstr= pout ? "**" : "*"; else if (type == PROP_POINTER || dparm->prop->arraydimension) ptrstr= "*"; else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) ptrstr= ""; else ptrstr= pout ? "*" : ""; if(!first) fprintf(f, ", "); first= 0; if (flag & PROP_DYNAMIC) fprintf(f, "int %s%s_len, ", pout ? "*" : "", dparm->prop->identifier); if(!(flag & PROP_DYNAMIC) && dparm->prop->arraydimension) fprintf(f, "%s%s %s[%d]", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), dparm->prop->identifier, dparm->prop->totarraylength); else fprintf(f, "%s%s %s%s", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, dparm->prop->identifier); } fprintf(f, ");\n"); } static void rna_generate_static_function_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f) { FunctionRNA *func; FunctionDefRNA *dfunc; int first= 1; for(func= srna->functions.first; func; func= func->cont.next) { dfunc= rna_find_function_def(func); if(dfunc->call) { if(first) { fprintf(f, "/* Repeated prototypes to detect errors */\n\n"); first= 0; } rna_generate_static_parameter_prototypes(brna, srna, dfunc, f); } } fprintf(f, "\n"); } static void rna_generate_property(FILE *f, StructRNA *srna, const char *nest, PropertyRNA *prop) { char *strnest= "", *errnest= ""; int len, freenest= 0; if(nest != NULL) { len= strlen(nest); strnest= MEM_mallocN(sizeof(char)*(len+2), "rna_generate_property -> strnest"); errnest= MEM_mallocN(sizeof(char)*(len+2), "rna_generate_property -> errnest"); strcpy(strnest, "_"); strcat(strnest, nest); strcpy(errnest, "."); strcat(errnest, nest); freenest= 1; } switch(prop->type) { case PROP_ENUM: { EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop; int i, defaultfound= 0, totflag= 0; if(eprop->item) { fprintf(f, "static EnumPropertyItem rna_%s%s_%s_items[%d] = {\n\t", srna->identifier, strnest, prop->identifier, eprop->totitem+1); for(i=0; itotitem; i++) { fprintf(f, "{%d, ", eprop->item[i].value); rna_print_c_string(f, eprop->item[i].identifier); fprintf(f, ", "); fprintf(f, "%d, ", eprop->item[i].icon); rna_print_c_string(f, eprop->item[i].name); fprintf(f, ", "); rna_print_c_string(f, eprop->item[i].description); fprintf(f, "},\n\t"); if(eprop->item[i].identifier[0]) { if(prop->flag & PROP_ENUM_FLAG) { totflag |= eprop->item[i].value; } else { if(eprop->defaultvalue == eprop->item[i].value) { defaultfound= 1; } } } } fprintf(f, "{0, NULL, 0, NULL, NULL}\n};\n\n"); if(prop->flag & PROP_ENUM_FLAG) { if(eprop->defaultvalue & ~totflag) { fprintf(stderr, "rna_generate_structs: %s%s.%s, enum default includes unused bits (%d).\n", srna->identifier, errnest, prop->identifier, eprop->defaultvalue & ~totflag); DefRNA.error= 1; } } else { if(!defaultfound) { fprintf(stderr, "rna_generate_structs: %s%s.%s, enum default is not in items.\n", srna->identifier, errnest, prop->identifier); DefRNA.error= 1; } } } else { fprintf(stderr, "rna_generate_structs: %s%s.%s, enum must have items defined.\n", srna->identifier, errnest, prop->identifier); DefRNA.error= 1; } break; } case PROP_BOOLEAN: { BooleanPropertyRNA *bprop= (BooleanPropertyRNA*)prop; unsigned int i; if(prop->arraydimension && prop->totarraylength) { fprintf(f, "static int rna_%s%s_%s_default[%d] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength); for(i=0; itotarraylength; i++) { if(bprop->defaultarray) fprintf(f, "%d", bprop->defaultarray[i]); else fprintf(f, "%d", bprop->defaultvalue); if(i != prop->totarraylength-1) fprintf(f, ",\n\t"); } fprintf(f, "\n};\n\n"); } break; } case PROP_INT: { IntPropertyRNA *iprop= (IntPropertyRNA*)prop; unsigned