/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup RNA */ #include #include #include #include #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_string.h" #include "BLI_system.h" /* for 'BLI_system_backtrace' stub. */ #include "BLI_utildefines.h" #include "RNA_define.h" #include "RNA_enum_types.h" #include "RNA_types.h" #include "rna_internal.h" #ifdef _WIN32 # ifndef snprintf # define snprintf _snprintf # endif #endif #include "CLG_log.h" static CLG_LogRef LOG = {"makesrna"}; /** * Variable to control debug output of makesrna. * debugSRNA: * - 0 = no output, except errors * - 1 = detail actions */ static int debugSRNA = 0; /* stub for BLI_abort() */ #ifndef NDEBUG void BLI_system_backtrace(FILE *fp) { (void)fp; } #endif /* Replace if different */ #define TMP_EXT ".tmp" /* copied from BLI_file_older */ #include static int file_older(const char *file1, const char *file2) { struct stat st1, st2; if (debugSRNA > 0) { printf("compare: %s %s\n", file1, file2); } if (stat(file1, &st1)) { return 0; } if (stat(file2, &st2)) { return 0; } return (st1.st_mtime < st2.st_mtime); } static const char *makesrna_path = NULL; /* forward declarations */ static void rna_generate_static_parameter_prototypes(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc, const char *name_override, int close_prototype); /* helpers */ #define WRITE_COMMA \ { \ if (!first) { \ fprintf(f, ", "); \ } \ first = 0; \ } \ (void)0 #define WRITE_PARAM(param) \ { \ WRITE_COMMA; \ fprintf(f, param); \ } \ (void)0 static int replace_if_different(const char *tmpfile, const char *dep_files[]) { /* return 0; */ /* use for testing had edited rna */ #define REN_IF_DIFF \ { \ FILE *file_test = fopen(orgfile, "rb"); \ if (file_test) { \ fclose(file_test); \ if (fp_org) { \ fclose(fp_org); \ } \ if (fp_new) { \ fclose(fp_new); \ } \ if (remove(orgfile) != 0) { \ CLOG_ERROR(&LOG, "remove error (%s): \"%s\"", strerror(errno), orgfile); \ return -1; \ } \ } \ } \ if (rename(tmpfile, orgfile) != 0) { \ CLOG_ERROR(&LOG, "rename error (%s): \"%s\" -> \"%s\"", strerror(errno), tmpfile, orgfile); \ return -1; \ } \ remove(tmpfile); \ return 1 /* end REN_IF_DIFF */ FILE *fp_new = NULL, *fp_org = NULL; int len_new, len_org; char *arr_new, *arr_org; int cmp; char orgfile[4096]; strcpy(orgfile, tmpfile); orgfile[strlen(orgfile) - strlen(TMP_EXT)] = '\0'; /* strip '.tmp' */ fp_org = fopen(orgfile, "rb"); if (fp_org == NULL) { REN_IF_DIFF; } /* XXX, trick to work around dependency problem * assumes dep_files is in the same dir as makesrna.c, which is true for now. */ if (1) { /* first check if makesrna.c is newer than generated files * for development on makesrna.c you may want to disable this */ if (file_older(orgfile, __FILE__)) { REN_IF_DIFF; } if (file_older(orgfile, makesrna_path)) { REN_IF_DIFF; } /* now check if any files we depend on are newer than any generated files */ if (dep_files) { int pass; for (pass = 0; dep_files[pass]; pass++) { const char from_path[4096] = __FILE__; char *p1, *p2; /* dir only */ p1 = strrchr(from_path, '/'); p2 = strrchr(from_path, '\\'); strcpy((p1 > p2 ? p1 : p2) + 1, dep_files[pass]); /* account for build deps, if makesrna.c (this file) is newer */ if (file_older(orgfile, from_path)) { REN_IF_DIFF; } } } } /* XXX end dep trick */ fp_new = fopen(tmpfile, "rb"); if (fp_new == NULL) { /* shouldn't happen, just to be safe */ CLOG_ERROR(&LOG, "open error: \"%s\"", tmpfile); fclose(fp_org); return -1; } fseek(fp_new, 0L, SEEK_END); len_new = ftell(fp_new); fseek(fp_new, 0L, SEEK_SET); fseek(fp_org, 0L, SEEK_END); len_org = ftell(fp_org); fseek(fp_org, 0L, SEEK_SET); if (len_new != len_org) { fclose(fp_new); fp_new = NULL; fclose(fp_org); fp_org = NULL; REN_IF_DIFF; } /* now compare the files... */ arr_new = MEM_mallocN(sizeof(char) * len_new, "rna_cmp_file_new"); arr_org = MEM_mallocN(sizeof(char) * len_org, "rna_cmp_file_org"); if (fread(arr_new, sizeof(char), len_new, fp_new) != len_new) { CLOG_ERROR(&LOG, "unable to read file %s for comparison.", tmpfile); } if (fread(arr_org, sizeof(char), len_org, fp_org) != len_org) { CLOG_ERROR(&LOG, "unable to read file %s for comparison.", orgfile); } fclose(fp_new); fp_new = NULL; fclose(fp_org); fp_org = NULL; cmp = memcmp(arr_new, arr_org, len_new); MEM_freeN(arr_new); MEM_freeN(arr_org); if (cmp) { REN_IF_DIFF; } remove(tmpfile); return 0; #undef REN_IF_DIFF } /* Helper to solve keyword problems with C/C++ */ static const char *rna_safe_id(const char *id) { if (STREQ(id, "default")) { return "default_value"; } if (STREQ(id, "operator")) { return "operator_value"; } if (STREQ(id, "new")) { return "create"; } if (STREQ(id, "co_return")) { /* MSVC2015, C++ uses for coroutines */ return "coord_return"; } return id; } /* Sorting */ static int cmp_struct(const void *a, const void *b) { const StructRNA *structa = *(const StructRNA **)a; const StructRNA *structb = *(const StructRNA **)b; return strcmp(structa->identifier, structb->identifier); } static int cmp_property(const void *a, const void *b) { const PropertyRNA *propa = *(const PropertyRNA **)a; const PropertyRNA *propb = *(const PropertyRNA **)b; if (STREQ(propa->identifier, "rna_type")) { return -1; } if (STREQ(propb->identifier, "rna_type")) { return 1; } if (STREQ(propa->identifier, "name")) { return -1; } if (STREQ(propb->identifier, "name")) { return 1; } return strcmp(propa->name, propb->name); } static int cmp_def_struct(const void *a, const void *b) { const StructDefRNA *dsa = *(const StructDefRNA **)a; const StructDefRNA *dsb = *(const StructDefRNA **)b; return cmp_struct(&dsa->srna, &dsb->srna); } static int cmp_def_property(const void *a, const void *b) { const PropertyDefRNA *dpa = *(const PropertyDefRNA **)a; const PropertyDefRNA *dpb = *(const PropertyDefRNA **)b; return cmp_property(&dpa->prop, &dpb->prop); } static void rna_sortlist(ListBase *listbase, int (*cmp)(const void *, const void *)) { Link *link; void **array; int a, size; if (listbase->first == listbase->last) { return; } for (size = 0, link = listbase->first; link; link = link->next) { size++; } array = MEM_mallocN(sizeof(void *) * size, "rna_sortlist"); for (a = 0, link = listbase->first; link; link = link->next, a++) { array[a] = link; } qsort(array, size, sizeof(void *), cmp); listbase->first = listbase->last = NULL; for (a = 0; a < size; a++) { link = array[a]; link->next = link->prev = NULL; rna_addtail(listbase, link); } MEM_freeN(array); } /* Preprocessing */ static void rna_print_c_string(FILE *f, const char *str) { static const char *escape[] = { "\''", "\"\"", "\??", "\\\\", "\aa", "\bb", "\ff", "\nn", "\rr", "\tt", "\vv", NULL}; int i, j; if (!str) { fprintf(f, "NULL"); return; } fprintf(f, "\""); for (i = 0; str[i]; i++) { for (j = 0; escape[j]; j++) { if (str[i] == escape[j][0]) { break; } } if (escape[j]) { fprintf(f, "\\%c", escape[j][1]); } else { fprintf(f, "%c", str[i]); } } fprintf(f, "\""); } static void rna_print_data_get(FILE *f, PropertyDefRNA *dp) { if (dp->dnastructfromname && dp->dnastructfromprop) { fprintf(f, " %s *data = (%s *)(((%s *)ptr->data)->%s);\n", dp->dnastructname, dp->dnastructname, dp->dnastructfromname, dp->dnastructfromprop); } else { fprintf(f, " %s *data = (%s *)(ptr->data);\n", dp->dnastructname, dp->dnastructname); } } static void rna_print_id_get(FILE *f, PropertyDefRNA *UNUSED(dp)) { fprintf(f, " ID *id = ptr->owner_id;\n"); } static void rna_construct_function_name( char *buffer, int size, const char *structname, const char *propname, const char *type) { snprintf(buffer, size, "%s_%s_%s", structname, propname, type); } static void rna_construct_wrapper_function_name( char *buffer, int size, const char *structname, const char *propname, const char *type) { if (type == NULL || type[0] == '\0') { snprintf(buffer, size, "%s_%s", structname, propname); } else { snprintf(buffer, size, "%s_%s_%s", structname, propname, type); } } void *rna_alloc_from_buffer(const char *buffer, int buffer_len) { AllocDefRNA *alloc = MEM_callocN(sizeof(AllocDefRNA), "AllocDefRNA"); alloc->mem = MEM_mallocN(buffer_len, __func__); memcpy(alloc->mem, buffer, buffer_len); rna_addtail(&DefRNA.allocs, alloc); return alloc->mem; } void *rna_calloc(int buffer_len) { AllocDefRNA *alloc = MEM_callocN(sizeof(AllocDefRNA), "AllocDefRNA"); alloc->mem = MEM_callocN(buffer_len, __func__); rna_addtail(&DefRNA.allocs, alloc); return alloc->mem; } static char *rna_alloc_function_name(const char *structname, const char *propname, const char *type) { char