int i; if(prop->arraydimension && prop->totarraylength) { fprintf(f, "static int rna_%s%s_%s_default[%d] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength); for(i=0; itotarraylength; i++) { if(iprop->defaultarray) fprintf(f, "%d", iprop->defaultarray[i]); else fprintf(f, "%d", iprop->defaultvalue); if(i != prop->totarraylength-1) fprintf(f, ",\n\t"); } fprintf(f, "\n};\n\n"); } break; } case PROP_FLOAT: { FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop; unsigned int i; if(prop->arraydimension && prop->totarraylength) { fprintf(f, "static float rna_%s%s_%s_default[%d] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength); for(i=0; itotarraylength; i++) { if(fprop->defaultarray) rna_float_print(f, fprop->defaultarray[i]); else rna_float_print(f, fprop->defaultvalue); if(i != prop->totarraylength-1) fprintf(f, ",\n\t"); } fprintf(f, "\n};\n\n"); } break; } default: break; } fprintf(f, "%s%s rna_%s%s_%s = {\n", (prop->flag & PROP_EXPORT)? "": "", rna_property_structname(prop->type), srna->identifier, strnest, prop->identifier); if(prop->next) fprintf(f, "\t{(PropertyRNA*)&rna_%s%s_%s, ", srna->identifier, strnest, prop->next->identifier); else fprintf(f, "\t{NULL, "); if(prop->prev) fprintf(f, "(PropertyRNA*)&rna_%s%s_%s,\n", srna->identifier, strnest, prop->prev->identifier); else fprintf(f, "NULL,\n"); fprintf(f, "\t%d, ", prop->magic); rna_print_c_string(f, prop->identifier); fprintf(f, ", %d, ", prop->flag); rna_print_c_string(f, prop->name); fprintf(f, ",\n\t"); rna_print_c_string(f, prop->description); fprintf(f, ",\n\t"); fprintf(f, "%d,\n", prop->icon); fprintf(f, "\t%s, %s|%s, %s, %d, {%d, %d, %d}, %d,\n", RNA_property_typename(prop->type), rna_property_subtypename(prop->subtype), rna_property_subtype_unit(prop->subtype), rna_function_string(prop->getlength), prop->arraydimension, prop->arraylength[0], prop->arraylength[1], prop->arraylength[2], prop->totarraylength); fprintf(f, "\t%s%s, %d, %s, %s,\n", (prop->flag & PROP_CONTEXT_UPDATE)? "(UpdateFunc)": "", rna_function_string(prop->update), prop->noteflag, rna_function_string(prop->editable), rna_function_string(prop->itemeditable)); if(prop->flag & PROP_RAW_ACCESS) rna_set_raw_offset(f, srna, prop); else fprintf(f, "\t0, -1"); /* our own type - collections/arrays only */ if(prop->srna) fprintf(f, ", &RNA_%s", (char*)prop->srna); else fprintf(f, ", NULL"); fprintf(f, "},\n"); switch(prop->type) { case PROP_BOOLEAN: { BooleanPropertyRNA *bprop= (BooleanPropertyRNA*)prop; fprintf(f, "\t%s, %s, %s, %s, %d, ", rna_function_string(bprop->get), rna_function_string(bprop->set), rna_function_string(bprop->getarray), rna_function_string(bprop->setarray), bprop->defaultvalue); if(prop->arraydimension && prop->totarraylength) fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier); else fprintf(f, "NULL\n"); break; } case PROP_INT: { IntPropertyRNA *iprop= (IntPropertyRNA*)prop; fprintf(f, "\t%s, %s, %s, %s, %s,\n\t", rna_function_string(iprop->get), rna_function_string(iprop->set), rna_function_string(iprop->getarray), rna_function_string(iprop->setarray), rna_function_string(iprop->range)); rna_int_print(f, iprop->softmin); fprintf(f, ", "); rna_int_print(f, iprop->softmax); fprintf(f, ", "); rna_int_print(f, iprop->hardmin); fprintf(f, ", "); rna_int_print(f, iprop->hardmax); fprintf(f, ", "); rna_int_print(f, iprop->step); fprintf(f, ", "); rna_int_print(f, iprop->defaultvalue); fprintf(f, ", "); if(prop->arraydimension && prop->totarraylength) fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier); else fprintf(f, "NULL\n"); break; } case PROP_FLOAT: { FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop; fprintf(f, "\t%s, %s, %s, %s, %s, ", rna_function_string(fprop->get), rna_function_string(fprop->set), rna_function_string(fprop->getarray), rna_function_string(fprop->setarray), rna_function_string(fprop->range)); rna_float_print(f, fprop->softmin); fprintf(f, ", "); rna_float_print(f, fprop->softmax); fprintf(f, ", "); rna_float_print(f, fprop->hardmin); fprintf(f, ", "); rna_float_print(f, fprop->hardmax); fprintf(f, ", "); rna_float_print(f, fprop->step); fprintf(f, ", "); rna_int_print(f, (int)fprop->precision); fprintf(f, ", "); rna_float_print(f, fprop->defaultvalue); fprintf(f, ", "); if(prop->arraydimension && prop->totarraylength) fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier); else fprintf(f, "NULL\n"); break; } case PROP_STRING: { StringPropertyRNA *sprop= (StringPropertyRNA*)prop; fprintf(f, "\t%s, %s, %s, %d, ", rna_function_string(sprop->get), rna_function_string(sprop->length), rna_function_string(sprop->set), sprop->maxlength); rna_print_c_string(f, sprop->defaultvalue); fprintf(f, "\n"); break; } case PROP_ENUM: { EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop; fprintf(f, "\t%s, %s, %s, NULL, ", rna_function_string(eprop->get), rna_function_string(eprop->set), rna_function_string(eprop->itemf)); if(eprop->item) fprintf(f, "rna_%s%s_%s_items, ", srna->identifier, strnest, prop->identifier); else fprintf(f, "NULL, "); fprintf(f, "%d, %d\n", eprop->totitem, eprop->defaultvalue); break; } case PROP_POINTER: { PointerPropertyRNA *pprop= (PointerPropertyRNA*)prop; fprintf(f, "\t%s, %s, %s, %s,", rna_function_string(pprop->get), rna_function_string(pprop->set), rna_function_string(pprop->typef), rna_function_string(pprop->poll)); if(pprop->type) fprintf(f, "&RNA_%s\n", (char*)pprop->type); else fprintf(f, "NULL\n"); break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)prop; fprintf(f, "\t%s, %s, %s, %s, %s, %s, %s, ", rna_function_string(cprop->begin), rna_function_string(cprop->next), rna_function_string(cprop->end), rna_function_string(cprop->get), rna_function_string(cprop->length), rna_function_string(cprop->lookupint), rna_function_string(cprop->lookupstring)); if(cprop->item_type) fprintf(f, "&RNA_%s\n", (char*)cprop->item_type); else fprintf(f, "NULL\n"); break; } } fprintf(f, "};\n\n"); if(freenest) { MEM_freeN(strnest); MEM_freeN(errnest); } } static void rna_generate_struct(BlenderRNA *brna, StructRNA *srna, FILE *f) { FunctionRNA *func; FunctionDefRNA *dfunc; PropertyRNA *prop, *parm; StructRNA *base; fprintf(f, "/* %s */\n", srna->name); for(prop= srna->cont.properties.first; prop; prop= prop->next) rna_generate_property(f, srna, NULL, prop); for(func= srna->functions.first; func; func= func->cont.next) { for(parm= func->cont.properties.first; parm; parm= parm->next) rna_generate_property(f, srna, func->identifier, parm); fprintf(f, "%s%s rna_%s_%s_func = {\n", "", "FunctionRNA", srna->identifier, func->identifier); if(func->cont.next) fprintf(f, "\t{(FunctionRNA*)&rna_%s_%s_func, ", srna->identifier, ((FunctionRNA*)func->cont.next)->identifier); else fprintf(f, "\t{NULL, "); if(func->cont.prev) fprintf(f, "(FunctionRNA*)&rna_%s_%s_func,\n", srna->identifier, ((FunctionRNA*)func->cont.prev)->identifier); else fprintf(f, "NULL,\n"); fprintf(f, "\tNULL,\n"); parm= func->cont.properties.first; if(parm) fprintf(f, "\t{(PropertyRNA*)&rna_%s_%s_%s, ", srna->identifier, func->identifier, parm->identifier); else