buffer[2048]; rna_construct_function_name(buffer, sizeof(buffer), structname, propname, type); return rna_alloc_from_buffer(buffer, strlen(buffer) + 1); } static StructRNA *rna_find_struct(const char *identifier) { StructDefRNA *ds; for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (STREQ(ds->srna->identifier, identifier)) { return ds->srna; } } return NULL; } static const char *rna_find_type(const char *type) { StructDefRNA *ds; for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (ds->dnaname && STREQ(ds->dnaname, type)) { return ds->srna->identifier; } } return NULL; } static const char *rna_find_dna_type(const char *type) { StructDefRNA *ds; for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (STREQ(ds->srna->identifier, type)) { return ds->dnaname; } } return NULL; } static const char *rna_type_type_name(PropertyRNA *prop) { switch (prop->type) { case PROP_BOOLEAN: return "bool"; case PROP_INT: return "int"; case PROP_ENUM: { EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop; if (eprop->native_enum_type) { return eprop->native_enum_type; } return "int"; } case PROP_FLOAT: return "float"; case PROP_STRING: if (prop->flag & PROP_THICK_WRAP) { return "char *"; } else { return "const char *"; } default: return NULL; } } static const char *rna_type_type(PropertyRNA *prop) { const char *type; type = rna_type_type_name(prop); if (type) { return type; } return "PointerRNA"; } static const char *rna_type_struct(PropertyRNA *prop) { const char *type; type = rna_type_type_name(prop); if (type) { return ""; } return "struct "; } static const char *rna_parameter_type_name(PropertyRNA *parm) { const char *type; type = rna_type_type_name(parm); if (type) { return type; } switch (parm->type) { case PROP_POINTER: { PointerPropertyRNA *pparm = (PointerPropertyRNA *)parm; if (parm->flag_parameter & PARM_RNAPTR) { return "PointerRNA"; } return rna_find_dna_type((const char *)pparm->type); } case PROP_COLLECTION: { return "CollectionListBase"; } default: return ""; } } static int rna_enum_bitmask(PropertyRNA *prop) { EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop; int a, mask = 0; if (eprop->item) { for (a = 0; a < eprop->totitem; a++) { if (eprop->item[a].identifier[0]) { mask |= eprop->item[a].value; } } } return mask; } static int rna_color_quantize(PropertyRNA *prop, PropertyDefRNA *dp) { return ((prop->type == PROP_FLOAT) && ELEM(prop->subtype, PROP_COLOR, PROP_COLOR_GAMMA) && (IS_DNATYPE_FLOAT_COMPAT(dp->dnatype) == 0)); } /** * Return the identifier for an enum which is defined in "RNA_enum_items.h". * * Prevents expanding duplicate enums bloating the binary size. */ static const char *rna_enum_id_from_pointer(const EnumPropertyItem *item) { #define RNA_MAKESRNA #define DEF_ENUM(id) \ if (item == id) { \ return STRINGIFY(id); \ } #include "RNA_enum_items.h" #undef RNA_MAKESRNA return NULL; } static const char *rna_function_string(const void *func) { return (func) ? (const char *)func : "NULL"; } static void rna_float_print(FILE *f, float num) { if (num == -FLT_MAX) { fprintf(f, "-FLT_MAX"); } else if (num == FLT_MAX) { fprintf(f, "FLT_MAX"); } else if ((fabsf(num) < (float)INT64_MAX) && ((int64_t)num == num)) { fprintf(f, "%.1ff", num); } else { fprintf(f, "%.10ff", num); } } static void rna_int_print(FILE *f, int64_t num) { if (num == INT_MIN) { fprintf(f, "INT_MIN"); } else if (num == INT_MAX) { fprintf(f, "INT_MAX"); } else if (num == INT64_MIN) { fprintf(f, "INT64_MIN"); } else if (num == INT64_MAX) { fprintf(f, "INT64_MAX"); } else if (num < INT_MIN || num > INT_MAX) { fprintf(f, "%" PRId64 "LL", num); } else { fprintf(f, "%d", (int)num); } } static char *rna_def_property_get_func( FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc) { char *func; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (!manualfunc) { if (!dp->dnastructname || !dp->dnaname) { CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier); DefRNA.error = true; return NULL; } /* Type check. */ if (dp->dnatype && *dp->dnatype) { if (prop->type == PROP_FLOAT) { if (IS_DNATYPE_FLOAT_COMPAT(dp->dnatype) == 0) { /* Colors are an exception. these get translated. */ if (prop->subtype != PROP_COLOR_GAMMA) { CLOG_ERROR(&LOG, "%s.%s is a '%s' but wrapped as type '%s'.", srna->identifier, prop->identifier, dp->dnatype, RNA_property_typename(prop->type)); DefRNA.error = true; return NULL; } } } else if (prop->type == PROP_BOOLEAN) { if (IS_DNATYPE_BOOLEAN_COMPAT(dp->dnatype) == 0) { CLOG_ERROR(&LOG, "%s.%s is a '%s' but wrapped as type '%s'.", srna->identifier, prop->identifier, dp->dnatype, RNA_property_typename(prop->type)); DefRNA.error = true; return NULL; } } else if (ELEM(prop->type, PROP_INT, PROP_ENUM)) { if (IS_DNATYPE_INT_COMPAT(dp->dnatype) == 0) { CLOG_ERROR(&LOG, "%s.%s is a '%s' but wrapped as type '%s'.", srna->identifier, prop->identifier, dp->dnatype, RNA_property_typename(prop->type)); DefRNA.error = true; return NULL; } } } /* Check log scale sliders for negative range. */ if (prop->type == PROP_FLOAT) { FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop; /* NOTE: UI_BTYPE_NUM_SLIDER can't have a softmin of zero. */ if ((fprop->ui_scale_type == PROP_SCALE_LOG) && (fprop->hardmin < 0 || fprop->softmin < 0)) { CLOG_ERROR( &LOG, "\"%s.%s\", range for log scale < 0.", srna->identifier, prop->identifier); DefRNA.error = true; return NULL; } } if (prop->type == PROP_INT) { IntPropertyRNA *iprop = (IntPropertyRNA *)prop; /* Only UI_BTYPE_NUM_SLIDER is implemented and that one can't have a softmin of zero. */ if ((iprop->ui_scale_type == PROP_SCALE_LOG) && (iprop->hardmin <= 0 || iprop->softmin <= 0)) { CLOG_ERROR( &LOG, "\"%s.%s\", range for log scale <= 0.", srna->identifier, prop->identifier); DefRNA.error = true; return NULL; } } } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get"); switch (prop->type) { case PROP_STRING: { StringPropertyRNA *sprop = (StringPropertyRNA *)prop; fprintf(f, "void %s(PointerRNA *ptr, char *value)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " %s(ptr, value);\n", manualfunc); } else { const PropertySubType subtype = prop->subtype; const char *string_copy_func = ELEM(subtype, PROP_FILEPATH, PROP_DIRPATH, PROP_FILENAME, PROP_BYTESTRING) ? "BLI_strncpy" : "BLI_strncpy_utf8"; rna_print_data_get(f, dp); if (dp->dnapointerlevel == 1) { /* Handle allocated char pointer properties. */ fprintf(f, " if (data->%s == NULL) {\n", dp->dnaname); fprintf(f, " *value = '\\0';\n"); fprintf(f, " return;\n"); fprintf(f, " }\n"); fprintf(f, " %s(value, data->%s, strlen(data->%s) + 1);\n", string_copy_func, dp->dnaname, dp->dnaname); } else { /* Handle char array properties. */ if (sprop->maxlength) { fprintf(f, " %s(value, data->%s, %d);\n", string_copy_func, dp->dnaname, sprop->maxlength); } else { fprintf(f, " %s(value, data->%s, sizeof(data->%s));\n", string_copy_func, dp->dnaname, dp->dnaname); } } } fprintf(f, "}\n\n"); break; } case PROP_POINTER: { fprintf(f, "PointerRNA %s(PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " return %s(ptr);\n", manualfunc); } else { PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop; rna_print_data_get(f, dp); if (dp->dnapointerlevel == 0) { fprintf(f, " return rna_pointer_inherit_refine(ptr, &RNA_%s, &data->%s);\n", (const char *)pprop->type, dp->dnaname); } else { fprintf(f, " return rna_pointer_inherit_refine(ptr, &RNA_%s, data->%s);\n", (const char *)pprop->type, dp->dnaname); } } fprintf(f, "}\n\n"); break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop; fprintf(f, "static PointerRNA %s(CollectionPropertyIterator *iter)\n", func); fprintf(f, "{\n"); if (manualfunc) { if (STR_ELEM(manualfunc, "rna_iterator_listbase_get", "rna_iterator_array_get", "rna_iterator_array_dereference_get")) { fprintf(f, " return rna_pointer_inherit_refine(&iter->parent, &RNA_%s, %s(iter));\n", (cprop->item_type) ? (const char *)cprop->item_type : "UnknownType", manualfunc); } else { fprintf(f, " return %s(iter);\n", manualfunc); } } fprintf(f, "}\n\n"); break; } default: if (prop->arraydimension) { if (prop->flag & PROP_DYNAMIC) { fprintf(f, "void %s(PointerRNA *ptr, %s values[])\n", func, rna_type_type(prop)); } else { fprintf(f, "void %s(PointerRNA *ptr, %s values[%u])\n", func, rna_type_type(prop), prop->totarraylength); } fprintf(f, "{\n"); if (manualfunc) { /* Assign `fn` to ensure function signatures match. */ if (prop->type == PROP_BOOLEAN) { fprintf(f, " PropBooleanArrayGetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, values);\n"); } else if (prop->type == PROP_INT) { fprintf(f, " PropIntArrayGetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, values);\n"); } else if (prop->type == PROP_FLOAT) { fprintf(f, " PropFloatArrayGetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, values);\n"); } else { BLI_assert_unreachable(); /* Valid but should be handled by type checks. */ fprintf(f, " %s(ptr, values);\n", manualfunc); } } else { rna_print_data_get(f, dp); if (prop->flag & PROP_DYNAMIC) { char *lenfunc = rna_alloc_function_name( srna->identifier, rna_safe_id(prop->identifier), "get_length"); fprintf(f, " unsigned int arraylen[RNA_MAX_ARRAY_DIMENSION];\n"); fprintf(f, " unsigned int i;\n"); fprintf(f, " unsigned int len = %s(ptr, arraylen);\n\n", lenfunc); fprintf(f, " for (i = 0; i < len; i++) {\n"); MEM_freeN(lenfunc); } else { fprintf(f, " unsigned int i;\n\n"); fprintf(f, " for (i = 0; i < %u; i++) {\n", prop->totarraylength); } if (dp->dnaarraylength == 1) { if (prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " values[i] = %s((data->%s & (", (dp->booleannegative) ? "!" : "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, " << i)) != 0);\n"); } else { fprintf(f, " values[i] = (%s)%s((&data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative) ? "!" : "", dp->dnaname); } } else { if (prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " values[i] = %s((data->%s[i] & ", (dp->booleannegative) ? "!" : "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ") != 0);\n"); } else if (rna_color_quantize(prop, dp)) { fprintf(f, " values[i] = (%s)(data->%s[i] * (1.0f / 255.0f));\n", rna_type_type(prop), dp->dnaname); } else if (dp->dnatype) { fprintf(f, " values[i] = (%s)%s(((%s *)data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative) ? "!" : "", dp->dnatype, dp->dnaname); } else { fprintf(f, " values[i] = (%s)%s((data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative) ? "!" : "", dp->dnaname); } } fprintf(f, " }\n"); } fprintf(f, "}\n\n"); } else { fprintf(f, "%s %s(PointerRNA *ptr)\n", rna_type_type(prop), func); fprintf(f, "{\n"); if (manualfunc) { /* Assign `fn` to ensure function signatures match. */ if (prop->type == PROP_BOOLEAN) { fprintf(f, " PropBooleanGetFunc fn = %s;\n", manualfunc); fprintf(f, " return fn(ptr);\n"); } else if (prop->type == PROP_INT) { fprintf(f, " PropIntGetFunc fn = %s;\n", manualfunc); fprintf(f, " return fn(ptr);\n"); } else if (prop->type == PROP_FLOAT) { fprintf(f, " PropFloatGetFunc fn = %s;\n", manualfunc); fprintf(f, " return fn(ptr);\n"); } else if (prop->type == PROP_ENUM) { fprintf(f, " PropEnumGetFunc fn = %s;\n", manualfunc); fprintf(f, " return fn(ptr);\n"); } else { BLI_assert_unreachable(); /* Valid but should be handled by type checks. */ fprintf(f, " return %s(ptr);\n", manualfunc); } } else { rna_print_data_get(f, dp); if (prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf( f, " return %s(((data->%s) & ", (dp->booleannegative) ? "!" : "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, ") != 0);\n"); } else if (prop->type == PROP_ENUM && dp->enumbitflags) { fprintf(f, " return ((data->%s) & ", dp->dnaname); rna_int_print(f, rna_enum_bitmask(prop)); fprintf(f, ");\n"); } else { fprintf(f, " return (%s)%s(data->%s);\n", rna_type_type(prop), (dp->booleannegative) ? "!" : "", dp->dnaname); } } fprintf(f, "}\n\n"); } break; } return func; } /* defined min/max variables to be used by rna_clamp_value() */ static void rna_clamp_value_range(FILE *f, PropertyRNA *prop) { if (prop->type == PROP_FLOAT) { FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop; if (fprop->range) { fprintf(f, " float prop_clamp_min = -FLT_MAX, prop_clamp_max = FLT_MAX, prop_soft_min, " "prop_soft_max;\n"); fprintf(f, " %s(ptr, &prop_clamp_min, &prop_clamp_max, &prop_soft_min, &prop_soft_max);\n", rna_function_string(fprop->range)); } } else if (prop->type == PROP_INT) { IntPropertyRNA *iprop = (IntPropertyRNA *)prop; if (iprop->range) { fprintf(f, " int prop_clamp_min = INT_MIN, prop_clamp_max = INT_MAX, prop_soft_min, " "prop_soft_max;\n"); fprintf(f, " %s(ptr, &prop_clamp_min, &prop_clamp_max, &prop_soft_min, &prop_soft_max);\n", rna_function_string(iprop->range)); } } } #ifdef USE_RNA_RANGE_CHECK static void rna_clamp_value_range_check(FILE *f, PropertyRNA *prop, const char *dnaname_prefix, const char *dnaname) { if (prop->type == PROP_INT) { IntPropertyRNA *iprop = (IntPropertyRNA *)prop; fprintf(f, " { BLI_STATIC_ASSERT(" "(TYPEOF_MAX(%s%s) >= %d) && " "(TYPEOF_MIN(%s%s) <= %d), " "\"invalid limits\"); }\n", dnaname_prefix, dnaname, iprop->hardmax, dnaname_prefix, dnaname, iprop->hardmin); } } #endif /* USE_RNA_RANGE_CHECK */ static void rna_clamp_value(FILE *f, PropertyRNA *prop, int array) { if (prop->type == PROP_INT) { IntPropertyRNA *iprop = (IntPropertyRNA *)prop; if (iprop->hardmin != INT_MIN || iprop->hardmax != INT_MAX || iprop->range) { if (array) { fprintf(f, "CLAMPIS(values[i], "); } else { fprintf(f, "CLAMPIS(value, "); } if (iprop->range) { fprintf(f, "prop_clamp_min, prop_clamp_max);"); } else { rna_int_print(f, iprop->hardmin); fprintf(f, ", "); rna_int_print(f, iprop->hardmax); fprintf(f, ");\n"); } return; } } else if (prop->type == PROP_FLOAT) { FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop; if (fprop->hardmin != -FLT_MAX || fprop->hardmax != FLT_MAX || fprop->range) { if (array) { fprintf(f, "CLAMPIS(values[i], "); } else { fprintf(f, "CLAMPIS(value, "); } if (fprop->range) { fprintf(f, "prop_clamp_min, prop_clamp_max);"); } else { rna_float_print(f, fprop->hardmin); fprintf(f, ", "); rna_float_print(f, fprop->hardmax); fprintf(f, ");\n"); } return; } } if (array) { fprintf(f, "values[i];\n"); } else { fprintf(f, "value;\n"); } } static char *rna_def_property_search_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *UNUSED(dp), const char *manualfunc) { char *func; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (!manualfunc) { return NULL; } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "search"); fprintf(f, "void %s(" "const bContext *C, " "PointerRNA *ptr, " "PropertyRNA *prop, " "const char *edit_text, " "StringPropertySearchVisitFunc visit_fn, " "void *visit_user_data)\n", func); fprintf(f, "{\n"); fprintf(f, "\n %s(C, ptr, prop, edit_text, visit_fn, visit_user_data);\n", manualfunc); fprintf(f, "}\n\n"); return func; } static char *rna_def_property_set_func( FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc) { char *func; if (!(prop->flag & PROP_EDITABLE)) { return NULL; } if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (!manualfunc) { if (!dp->dnastructname || !dp->dnaname) { if (prop->flag & PROP_EDITABLE) { CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier); DefRNA.error = true; } return NULL; } } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "set"); switch (prop->type) { case PROP_STRING: { StringPropertyRNA *sprop = (StringPropertyRNA *)prop; fprintf(f, "void %s(PointerRNA *ptr, const char *value)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " %s(ptr, value);\n", manualfunc); } else { const PropertySubType subtype = prop->subtype; const char *string_copy_func = ELEM(subtype, PROP_FILEPATH, PROP_DIRPATH, PROP_FILENAME, PROP_BYTESTRING) ? "BLI_strncpy" : "BLI_strncpy_utf8"; rna_print_data_get(f, dp); if (dp->dnapointerlevel == 1) { /* Handle allocated char pointer properties. */ fprintf( f, " if (data->%s != NULL) { MEM_freeN(data->%s); }\n", dp->dnaname, dp->dnaname); fprintf(f, " const int length = strlen(value);\n"); fprintf(f, " if (length > 0) {\n"); fprintf(f, " data->%s = MEM_mallocN(length + 1, __func__);\n", dp->dnaname); fprintf(f, " %s(data->%s, value, length + 1);\n", string_copy_func, dp->dnaname); fprintf(f, " } else { data->%s = NULL; }\n", dp->dnaname); } else { /* Handle char array properties. */ if (sprop->maxlength) { fprintf(f, " %s(data->%s, value, %d);\n", string_copy_func, dp->dnaname, sprop->maxlength); } else { fprintf(f, " %s(data->%s, value, sizeof(data->%s));\n", string_copy_func, dp->dnaname, dp->dnaname); } } } fprintf(f, "}\n\n"); break; } case PROP_POINTER: { fprintf(f, "void %s(PointerRNA *ptr, PointerRNA value, struct ReportList *reports)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " %s(ptr, value, reports);\n", manualfunc); } else { rna_print_data_get(f, dp); if (prop->flag & PROP_ID_SELF_CHECK) { rna_print_id_get(f, dp); fprintf(f, " if (id == value.data) {\n"); fprintf(f, " return;\n"); fprintf(f, " }\n"); } if (prop->flag & PROP_ID_REFCOUNT) { fprintf(f, "\n if (data->%s) {\n", dp->dnaname); fprintf(f, " id_us_min((ID *)data->%s);\n", dp->dnaname); fprintf(f, " }\n"); fprintf(f, " if (value.data) {\n"); fprintf(f, " id_us_plus((ID *)value.data);\n"); fprintf(f, " }\n"); } else { PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop; StructRNA *type = (pprop->type) ? rna_find_struct((const char *)pprop->type) : NULL; if (type && (type->flag & STRUCT_ID)) { fprintf(f, " if (value.data) {\n"); fprintf(f, " id_lib_extern((ID *)value.data);\n"); fprintf(f, " }\n"); } } fprintf(f, " data->%s = value.data;\n", dp->dnaname); } fprintf(f, "}\n\n"); break; } default: if (prop->arraydimension) { if (prop->flag & PROP_DYNAMIC) { fprintf(f, "void %s(PointerRNA *ptr, const %s values[])\n", func, rna_type_type(prop)); } else { fprintf(f, "void %s(PointerRNA *ptr, const %s values[%u])\n", func, rna_type_type(prop), prop->totarraylength); } fprintf(f, "{\n"); if (manualfunc) { /* Assign `fn` to ensure function signatures match. */ if (prop->type == PROP_BOOLEAN) { fprintf(f, " PropBooleanArraySetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, values);\n"); } else if (prop->type == PROP_INT) { fprintf(f, " PropIntArraySetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, values);\n"); } else if (prop->type == PROP_FLOAT) { fprintf(f, " PropFloatArraySetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, values);\n"); } else { BLI_assert_unreachable(); /* Valid but should be handled by type checks. */ fprintf(f, " %s(ptr, values);\n", manualfunc); } } else { rna_print_data_get(f, dp); if (prop->flag & PROP_DYNAMIC) { char *lenfunc = rna_alloc_function_name( srna->identifier, rna_safe_id(prop->identifier), "set_length"); fprintf(f, " unsigned int i, arraylen[RNA_MAX_ARRAY_DIMENSION];\n"); fprintf(f, " unsigned int len = %s(ptr, arraylen);\n\n", lenfunc); rna_clamp_value_range(f, prop); fprintf(f, " for (i = 0; i < len; i++) {\n"); MEM_freeN(lenfunc); } else { fprintf(f, " unsigned int i;\n\n"); rna_clamp_value_range(f, prop); fprintf(f, " for (i = 0; i < %u; i++) {\n", prop->totarraylength); } if (dp->dnaarraylength == 1) { if (prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " if (%svalues[i]) { data->%s |= (", (dp->booleannegative) ? "!" : "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, " << i); }\n"); fprintf(f, " else { data->%s &= ~(", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, " << i); }\n"); } else { fprintf( f, " (&data->%s)[i] = %s", dp->dnaname, (dp->booleannegative) ? "!" : ""); rna_clamp_value(f, prop, 1); } } else { if (prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " if (%svalues[i]) { data->%s[i] |= ", (dp->booleannegative) ? "!" : "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, "; }\n"); fprintf(f, " else { data->%s[i] &= ~", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, "; }\n"); } else if (rna_color_quantize(prop, dp)) { fprintf( f, " data->%s[i] = unit_float_to_uchar_clamp(values[i]);\n", dp->dnaname); } else { if (dp->dnatype) { fprintf(f, " ((%s *)data->%s)[i] = %s", dp->dnatype, dp->dnaname, (dp->booleannegative) ? "!" : ""); } else { fprintf(f, " (data->%s)[i] = %s", dp->dnaname, (dp->booleannegative) ? "!" : ""); } rna_clamp_value(f, prop, 1); } } fprintf(f, " }\n"); } #ifdef USE_RNA_RANGE_CHECK if (dp->dnaname && manualfunc == NULL) { if (dp->dnaarraylength == 1) { rna_clamp_value_range_check(f, prop, "data->", dp->dnaname); } else { rna_clamp_value_range_check(f, prop, "*data->", dp->dnaname); } } #endif fprintf(f, "}\n\n"); } else { fprintf(f, "void %s(PointerRNA *ptr, %s value)\n", func, rna_type_type(prop)); fprintf(f, "{\n"); if (manualfunc) { /* Assign `fn` to ensure function signatures match. */ if (prop->type == PROP_BOOLEAN) { fprintf(f, " PropBooleanSetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, value);\n"); } else if (prop->type == PROP_INT) { fprintf(f, " PropIntSetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, value);\n"); } else if (prop->type == PROP_FLOAT) { fprintf(f, " PropFloatSetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, value);\n"); } else if (prop->type == PROP_ENUM) { fprintf(f, " PropEnumSetFunc fn = %s;\n", manualfunc); fprintf(f, " fn(ptr, value);\n"); } else { BLI_assert_unreachable(); /* Valid but should be handled by type checks. */ fprintf(f, " %s(ptr, value);\n", manualfunc); } } else { rna_print_data_get(f, dp); if (prop->type == PROP_BOOLEAN && dp->booleanbit) { fprintf(f, " if (%svalue) { data->%s |= ", (dp->booleannegative) ? "!" : "", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, "; }\n"); fprintf(f, " else { data->%s &= ~", dp->dnaname); rna_int_print(f, dp->booleanbit); fprintf(f, "; }\n"); } else if (prop->type == PROP_ENUM && dp->enumbitflags) { fprintf(f, " data->%s &= ~", dp->dnaname); rna_int_print(f, rna_enum_bitmask(prop)); fprintf(f, ";\n"); fprintf(f, " data->%s |= value;\n", dp->dnaname); } else { rna_clamp_value_range(f, prop); fprintf(f, " data->%s = %s", dp->dnaname, (dp->booleannegative) ? "!" : ""); rna_clamp_value(f, prop, 0); } } #ifdef USE_RNA_RANGE_CHECK if (dp->dnaname && manualfunc == NULL) { rna_clamp_value_range_check(f, prop, "data->", dp->dnaname); } #endif fprintf(f, "}\n\n"); } break; } return func; } static char *rna_def_property_length_func( FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc) { char *func = NULL; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (prop->type == PROP_STRING) { if (!manualfunc) { if (!dp->dnastructname || !dp->dnaname) { CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier); DefRNA.error = true; return NULL; } } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "length"); fprintf(f, "int %s(PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " return %s(ptr);\n", manualfunc); } else { rna_print_data_get(f, dp); if (dp->dnapointerlevel == 1) { /* Handle allocated char pointer properties. */ fprintf(f, " return (data->%s == NULL) ? 0 : strlen(data->%s);\n", dp->dnaname, dp->dnaname); } else { /* Handle char array properties. */ fprintf(f, " return strlen(data->%s);\n", dp->dnaname); } } fprintf(f, "}\n\n"); } else if (prop->type == PROP_COLLECTION) { if (!manualfunc) { if (prop->type == PROP_COLLECTION && (!(dp->dnalengthname || dp->dnalengthfixed) || !dp->dnaname)) { CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier); DefRNA.error = true; return NULL; } } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "length"); fprintf(f, "int %s(PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " return %s(ptr);\n", manualfunc); } else { if (dp->dnaarraylength <= 1 || dp->dnalengthname) { rna_print_data_get(f, dp); } if (dp->dnaarraylength > 1) { fprintf(f, " return "); } else { fprintf(f, " return (data->%s == NULL) ? 0 : ", dp->dnaname); } if (dp->dnalengthname) { fprintf(f, "data->%s;\n", dp->dnalengthname); } else { fprintf(f, "%d;\n", dp->dnalengthfixed); } } fprintf(f, "}\n\n"); } return func; } static char *rna_def_property_begin_func( FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc) { char *func, *getfunc; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (!manualfunc) { if (!dp->dnastructname || !dp->dnaname) { CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier); DefRNA.error = true; return NULL; } } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "begin"); fprintf(f, "void %s(CollectionPropertyIterator *iter, PointerRNA *ptr)\n", func); fprintf(f, "{\n"); if (!manualfunc) { rna_print_data_get(f, dp); } fprintf(f, "\n memset(iter, 0, sizeof(*iter));\n"); fprintf(f, " iter->parent = *ptr;\n"); fprintf(f, " iter->prop = (PropertyRNA *)&rna_%s_%s;\n", srna->identifier, prop->identifier); if (dp->dnalengthname || dp->dnalengthfixed) { if (manualfunc) { fprintf(f, "\n %s(iter, ptr);\n", manualfunc); } else { if (dp->dnalengthname) { fprintf(f, "\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), data->%s, 0, " "NULL);\n", dp->dnaname, dp->dnaname, dp->dnalengthname); } else { fprintf( f, "\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), %d, 0, NULL);\n", dp->dnaname, dp->dnaname, dp->dnalengthfixed); } } } else { if (manualfunc) { fprintf(f, "\n %s(iter, ptr);\n", manualfunc); } else if (dp->dnapointerlevel == 0) { fprintf(f, "\n rna_iterator_listbase_begin(iter, &data->%s, NULL);\n", dp->dnaname); } else { fprintf(f, "\n rna_iterator_listbase_begin(iter, data->%s, NULL);\n", dp->dnaname); } } getfunc = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get"); fprintf(f, "\n if (iter->valid) {\n"); fprintf(f, " iter->ptr = %s(iter);", getfunc); fprintf(f, "\n }\n"); fprintf(f, "}\n\n"); return func; } static char *rna_def_property_lookup_int_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc, const char *nextfunc) { /* note on indices, this is for external functions and ignores skipped values. * so the index can only be checked against the length when there is no 'skip' function. */ char *func; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (!manualfunc) { if (!dp->dnastructname || !dp->dnaname) { return NULL; } /* only supported in case of standard next functions */ if (STREQ(nextfunc, "rna_iterator_array_next")) { } else if (STREQ(nextfunc, "rna_iterator_listbase_next")) { } else { return NULL; } } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "lookup_int"); fprintf(f, "int %s(PointerRNA *ptr, int index, PointerRNA *r_ptr)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, "\n return %s(ptr, index, r_ptr);\n", manualfunc); fprintf(f, "}\n\n"); return func; } fprintf(f, " int found = 0;\n"); fprintf(f, " CollectionPropertyIterator iter;\n\n"); fprintf(f, " %s_%s_begin(&iter, ptr);\n\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " if (iter.valid) {\n"); if (STREQ(nextfunc, "rna_iterator_array_next")) { fprintf(f, " ArrayIterator *internal = &iter.internal.array;\n"); fprintf(f, " if (index < 0 || index >= internal->length) {\n"); fprintf(f, "#ifdef __GNUC__\n"); fprintf(f, " printf(\"Array iterator out of range: %%s (index %%d)\\n\", __func__, " "index);\n"); fprintf(f, "#else\n"); fprintf(f, " printf(\"Array iterator out of range: (index %%d)\\n\", index);\n"); fprintf(f, "#endif\n"); fprintf(f, " }\n"); fprintf(f, " else if (internal->skip) {\n"); fprintf(f, " while (index-- > 0 && iter.valid) {\n"); fprintf(f, " rna_iterator_array_next(&iter);\n"); fprintf(f, " }\n"); fprintf(f, " found = (index == -1 && iter.valid);\n"); fprintf(f, " }\n"); fprintf(f, " else {\n"); fprintf(f, " internal->ptr += internal->itemsize * index;\n"); fprintf(f, " found = 1;\n"); fprintf(f, " }\n"); } else if (STREQ(nextfunc, "rna_iterator_listbase_next")) { fprintf(f, " ListBaseIterator *internal = &iter.internal.listbase;\n"); fprintf(f, " if (internal->skip) {\n"); fprintf(f, " while (index-- > 0 && iter.valid) {\n"); fprintf(f, " rna_iterator_listbase_next(&iter);\n"); fprintf(f, " }\n"); fprintf(f, " found = (index == -1 && iter.valid);\n"); fprintf(f, " }\n"); fprintf(f, " else {\n"); fprintf(f, " while (index-- > 0 && internal->link) {\n"); fprintf(f, " internal->link = internal->link->next;\n"); fprintf(f, " }\n"); fprintf(f, " found = (index == -1 && internal->link);\n"); fprintf(f, " }\n"); } fprintf(f, " if (found) { *r_ptr = %s_%s_get(&iter); }\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " }\n\n"); fprintf(f, " %s_%s_end(&iter);\n\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " return found;\n"); #if 0 rna_print_data_get(f, dp); item_type = (cprop->item_type) ? (const char *)cprop->item_type : "UnknownType"; if (dp->dnalengthname || dp->dnalengthfixed) { if (dp->dnalengthname) { fprintf(f, "\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), data->%s, " "index);\n", item_type, dp->dnaname, dp->dnaname, dp->dnalengthname); } else { fprintf( f, "\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), %d, index);\n", item_type, dp->dnaname, dp->dnaname, dp->dnalengthfixed); } } else { if (dp->dnapointerlevel == 0) { fprintf(f, "\n return rna_listbase_lookup_int(ptr, &RNA_%s, &data->%s, index);\n", item_type, dp->dnaname); } else { fprintf(f, "\n return rna_listbase_lookup_int(ptr, &RNA_%s, data->%s, index);\n", item_type, dp->dnaname); } } #endif fprintf(f, "}\n\n"); return func; } static char *rna_def_property_lookup_string_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc, const char *item_type) { char *func; StructRNA *item_srna, *item_name_base; PropertyRNA *item_name_prop; const int namebuflen = 1024; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (!manualfunc) { if (!dp->dnastructname || !dp->dnaname) { return NULL; } /* only supported for collection items with name properties */ item_srna = rna_find_struct(item_type); if (item_srna && item_srna->nameproperty) { item_name_prop = item_srna->nameproperty; item_name_base = item_srna; while (item_name_base->base && item_name_base->base->nameproperty == item_name_prop) { item_name_base = item_name_base->base; } } else { return NULL; } } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "lookup_string"); fprintf(f, "int %s(PointerRNA *ptr, const char *key, PointerRNA *r_ptr)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " return %s(ptr, key, r_ptr);\n", manualfunc); fprintf(f, "}\n\n"); return func; } /* XXX extern declaration could be avoid by including RNA_blender.h, but this has lots of unknown * DNA types in functions, leading to conflicting function signatures. */ fprintf(f, " extern int %s_%s_length(PointerRNA *);\n", item_name_base->identifier, rna_safe_id(item_name_prop->identifier)); fprintf(f, " extern void %s_%s_get(PointerRNA *, char *);\n\n", item_name_base->identifier, rna_safe_id(item_name_prop->identifier)); fprintf(f, " bool found = false;\n"); fprintf(f, " CollectionPropertyIterator iter;\n"); fprintf(f, " char namebuf[%d];\n", namebuflen); fprintf(f, " char *name;\n\n"); fprintf(f, " %s_%s_begin(&iter, ptr);\n\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " while (iter.valid) {\n"); fprintf(f, " if (iter.ptr.data) {\n"); fprintf(f, " int namelen = %s_%s_length(&iter.ptr);\n", item_name_base->identifier, rna_safe_id(item_name_prop->identifier)); fprintf(f, " if (namelen < %d) {\n", namebuflen); fprintf(f, " %s_%s_get(&iter.ptr, namebuf);\n", item_name_base->identifier, rna_safe_id(item_name_prop->identifier)); fprintf(f, " if (strcmp(namebuf, key) == 0) {\n"); fprintf(f, " found = true;\n"); fprintf(f, " *r_ptr = iter.ptr;\n"); fprintf(f, " break;\n"); fprintf(f, " }\n"); fprintf(f, " }\n"); fprintf(f, " else {\n"); fprintf(f, " name = MEM_mallocN(namelen+1, \"name string\");\n"); fprintf(f, " %s_%s_get(&iter.ptr, name);\n", item_name_base->identifier, rna_safe_id(item_name_prop->identifier)); fprintf(f, " if (strcmp(name, key) == 0) {\n"); fprintf(f, " MEM_freeN(name);\n\n"); fprintf(f, " found = true;\n"); fprintf(f, " *r_ptr = iter.ptr;\n"); fprintf(f, " break;\n"); fprintf(f, " }\n"); fprintf(f, " else {\n"); fprintf(f, " MEM_freeN(name);\n"); fprintf(f, " }\n"); fprintf(f, " }\n"); fprintf(f, " }\n"); fprintf(f, " %s_%s_next(&iter);\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " }\n"); fprintf(f, " %s_%s_end(&iter);\n\n", srna->identifier, rna_safe_id(prop->identifier)); fprintf(f, " return found;\n"); fprintf(f, "}\n\n"); return func; } static char *rna_def_property_next_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *UNUSED(dp), const char *manualfunc) { char *func, *getfunc; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } if (!manualfunc) { return NULL; } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "next"); fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func); fprintf(f, "{\n"); fprintf(f, " %s(iter);\n", manualfunc); getfunc = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get"); fprintf(f, "\n if (iter->valid) {\n"); fprintf(f, " iter->ptr = %s(iter);", getfunc); fprintf(f, "\n }\n"); fprintf(f, "}\n\n"); return func; } static char *rna_def_property_end_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *UNUSED(dp), const char *manualfunc) { char *func; if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) { return NULL; } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "end"); fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func); fprintf(f, "{\n"); if (manualfunc) { fprintf(f, " %s(iter);\n", manualfunc); } fprintf(f, "}\n\n"); return func; } static void rna_set_raw_property(PropertyDefRNA *dp, PropertyRNA *prop) { if (dp->dnapointerlevel != 0) { return; } if (!dp->dnatype || !dp->dnaname || !dp->dnastructname) { return; } if (STREQ(dp->dnatype, "char")) { prop->rawtype = PROP_RAW_CHAR; prop->flag_internal |= PROP_INTERN_RAW_ACCESS; } else if (STREQ(dp->dnatype, "short")) { prop->rawtype = PROP_RAW_SHORT; prop->flag_internal |= PROP_INTERN_RAW_ACCESS; } else if (STREQ(dp->dnatype, "int")) { prop->rawtype = PROP_RAW_INT; prop->flag_internal |= PROP_INTERN_RAW_ACCESS; } else if (STREQ(dp->dnatype, "float")) { prop->rawtype = PROP_RAW_FLOAT; prop->flag_internal |= PROP_INTERN_RAW_ACCESS; } else if (STREQ(dp->dnatype, "double")) { prop->rawtype = PROP_RAW_DOUBLE; prop->flag_internal |= PROP_INTERN_RAW_ACCESS; } } static void rna_set_raw_offset(FILE *f, StructRNA *srna, PropertyRNA *prop) { PropertyDefRNA *dp = rna_find_struct_property_def(srna, prop); fprintf(f, "\toffsetof(%s, %s), %d", dp->dnastructname, dp->dnaname, prop->rawtype); } static void rna_def_property_funcs(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; prop = dp->prop; switch (prop->type) { case PROP_BOOLEAN: { BoolPropertyRNA *bprop = (BoolPropertyRNA *)prop; if (!prop->arraydimension) { if (!bprop->get && !bprop->set && !dp->booleanbit) { rna_set_raw_property(dp, prop); } bprop->get = (void *)rna_def_property_get_func( f, srna, prop, dp, (const char *)bprop->get); bprop->set = (void *)rna_def_property_set_func( f, srna, prop, dp, (const char *)bprop->set); } else { bprop->getarray = (void *)rna_def_property_get_func( f, srna, prop, dp, (const char *)bprop->getarray); bprop->setarray = (void *)rna_def_property_set_func( f, srna, prop, dp, (const char *)bprop->setarray); } break; } case PROP_INT: { IntPropertyRNA *iprop = (IntPropertyRNA *)prop; if (!prop->arraydimension) { if (!iprop->get && !iprop->set) { rna_set_raw_property(dp, prop); } iprop->get = (void *)rna_def_property_get_func( f, srna, prop, dp, (const char *)iprop->get); iprop->set = (void *)rna_def_property_set_func( f, srna, prop, dp, (const char *)iprop->set); } else { if (!iprop->getarray && !iprop->setarray) { rna_set_raw_property(dp, prop); } iprop->getarray = (void *)rna_def_property_get_func( f, srna, prop, dp, (const char *)iprop->getarray); iprop->setarray = (void *)rna_def_property_set_func( f, srna, prop, dp, (const char *)iprop->setarray); } break; } case PROP_FLOAT: { FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop; if (!prop->arraydimension) { if (!fprop->get && !fprop->set) { rna_set_raw_property(dp, prop); } fprop->get = (void *)rna_def_property_get_func( f, srna, prop, dp, (const char *)fprop->get); fprop->set = (void *)rna_def_property_set_func( f, srna, prop, dp, (const char *)fprop->set); } else { if (!fprop->getarray && !fprop->setarray) { rna_set_raw_property(dp, prop); } fprop->getarray = (void *)rna_def_property_get_func( f, srna, prop, dp, (const char *)fprop->getarray); fprop->setarray = (void *)rna_def_property_set_func( f, srna, prop, dp, (const char *)fprop->setarray); } break; } case PROP_ENUM: { EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop; if (!eprop->get && !eprop->set) { rna_set_raw_property(dp, prop); } eprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)eprop->get); eprop->set = (void *)rna_def_property_set_func(f, srna, prop, dp, (const char *)eprop->set); break; } case PROP_STRING: { StringPropertyRNA *sprop = (StringPropertyRNA *)prop; sprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)sprop->get); sprop->length = (void *)rna_def_property_length_func( f, srna, prop, dp, (const char *)sprop->length); sprop->set = (void *)rna_def_property_set_func(f, srna, prop, dp, (const char *)sprop->set); sprop->search = (void *)rna_def_property_search_func( f, srna, prop, dp, (const char *)sprop->search); break; } case PROP_POINTER: { PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop; pprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)pprop->get); pprop->set = (void *)rna_def_property_set_func(f, srna, prop, dp, (const char *)pprop->set); if (!pprop->type) { CLOG_ERROR( &LOG, "%s.%s, pointer must have a struct type.", srna->identifier, prop->identifier); DefRNA.error = true; } break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop; const char *nextfunc = (const char *)cprop->next; const char *item_type = (const char *)cprop->item_type; if (cprop->length) { /* always generate if we have a manual implementation */ cprop->length = (void *)rna_def_property_length_func( f, srna, prop, dp, (const char *)cprop->length); } else if (dp->dnatype && STREQ(dp->dnatype, "ListBase")) { /* pass */ } else if (dp->dnalengthname || dp->dnalengthfixed) { cprop->length = (void *)rna_def_property_length_func( f, srna, prop, dp, (const char *)cprop->length); } /* test if we can allow raw array access, if it is using our standard * array get/next function, we can be sure it is an actual array */ if (cprop->next && cprop->get) { if (STREQ((const char *)cprop->next, "rna_iterator_array_next") && STREQ((const char *)cprop->get, "rna_iterator_array_get")) { prop->flag_internal |= PROP_INTERN_RAW_ARRAY; } } cprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)cprop->get); cprop->begin = (void *)rna_def_property_begin_func( f, srna, prop, dp, (const char *)cprop->begin); cprop->next = (void *)rna_def_property_next_func( f, srna, prop, dp, (const char *)cprop->next); cprop->end = (void *)rna_def_property_end_func(f, srna, prop, dp, (const char *)cprop->end); cprop->lookupint = (void *)rna_def_property_lookup_int_func( f, srna, prop, dp, (const char *)cprop->lookupint, nextfunc); cprop->lookupstring = (void *)rna_def_property_lookup_string_func( f, srna, prop, dp, (const char *)cprop->lookupstring, item_type); if (!(prop->flag & PROP_IDPROPERTY)) { if (!cprop->begin) { CLOG_ERROR(&LOG, "%s.%s, collection must have a begin function.", srna->identifier, prop->identifier); DefRNA.error = true; } if (!cprop->next) { CLOG_ERROR(&LOG, "%s.%s, collection must have a next function.", srna->identifier, prop->identifier); DefRNA.error = true; } if (!cprop->get) { CLOG_ERROR(&LOG, "%s.%s, collection must have a get function.", srna->identifier, prop->identifier); DefRNA.error = true; } } if (!cprop->item_type) { CLOG_ERROR(&LOG, "%s.%s, collection must have a struct type.", srna->identifier, prop->identifier); DefRNA.error = true; } break; } } } static void rna_def_property_funcs_header(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; const char *func; prop = dp->prop; if (prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN) { return; } func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), ""); switch (prop->type) { case PROP_BOOLEAN: { if (!prop->arraydimension) { fprintf(f, "bool %sget(PointerRNA *ptr);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, bool value);\n", func); } else if (prop->arraydimension && prop->totarraylength) { fprintf(f, "void %sget(PointerRNA *ptr, bool values[%u]);\n", func, prop->totarraylength); fprintf(f, "void %sset(PointerRNA *ptr, const bool values[%u]);\n", func, prop->totarraylength); } else { fprintf(f, "void %sget(PointerRNA *ptr, bool values[]);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, const bool values[]);\n", func); } break; } case PROP_INT: { if (!prop->arraydimension) { fprintf(f, "int %sget(PointerRNA *ptr);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func); } else if (prop->arraydimension && prop->totarraylength) { fprintf(f, "void %sget(PointerRNA *ptr, int values[%u]);\n", func, prop->totarraylength); fprintf( f, "void %sset(PointerRNA *ptr, const int values[%u]);\n", func, prop->totarraylength); } else { fprintf(f, "void %sget(PointerRNA *ptr, int values[]);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, const int values[]);\n", func); } break; } case PROP_FLOAT: { if (!prop->arraydimension) { fprintf(f, "float %sget(PointerRNA *ptr);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, float value);\n", func); } else if (prop->arraydimension && prop->totarraylength) { fprintf(f, "void %sget(PointerRNA *ptr, float values[%u]);\n", func, prop->totarraylength); fprintf(f, "void %sset(PointerRNA *ptr, const float values[%u]);\n", func, prop->totarraylength); } else { fprintf(f, "void %sget(PointerRNA *ptr, float values[]);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, const float values[]);", func); } break; } case PROP_ENUM: { EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop; int i; if (eprop->item && eprop->totitem) { fprintf(f, "enum {\n"); for (i = 0; i < eprop->totitem; i++) { if (eprop->item[i].identifier[0]) { fprintf(f, "\t%s_%s_%s = %d,\n", srna->identifier, prop->identifier, eprop->item[i].identifier, eprop->item[i].value); } } fprintf(f, "};\n\n"); } fprintf(f, "int %sget(PointerRNA *ptr);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func); break; } case PROP_STRING: { StringPropertyRNA *sprop = (StringPropertyRNA *)prop; if (sprop->maxlength) { fprintf( f, "#define %s_%s_MAX %d\n\n", srna->identifier, prop->identifier, sprop->maxlength); } fprintf(f, "void %sget(PointerRNA *ptr, char *value);\n", func); fprintf(f, "int %slength(PointerRNA *ptr);\n", func); fprintf(f, "void %sset(PointerRNA *ptr, const char *value);\n", func); break; } case PROP_POINTER: { fprintf(f, "PointerRNA %sget(PointerRNA *ptr);\n", func); /*fprintf(f, "void %sset(PointerRNA *ptr, PointerRNA value);\n", func); */ break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop; fprintf(f, "void %sbegin(CollectionPropertyIterator *iter, PointerRNA *ptr);\n", func); fprintf(f, "void %snext(CollectionPropertyIterator *iter);\n", func); fprintf(f, "void %send(CollectionPropertyIterator *iter);\n", func); if (cprop->length) { fprintf(f, "int %slength(PointerRNA *ptr);\n", func); } if (cprop->lookupint) { fprintf(f, "int %slookup_int(PointerRNA *ptr, int key, PointerRNA *r_ptr);\n", func); } if (cprop->lookupstring) { fprintf(f, "int %slookup_string(PointerRNA *ptr, const char *key, PointerRNA *r_ptr);\n", func); } break; } } if (prop->getlength) { char funcname[2048]; rna_construct_wrapper_function_name( funcname, sizeof(funcname), srna->identifier, prop->identifier, "get_length"); fprintf(f, "int %s(PointerRNA *ptr, int *arraylen);\n", funcname); } fprintf(f, "\n"); } static void rna_def_function_funcs_header(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc) { FunctionRNA *func = dfunc->func; char funcname[2048]; rna_construct_wrapper_function_name( funcname, sizeof(funcname), srna->identifier, func->identifier, "func"); rna_generate_static_parameter_prototypes(f, srna, dfunc, funcname, 1); } static void rna_def_property_funcs_header_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; prop = dp->prop; if (prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN) { return; } /* Disabled for now to avoid MSVC compiler error due to large file size. */ #if 0 if (prop->name && prop->description && prop->description[0] != '\0') { fprintf(f, "\t/* %s: %s */\n", prop->name, prop->description); } else if (prop->name) { fprintf(f, "\t/* %s */\n", prop->name); } else { fprintf(f, "\t/* */\n"); } #endif switch (prop->type) { case PROP_BOOLEAN: { if (!prop->arraydimension) { fprintf(f, "\tinline bool %s(void);\n", rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(bool value);", rna_safe_id(prop->identifier)); } else if (prop->totarraylength) { fprintf(f, "\tinline Array %s(void);\n", prop->totarraylength, rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(bool values[%u]);", rna_safe_id(prop->identifier), prop->totarraylength); } else if (prop->getlength) { fprintf(f, "\tinline DynamicArray %s(void);\n", rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(bool values[]);", rna_safe_id(prop->identifier)); } break; } case PROP_INT: { if (!prop->arraydimension) { fprintf(f, "\tinline int %s(void);\n", rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(int value);", rna_safe_id(prop->identifier)); } else if (prop->totarraylength) { fprintf(f, "\tinline Array %s(void);\n", prop->totarraylength, rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(int values[%u]);", rna_safe_id(prop->identifier), prop->totarraylength); } else if (prop->getlength) { fprintf(f, "\tinline DynamicArray %s(void);\n", rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(int values[]);", rna_safe_id(prop->identifier)); } break; } case PROP_FLOAT: { if (!prop->arraydimension) { fprintf(f, "\tinline float %s(void);\n", rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(float value);", rna_safe_id(prop->identifier)); } else if (prop->totarraylength) { fprintf(f, "\tinline Array %s(void);\n", prop->totarraylength, rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(float values[%u]);", rna_safe_id(prop->identifier), prop->totarraylength); } else if (prop->getlength) { fprintf(f, "\tinline DynamicArray %s(void);\n", rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(float values[]);", rna_safe_id(prop->identifier)); } break; } case PROP_ENUM: { EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop; int i; if (eprop->item) { fprintf(f, "\tenum %s_enum {\n", rna_safe_id(prop->identifier)); for (i = 0; i < eprop->totitem; i++) { if (eprop->item[i].identifier[0]) { fprintf(f, "\t\t%s_%s = %d,\n", rna_safe_id(prop->identifier), eprop->item[i].identifier, eprop->item[i].value); } } fprintf(f, "\t};\n"); } fprintf(f, "\tinline %s_enum %s(void);\n", rna_safe_id(prop->identifier), rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(%s_enum value);", rna_safe_id(prop->identifier), rna_safe_id(prop->identifier)); break; } case PROP_STRING: { fprintf(f, "\tinline std::string %s(void);\n", rna_safe_id(prop->identifier)); fprintf(f, "\tinline void %s(const std::string& value);", rna_safe_id(prop->identifier)); break; } case PROP_POINTER: { PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop; if (pprop->type) { fprintf( f, "\tinline %s %s(void);", (const char *)pprop->type, rna_safe_id(prop->identifier)); } else { fprintf(f, "\tinline %s %s(void);", "UnknownType", rna_safe_id(prop->identifier)); } break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)dp->prop; const char *collection_funcs = "DefaultCollectionFunctions"; if (!(dp->prop->flag & PROP_IDPROPERTY || dp->prop->flag_internal & PROP_INTERN_BUILTIN) && cprop->property.srna) { collection_funcs = (char *)cprop->property.srna; } if (cprop->item_type) { fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s, %s)", collection_funcs, (const char *)cprop->item_type, srna->identifier, rna_safe_id(prop->identifier), (cprop->length ? "true" : "false"), (cprop->lookupint ? "true" : "false"), (cprop->lookupstring ? "true" : "false")); } else { fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s, %s)", collection_funcs, "UnknownType", srna->identifier, rna_safe_id(prop->identifier), (cprop->length ? "true" : "false"), (cprop->lookupint ? "true" : "false"), (cprop->lookupstring ? "true" : "false")); } break; } } fprintf(f, "\n"); } static const char *rna_parameter_type_cpp_name(PropertyRNA *prop) { if (prop->type == PROP_POINTER) { /* for cpp api we need to use RNA structures names for pointers */ PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop; return (const char *)pprop->type; } return rna_parameter_type_name(prop); } static void rna_def_struct_function_prototype_cpp(FILE *f, StructRNA *UNUSED(srna), FunctionDefRNA *dfunc, const char *namespace, int close_prototype) { PropertyDefRNA *dp; FunctionRNA *func = dfunc->func; int first = 1; const char *retval_type = "void"; if (func->c_ret) { dp = rna_find_parameter_def(func->c_ret); retval_type = rna_parameter_type_cpp_name(dp->prop); } if (namespace && namespace[0]) { fprintf(f, "\tinline %s %s::%s(", retval_type, namespace, rna_safe_id(func->identifier)); } else { fprintf(f, "\tinline %s %s(", retval_type, rna_safe_id(func->identifier)); } if (func->flag & FUNC_USE_MAIN) { WRITE_PARAM("void *main"); } if (func->flag & FUNC_USE_CONTEXT) { WRITE_PARAM("Context C"); } for (dp = dfunc->cont.properties.first; dp; dp = dp->next) { int type, flag, flag_parameter, pout; const char *ptrstr; if (dp->prop == func->c_ret) { continue; } type = dp->prop->type; flag = dp->prop->flag; flag_parameter = dp->prop->flag_parameter; pout = (flag_parameter & PARM_OUTPUT); if (flag & PROP_DYNAMIC) { if (type == PROP_STRING) { ptrstr = pout ? "*" : ""; } else { ptrstr = pout ? "**" : "*"; } } else if (type == PROP_POINTER) { ptrstr = pout ? "*" : ""; } else if (dp->prop->arraydimension) { ptrstr = "*"; } else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) { ptrstr = ""; } else { ptrstr = pout ? "*" : ""; } WRITE_COMMA; if (flag & PROP_DYNAMIC) { fprintf( f, "int %s%s_len, ", (flag_parameter & PARM_OUTPUT) ? "*" : "", dp->prop->identifier); } if (!