fprintf(f, "\t{NULL, "); parm= func->cont.properties.last; if(parm) fprintf(f, "(PropertyRNA*)&rna_%s_%s_%s}},\n", srna->identifier, func->identifier, parm->identifier); else fprintf(f, "NULL}},\n"); fprintf(f, "\t"); rna_print_c_string(f, func->identifier); fprintf(f, ", %d, ", func->flag); rna_print_c_string(f, func->description); fprintf(f, ",\n"); dfunc= rna_find_function_def(func); if(dfunc->gencall) fprintf(f, "\t%s,\n", dfunc->gencall); else fprintf(f, "\tNULL,\n"); if(func->c_ret) fprintf(f, "\t(PropertyRNA*)&rna_%s_%s_%s\n", srna->identifier, func->identifier, func->c_ret->identifier); else fprintf(f, "\tNULL\n"); fprintf(f, "};\n"); fprintf(f, "\n"); } fprintf(f, "StructRNA RNA_%s = {\n", srna->identifier); if(srna->cont.next) fprintf(f, "\t{(ContainerRNA *)&RNA_%s, ", ((StructRNA*)srna->cont.next)->identifier); else fprintf(f, "\t{NULL, "); if(srna->cont.prev) fprintf(f, "(ContainerRNA *)&RNA_%s,\n", ((StructRNA*)srna->cont.prev)->identifier); else fprintf(f, "NULL,\n"); fprintf(f, "\tNULL,\n"); prop= srna->cont.properties.first; if(prop) fprintf(f, "\t{(PropertyRNA*)&rna_%s_%s, ", srna->identifier, prop->identifier); else fprintf(f, "\t{NULL, "); prop= srna->cont.properties.last; if(prop) fprintf(f, "(PropertyRNA*)&rna_%s_%s}},\n", srna->identifier, prop->identifier); else fprintf(f, "NULL}},\n"); fprintf(f, "\t"); rna_print_c_string(f, srna->identifier); fprintf(f, "\t, NULL,NULL\n"); /* PyType - Cant initialize here */ fprintf(f, ", %d, ", srna->flag); rna_print_c_string(f, srna->name); fprintf(f, ", "); rna_print_c_string(f, srna->description); fprintf(f, ",\n\t%d,\n", srna->icon); prop= srna->nameproperty; if(prop) { base= srna; while (base->base && base->base->nameproperty==prop) base= base->base; fprintf(f, "\t(PropertyRNA*)&rna_%s_%s, ", base->identifier, prop->identifier); } else fprintf(f, "\tNULL, "); prop= srna->iteratorproperty; base= srna; while (base->base && base->base->iteratorproperty==prop) base= base->base; fprintf(f, "(PropertyRNA*)&rna_%s_rna_properties,\n", base->identifier); if(srna->base) fprintf(f, "\t&RNA_%s,\n", srna->base->identifier); else fprintf(f, "\tNULL,\n"); if(srna->nested) fprintf(f, "\t&RNA_%s,\n", srna->nested->identifier); else fprintf(f, "\tNULL,\n"); fprintf(f, "\t%s,\n", rna_function_string(srna->refine)); fprintf(f, "\t%s,\n", rna_function_string(srna->path)); fprintf(f, "\t%s,\n", rna_function_string(srna->reg)); fprintf(f, "\t%s,\n", rna_function_string(srna->unreg)); fprintf(f, "\t%s,\n", rna_function_string(srna->instance)); fprintf(f, "\t%s,\n", rna_function_string(srna->idproperties)); if(srna->reg && !srna->refine) { fprintf(stderr, "rna_generate_struct: %s has a register function, must also have refine function.\n", srna->identifier); DefRNA.error= 1; } func= srna->functions.first; if(func) fprintf(f, "\t{(FunctionRNA*)&rna_%s_%s_func, ", srna->identifier, func->identifier); else fprintf(f, "\t{NULL, "); func= srna->functions.last; if(func) fprintf(f, "(FunctionRNA*)&rna_%s_%s_func}\n", srna->identifier, func->identifier); else fprintf(f, "NULL}\n"); fprintf(f, "};\n"); fprintf(f, "\n"); } typedef struct RNAProcessItem { const char *filename; const char *api_filename; void (*define)(BlenderRNA *brna); } RNAProcessItem; static RNAProcessItem PROCESS_ITEMS[]= { {"rna_rna.c", NULL, RNA_def_rna}, {"rna_ID.c", NULL, RNA_def_ID}, {"rna_texture.c", NULL, RNA_def_texture}, {"rna_action.c", "rna_action_api.c", RNA_def_action}, {"rna_animation.c", "rna_animation_api.c", RNA_def_animation}, {"rna_animviz.c", NULL, RNA_def_animviz}, {"rna_actuator.c", "rna_actuator_api.c", RNA_def_actuator}, {"rna_armature.c", "rna_armature_api.c", RNA_def_armature}, {"rna_boid.c", NULL, RNA_def_boid}, {"rna_brush.c", NULL, RNA_def_brush}, {"rna_camera.c", NULL, RNA_def_camera}, {"rna_cloth.c", NULL, RNA_def_cloth}, {"rna_color.c", NULL, RNA_def_color}, {"rna_constraint.c", NULL, RNA_def_constraint}, {"rna_context.c", NULL, RNA_def_context}, {"rna_controller.c", "rna_controller_api.c", RNA_def_controller}, {"rna_curve.c", NULL, RNA_def_curve}, {"rna_fcurve.c", "rna_fcurve_api.c", RNA_def_fcurve}, {"rna_fluidsim.c", NULL, RNA_def_fluidsim}, {"rna_gpencil.c", NULL, RNA_def_gpencil}, {"rna_group.c", NULL, RNA_def_group}, {"rna_image.c", "rna_image_api.c", RNA_def_image}, {"rna_key.c", NULL, RNA_def_key}, {"rna_lamp.c", NULL, RNA_def_lamp}, {"rna_lattice.c", NULL, RNA_def_lattice}, {"rna_main.c", "rna_main_api.c", RNA_def_main}, {"rna_material.c", "rna_material_api.c", RNA_def_material}, {"rna_mesh.c", "rna_mesh_api.c", RNA_def_mesh}, {"rna_meta.c", NULL, RNA_def_meta}, {"rna_modifier.c", NULL, RNA_def_modifier}, {"rna_nla.c", NULL, RNA_def_nla}, {"rna_nodetree.c", NULL, RNA_def_nodetree}, {"rna_object.c", "rna_object_api.c", RNA_def_object}, {"rna_object_force.c", NULL, RNA_def_object_force}, {"rna_packedfile.c", NULL, RNA_def_packedfile}, {"rna_particle.c", NULL, RNA_def_particle}, {"rna_pose.c", "rna_pose_api.c", RNA_def_pose}, {"rna_property.c", NULL, RNA_def_gameproperty}, {"rna_pycomponent.c", NULL, RNA_def_py_component}, {"rna_render.c", NULL, RNA_def_render}, {"rna_scene.c", "rna_scene_api.c", RNA_def_scene}, {"rna_screen.c", NULL, RNA_def_screen}, {"rna_sculpt_paint.c", NULL, RNA_def_sculpt_paint}, {"rna_sensor.c", "rna_sensor_api.c", RNA_def_sensor}, {"rna_sequencer.c", "rna_sequencer_api.c", RNA_def_sequencer}, {"rna_smoke.c", NULL, RNA_def_smoke}, {"rna_space.c", NULL, RNA_def_space}, {"rna_test.c", NULL, RNA_def_test}, {"rna_text.c", NULL, RNA_def_text}, {"rna_timeline.c", NULL, RNA_def_timeline_marker}, {"rna_sound.c", NULL, RNA_def_sound}, {"rna_ui.c", "rna_ui_api.c", RNA_def_ui}, {"rna_userdef.c", NULL, RNA_def_userdef}, {"rna_vfont.c", NULL, RNA_def_vfont}, {"rna_wm.c", "rna_wm_api.c", RNA_def_wm}, {"rna_world.c", NULL, RNA_def_world}, {NULL, NULL}}; static void rna_generate(BlenderRNA *brna, FILE *f, const char *filename, const char *api_filename) { StructDefRNA *ds; PropertyDefRNA *dp; FunctionDefRNA *dfunc; fprintf(f, "\n/* Automatically generated struct definitions for the Data API.\n" " Do not edit manually, changes will be overwritten. */\n\n" "#define RNA_RUNTIME\n\n"); fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include \n\n"); fprintf(f, "#include \n\n"); fprintf(f, "#include \"DNA_ID.h\"\n"); fprintf(f, "#include \"DNA_scene_types.h\"\n"); fprintf(f, "#include \"BLI_blenlib.h\"\n\n"); fprintf(f, "#include \"BLI_utildefines.h\"\n\n"); fprintf(f, "#include \"BKE_context.h\"\n"); fprintf(f, "#include \"BKE_library.h\"\n"); fprintf(f, "#include \"BKE_main.h\"\n"); fprintf(f, "#include \"BKE_report.h\"\n"); fprintf(f, "#include \"RNA_define.h\"\n"); fprintf(f, "#include \"RNA_types.h\"\n"); fprintf(f, "#include \"rna_internal.h\"\n\n"); rna_generate_prototypes(brna, f); fprintf(f, "#include \"%s\"\n", filename); if(api_filename) fprintf(f, "#include \"%s\"\n", api_filename); fprintf(f, "\n"); fprintf(f, "/* Autogenerated Functions */\n\n"); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) { if(!filename || ds->filename == filename) { rna_generate_property_prototypes(brna, ds->srna, f); rna_generate_function_prototypes(brna, ds->srna, f); } } for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) if(!filename || ds->filename == filename) for(dp=ds->cont.properties.first; dp; dp=dp->next) rna_def_property_funcs(f, ds->srna, dp); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) { if(!filename || ds->filename == filename) { for(dfunc=ds->functions.first; dfunc; dfunc= dfunc->cont.next) rna_def_function_funcs(f, ds, dfunc); rna_generate_static_function_prototypes(brna, ds->srna, f); } } for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) if(!filename || ds->filename == filename) rna_generate_struct(brna, ds->srna, f); if(strcmp(filename, "rna_ID.c") == 0) { /* this is ugly, but we cannot have c files compiled for both * makesrna and blender with some build systems at the moment */ fprintf(f, "#include \"rna_define.c\"\n\n"); rna_generate_blender(brna, f); } } static void rna_generate_header(BlenderRNA *brna, FILE *f) { StructDefRNA *ds; PropertyDefRNA *dp; StructRNA *srna; fprintf(f, "\n#ifndef __RNA_BLENDER_H__\n"); fprintf(f, "#define __RNA_BLENDER_H__\n\n"); fprintf(f, "/* Automatically generated function declarations for the Data API.\n" " Do not edit manually, changes will be overwritten. */\n\n"); fprintf(f, "#include \"RNA_types.h\"\n\n"); fprintf(f, "#ifdef __cplusplus\nextern \"C\" {\n#endif\n\n"); fprintf(f, "#define FOREACH_BEGIN(property, sptr, itemptr) \\\n"); fprintf(f, " { \\\n"); fprintf(f, " CollectionPropertyIterator rna_macro_iter; \\\n"); fprintf(f, " for(property##_begin(&rna_macro_iter, sptr); rna_macro_iter.valid; property##_next(&rna_macro_iter)) { \\\n"); fprintf(f, " itemptr= rna_macro_iter.ptr;\n\n"); fprintf(f, "#define FOREACH_END(property) \\\n"); fprintf(f, " } \\\n"); fprintf(f, " property##_end(&rna_macro_iter); \\\n"); fprintf(f, " }\n\n"); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) { srna= ds->srna; fprintf(f, "/**************** %s ****************/\n\n", srna->name); while(srna) { fprintf(f, "extern StructRNA RNA_%s;\n", srna->identifier); srna= srna->base; } fprintf(f, "\n"); for(dp=ds->cont.properties.first; dp; dp=dp->next) rna_def_property_funcs_header(f, ds->srna, dp); } fprintf(f, "#ifdef __cplusplus\n}\n#endif\n\n"); fprintf(f, "#endif /* __RNA_BLENDER_H__ */\n\n"); } static const char *cpp_classes = "" "\n" "#include \n" "\n" "namespace BL {\n" "\n" "#define BOOLEAN_PROPERTY(sname, identifier) \\\n" " inline bool sname::identifier(void) { return sname##_##identifier##_get(&ptr)? true: false; }\n" "\n" "#define BOOLEAN_ARRAY_PROPERTY(sname, size, identifier) \\\n" " inline Array sname::identifier(void) \\\n" " { Array ar; sname##_##identifier##_get(&ptr, ar.data); return ar; }\n" "\n" "#define INT_PROPERTY(sname, identifier) \\\n" " inline int sname::identifier(void) { return sname##_##identifier##_get(&ptr); }\n" "\n" "#define INT_ARRAY_PROPERTY(sname, size, identifier) \\\n" " inline Array sname::identifier(void) \\\n" " { Array ar; sname##_##identifier##_get(&ptr, ar.data); return ar; }\n" "\n" "#define FLOAT_PROPERTY(sname, identifier) \\\n" " inline float sname::identifier(void) { return sname##_##identifier##_get(&ptr); }\n" "\n" "#define FLOAT_ARRAY_PROPERTY(sname, size, identifier) \\\n" " inline Array sname::identifier(void) \\\n" " { Array ar; sname##_##identifier##_get(&ptr, ar.data); return ar; }\n" "\n" "#define ENUM_PROPERTY(type, sname, identifier) \\\n" " inline sname::type sname::identifier(void) { return (type)sname##_##identifier##_get(&ptr); }\n" "\n" "#define STRING_PROPERTY(sname, identifier) \\\n" " inline std::string sname::identifier(void) { \\\n" " int len= sname##_##identifier##_length(&ptr); \\\n" " std::string str; str.resize(len); \\\n" " sname##_##identifier##_get(&ptr, &str[0]); return str; } \\\n" "\n" "#define POINTER_PROPERTY(type, sname, identifier) \\\n" " inline type sname::identifier(void) { return type(sname##_##identifier##_get(&ptr)); }\n" "\n" "#define COLLECTION_PROPERTY(type, sname, identifier) \\\n" " typedef CollectionIterator identifier##_iterator; \\\n" " Collection identifier;\n" "\n" "class Pointer {\n" "public:\n" " Pointer(const PointerRNA& p) : ptr(p) { }\n" " operator const PointerRNA&() { return ptr; }\n" " bool is_a(StructRNA *type) { return RNA_struct_is_a(ptr.type, type)? true: false; }\n" " operator void*() { return ptr.data; }\n" " operator bool() { return ptr.data != NULL; }\n" "\n" " PointerRNA ptr;\n" "};\n" "\n" "\n" "template\n" "class Array {\n" "public:\n" " T data[Tsize];\n" " operator T*() { return data; }\n" "};\n" "\n" "typedef void (*TBeginFunc)(CollectionPropertyIterator *iter, PointerRNA *ptr);\n" "typedef void (*TNextFunc)(CollectionPropertyIterator *iter);\n" "typedef void (*TEndFunc)(CollectionPropertyIterator *iter);\n" "\n" "template\n" "class CollectionIterator {\n" "public:\n" " CollectionIterator() : t(iter.ptr), init(false) { iter.valid= false; }\n" " ~CollectionIterator(void) { if(init) Tend(&iter); };\n" "\n" " operator bool(void)\n" " { return iter.valid != 0; }\n" " const CollectionIterator& operator++() { Tnext(&iter); t = T(iter.ptr); return *this; }\n" " const CollectionIterator& operator=(const CollectionIterator& copy)\n" " { if(init) Tend(&iter); iter= copy.iter; if(iter.internal) iter.internal= MEM_dupallocN(iter.internal); t= copy.t; init= copy.init; return *this; }\n" "\n" " T& operator*(void) { return t; }\n" " T* operator->(void) { return &t; }\n" " bool operator==(const CollectionIterator& other) { return iter.valid == other.iter.valid; }\n" " bool operator!=(const CollectionIterator& other) { return iter.valid != other.iter.valid; }\n" "\n" " void begin(const Pointer& ptr)\n" " { if(init) Tend(&iter); Tbegin(&iter, (PointerRNA*)&ptr.ptr); t = T(iter.ptr); init = true; }\n" "\n" "private:\n" " CollectionPropertyIterator iter;\n" " T t;\n" " bool init;\n" "};\n" "\n" "template\n" "class Collection {\n" "public:\n" " Collection(const PointerRNA& p) : ptr(p) {}\n" "\n" " CollectionIterator begin()\n" " { CollectionIterator iter; iter.begin(ptr); return iter; }\n" " CollectionIterator end()\n" " { return CollectionIterator(); } /* test */ \n" "\n" "private:\n" " PointerRNA ptr;\n" "};\n" "\n"; static void rna_generate_header_cpp(BlenderRNA *brna, FILE *f) { StructDefRNA *ds; PropertyDefRNA *dp; StructRNA *srna; fprintf(f, "\n#ifndef __RNA_BLENDER_CPP_H__\n"); fprintf(f, "#define __RNA_BLENDER_CPP_H__\n\n"); fprintf(f, "/* Automatically generated classes for the Data API.\n" " Do not edit manually, changes will be overwritten. */\n\n"); fprintf(f, "#include \"RNA_blender.h\"\n"); fprintf(f, "#include \"RNA_types.h\"\n"); fprintf(f, "%s", cpp_classes); fprintf(f, "/**************** Declarations ****************/\n\n"); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) fprintf(f, "class %s;\n", ds->srna->identifier); fprintf(f, "\n"); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) { srna= ds->srna; fprintf(f, "/**************** %s ****************/\n\n", srna->name); fprintf(f, "class %s : public %s {\n", srna->identifier, (srna->base)? srna->base->identifier: "Pointer"); fprintf(f, "public:\n"); fprintf(f, "\t%s(const PointerRNA& ptr) :\n\t\t%s(ptr)", srna->identifier, (srna->base)? srna->base->identifier: "Pointer"); for(dp=ds->cont.properties.first; dp; dp=dp->next) if(!(dp->prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN))) if(dp->prop->type == PROP_COLLECTION) fprintf(f, ",\n\t\t%s(ptr)", dp->prop->identifier); fprintf(f, "\n\t\t{}\n\n"); for(dp=ds->cont.properties.first; dp; dp=dp->next) rna_def_property_funcs_header_cpp(f, ds->srna, dp); fprintf(f, "};\n\n"); } fprintf(f, "/**************** Implementation ****************/\n"); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) { for(dp=ds->cont.properties.first; dp; dp=dp->next) rna_def_property_funcs_impl_cpp(f, ds->srna, dp); fprintf(f, "\n"); } fprintf(f, "}\n\n#endif /* __RNA_BLENDER_CPP_H__ */\n\n"); } static void make_bad_file(char *file, int line) { FILE *fp= fopen(file, "w"); fprintf(fp, "#error \"Error! can't make correct RNA file from %s:%d, STUPID!\"\n", __FILE__, line); fclose(fp); } static int rna_preprocess(char *outfile) { BlenderRNA *brna; StructDefRNA *ds; FILE *file; char deffile[4096]; int i, status; const char *deps[3]; /* expand as needed */ /* define rna */ brna= RNA_create(); for(i=0; PROCESS_ITEMS[i].filename; i++) { if(PROCESS_ITEMS[i].define) { PROCESS_ITEMS[i].define(brna); for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) if(!ds->filename) ds->filename= PROCESS_ITEMS[i].filename; } } rna_auto_types(); /* create RNA_blender_cpp.h */ strcpy(deffile, outfile); strcat(deffile, "RNA_blender_cpp.h" TMP_EXT); status= (DefRNA.error != 0); if(status) { make_bad_file(deffile, __LINE__); } else { file = fopen(deffile, "w"); if(!file) { printf ("Unable to open file: %s\n", deffile); status = 1; } else { rna_generate_header_cpp(brna, file); fclose(file); status= (DefRNA.error != 0); } } replace_if_different(deffile, NULL); rna_sort(brna); /* create rna_gen_*.c files */ for(i=0; PROCESS_ITEMS[i].filename; i++) { strcpy(deffile, outfile); strcat(deffile, PROCESS_ITEMS[i].filename); deffile[strlen(deffile)-2] = '\0'; strcat(deffile, "_gen.c" TMP_EXT); if(status) { make_bad_file(deffile, __LINE__); } else { file = fopen(deffile, "w"); if(!file) { printf ("Unable to open file: %s\n", deffile); status = 1; } else { rna_generate(brna, file, PROCESS_ITEMS[i].filename, PROCESS_ITEMS[i].api_filename); fclose(file); status= (DefRNA.error != 0); } } /* avoid unneeded rebuilds */ deps[0]= PROCESS_ITEMS[i].filename; deps[1]= PROCESS_ITEMS[i].api_filename; deps[2]= NULL; replace_if_different(deffile, deps); } /* create RNA_blender.h */ strcpy(deffile, outfile); strcat(deffile, "RNA_blender.h" TMP_EXT); if(status) { make_bad_file(deffile, __LINE__); } else { file = fopen(deffile, "w"); if(!file) { printf ("Unable to open file: %s\n", deffile); status = 1; } else { rna_generate_header(brna, file); fclose(file); status= (DefRNA.error != 0); } } replace_if_different(deffile, NULL); /* free RNA */ RNA_define_free(brna); RNA_free(brna); return status; } static void mem_error_cb(const char *errorStr) { fprintf(stderr, "%s", errorStr); fflush(stderr); } int main(int argc, char **argv) { int totblock, return_status = 0; if(argc<2) { printf("Usage: %s outdirectory/\n", argv[0]); return_status = 1; } else { printf("Running makesrna, program versions %s\n", RNA_VERSION_DATE); makesrna_path= argv[0]; return_status= rna_preprocess(argv[1]); } totblock= MEM_get_memory_blocks_in_use(); if(totblock!=0) { printf("Error Totblock: %d\n",totblock); MEM_set_error_callback(mem_error_cb); MEM_printmemlist(); } return return_status; }