(flag & PROP_DYNAMIC) && dp->prop->arraydimension) { fprintf(f, "%s %s[%u]", rna_parameter_type_cpp_name(dp->prop), rna_safe_id(dp->prop->identifier), dp->prop->totarraylength); } else { fprintf(f, "%s%s%s%s", rna_parameter_type_cpp_name(dp->prop), (dp->prop->type == PROP_POINTER && ptrstr[0] == '\0') ? "& " : " ", ptrstr, rna_safe_id(dp->prop->identifier)); } } fprintf(f, ")"); if (close_prototype) { fprintf(f, ";\n"); } } static void rna_def_struct_function_header_cpp(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc) { if (dfunc->call) { /* Disabled for now to avoid MSVC compiler error due to large file size. */ #if 0 FunctionRNA *func = dfunc->func; fprintf(f, "\n\t/* %s */\n", func->description); #endif rna_def_struct_function_prototype_cpp(f, srna, dfunc, NULL, 1); } } static void rna_def_property_funcs_impl_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp) { PropertyRNA *prop; prop = dp->prop; if (prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN) { return; } switch (prop->type) { case PROP_BOOLEAN: { if (!prop->arraydimension) { fprintf(f, "\tBOOLEAN_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); } else if (prop->totarraylength) { fprintf(f, "\tBOOLEAN_ARRAY_PROPERTY(%s, %u, %s)", srna->identifier, prop->totarraylength, rna_safe_id(prop->identifier)); } else if (prop->getlength) { fprintf(f, "\tBOOLEAN_DYNAMIC_ARRAY_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); } break; } case PROP_INT: { if (!prop->arraydimension) { fprintf(f, "\tINT_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); } else if (prop->totarraylength) { fprintf(f, "\tINT_ARRAY_PROPERTY(%s, %u, %s)", srna->identifier, prop->totarraylength, rna_safe_id(prop->identifier)); } else if (prop->getlength) { fprintf(f, "\tINT_DYNAMIC_ARRAY_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); } break; } case PROP_FLOAT: { if (!prop->arraydimension) { fprintf(f, "\tFLOAT_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); } else if (prop->totarraylength) { fprintf(f, "\tFLOAT_ARRAY_PROPERTY(%s, %u, %s)", srna->identifier, prop->totarraylength, rna_safe_id(prop->identifier)); } else if (prop->getlength) { fprintf(f, "\tFLOAT_DYNAMIC_ARRAY_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); } break; } case PROP_ENUM: { fprintf(f, "\tENUM_PROPERTY(%s_enum, %s, %s)", rna_safe_id(prop->identifier), srna->identifier, rna_safe_id(prop->identifier)); break; } case PROP_STRING: { fprintf(f, "\tSTRING_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier)); break; } case PROP_POINTER: { PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop; if (pprop->type) { fprintf(f, "\tPOINTER_PROPERTY(%s, %s, %s)", (const char *)pprop->type, srna->identifier, rna_safe_id(prop->identifier)); } else { fprintf(f, "\tPOINTER_PROPERTY(%s, %s, %s)", "UnknownType", srna->identifier, rna_safe_id(prop->identifier)); } break; } case PROP_COLLECTION: { #if 0 CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)dp->prop; if (cprop->type) { fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s)", (const char *)cprop->type, srna->identifier, prop->identifier, (cprop->length ? "true" : "false"), (cprop->lookupint ? "true" : "false"), (cprop->lookupstring ? "true" : "false")); } else { fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s)", "UnknownType", srna->identifier, prop->identifier, (cprop->length ? "true" : "false"), (cprop->lookupint ? "true" : "false"), (cprop->lookupstring ? "true" : "false")); } #endif break; } } fprintf(f, "\n"); } static void rna_def_struct_function_call_impl_cpp(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc) { PropertyDefRNA *dp; StructDefRNA *dsrna; FunctionRNA *func = dfunc->func; char funcname[2048]; int first = 1; rna_construct_wrapper_function_name( funcname, sizeof(funcname), srna->identifier, func->identifier, "func"); fprintf(f, "%s(", funcname); dsrna = rna_find_struct_def(srna); if (func->flag & FUNC_USE_SELF_ID) { WRITE_PARAM("(::ID *) ptr.owner_id"); } if ((func->flag & FUNC_NO_SELF) == 0) { WRITE_COMMA; if (dsrna->dnafromprop) { fprintf(f, "(::%s *) this->ptr.data", dsrna->dnafromname); } else if (dsrna->dnaname) { fprintf(f, "(::%s *) this->ptr.data", dsrna->dnaname); } else { fprintf(f, "(::%s *) this->ptr.data", srna->identifier); } } else if (func->flag & FUNC_USE_SELF_TYPE) { WRITE_COMMA; fprintf(f, "this->ptr.type"); } if (func->flag & FUNC_USE_MAIN) { WRITE_PARAM("(::Main *) main"); } if (func->flag & FUNC_USE_CONTEXT) { WRITE_PARAM("(::bContext *) C.ptr.data"); } if (func->flag & FUNC_USE_REPORTS) { WRITE_PARAM("NULL"); } dp = dfunc->cont.properties.first; for (; dp; dp = dp->next) { if (dp->prop == func->c_ret) { continue; } WRITE_COMMA; if (dp->prop->flag & PROP_DYNAMIC) { fprintf(f, "%s_len, ", dp->prop->identifier); } if (dp->prop->type == PROP_POINTER) { if ((dp->prop->flag_parameter & PARM_RNAPTR) && !(dp->prop->flag & PROP_THICK_WRAP)) { fprintf(f, "(::%s *) &%s.ptr", rna_parameter_type_name(dp->prop), rna_safe_id(dp->prop->identifier)); } else if (dp->prop->flag_parameter & PARM_OUTPUT) { if (dp->prop->flag_parameter & PARM_RNAPTR) { fprintf(f, "&%s->ptr", rna_safe_id(dp->prop->identifier)); } else { fprintf(f, "(::%s **) &%s->ptr.data", rna_parameter_type_name(dp->prop), rna_safe_id(dp->prop->identifier)); } } else if (dp->prop->flag_parameter & PARM_RNAPTR) { fprintf(f, "(::%s *) &%s", rna_parameter_type_name(dp->prop), rna_safe_id(dp->prop->identifier)); } else { fprintf(f, "(::%s *) %s.ptr.data", rna_parameter_type_name(dp->prop), rna_safe_id(dp->prop->identifier)); } } else { fprintf(f, "%s", rna_safe_id(dp->prop->identifier)); } } fprintf(f, ");\n"); } static void rna_def_struct_function_impl_cpp(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc) { PropertyDefRNA *dp; PointerPropertyRNA *pprop; FunctionRNA *func = dfunc->func; if (!dfunc->call) { return; } rna_def_struct_function_prototype_cpp(f, srna, dfunc, srna->identifier, 0); fprintf(f, " {\n"); if (func->c_ret) { dp = rna_find_parameter_def(func->c_ret); if (dp->prop->type == PROP_POINTER) { pprop = (PointerPropertyRNA *)dp->prop; fprintf(f, "\t\tPointerRNA result;\n"); if ((dp->prop->flag_parameter & PARM_RNAPTR) == 0) { StructRNA *ret_srna = rna_find_struct((const char *)pprop->type); fprintf(f, "\t\t::%s *retdata = ", rna_parameter_type_name(dp->prop)); rna_def_struct_function_call_impl_cpp(f, srna, dfunc); if (ret_srna->flag & STRUCT_ID) { fprintf(f, "\t\tRNA_id_pointer_create((::ID *) retdata, &result);\n"); } else { fprintf(f, "\t\tRNA_pointer_create((::ID *) ptr.owner_id, &RNA_%s, retdata, &result);\n", (const char *)pprop->type); } } else { fprintf(f, "\t\tresult = "); rna_def_struct_function_call_impl_cpp(f, srna, dfunc); } fprintf(f, "\t\treturn %s(result);\n", (const char *)pprop->type); } else { fprintf(f, "\t\treturn "); rna_def_struct_function_call_impl_cpp(f, srna, dfunc); } } else { fprintf(f, "\t\t"); rna_def_struct_function_call_impl_cpp(f, srna, dfunc); } fprintf(f, "\t}\n\n"); } static void rna_def_property_wrapper_funcs(FILE *f, StructDefRNA *dsrna, PropertyDefRNA *dp) { if (dp->prop->getlength) { char funcname[2048]; rna_construct_wrapper_function_name( funcname, sizeof(funcname), dsrna->srna->identifier, dp->prop->identifier, "get_length"); fprintf(f, "int %s(PointerRNA *ptr, int *arraylen)\n", funcname); fprintf(f, "{\n"); fprintf(f, "\treturn %s(ptr, arraylen);\n", rna_function_string(dp->prop->getlength)); fprintf(f, "}\n\n"); } } static void rna_def_function_wrapper_funcs(FILE *f, StructDefRNA *dsrna, FunctionDefRNA *dfunc) { StructRNA *srna = dsrna->srna; FunctionRNA *func = dfunc->func; PropertyDefRNA *dparm; int first; char funcname[2048]; if (!dfunc->call) { return; } rna_construct_wrapper_function_name( funcname, sizeof(funcname), srna->identifier, func->identifier, "func"); rna_generate_static_parameter_prototypes(f, srna, dfunc, funcname, 0); fprintf(f, "\n{\n"); if (func->c_ret) { fprintf(f, "\treturn %s(", dfunc->call); } else { fprintf(f, "\t%s(", dfunc->call); } first = 1; if (func->flag & FUNC_USE_SELF_ID) { WRITE_PARAM("_selfid"); } if ((func->flag & FUNC_NO_SELF) == 0) { WRITE_PARAM("_self"); } else if (func->flag & FUNC_USE_SELF_TYPE) { WRITE_PARAM("_type"); } if (func->flag & FUNC_USE_MAIN) { WRITE_PARAM("bmain"); } if (func->flag & FUNC_USE_CONTEXT) { WRITE_PARAM("C"); } if (func->flag & FUNC_USE_REPORTS) { WRITE_PARAM("reports"); } dparm = dfunc->cont.properties.first; for (; dparm; dparm = dparm->next) { if (dparm->prop == func->c_ret) { continue; } WRITE_COMMA; if (dparm->prop->flag & PROP_DYNAMIC) { fprintf(f, "%s_len, %s", dparm->prop->identifier, dparm->prop->identifier); } else { fprintf(f, "%s", rna_safe_id(dparm->prop->identifier)); } } fprintf(f, ");\n"); fprintf(f, "}\n\n"); } static void rna_def_function_funcs(FILE *f, StructDefRNA *dsrna, FunctionDefRNA *dfunc) { StructRNA *srna; FunctionRNA *func; PropertyDefRNA *dparm; PropertyType type; const char *funcname, *valstr; const char *ptrstr; const bool has_data = (dfunc->cont.properties.first != NULL); int flag, flag_parameter, pout, cptr, first; srna = dsrna->srna; func = dfunc->func; if (!dfunc->call) { return; } funcname = rna_alloc_function_name(srna->identifier, func->identifier, "call"); /* function definition */ fprintf(f, "void %s(bContext *C, ReportList *reports, PointerRNA *_ptr, ParameterList *_parms)", funcname); fprintf(f, "\n{\n"); /* variable definitions */ if (func->flag & FUNC_USE_SELF_ID) { fprintf(f, "\tstruct ID *_selfid;\n"); } if ((func->flag & FUNC_NO_SELF) == 0) { if (dsrna->dnafromprop) { fprintf(f, "\tstruct %s *_self;\n", dsrna->dnafromname); } else if (dsrna->dnaname) { fprintf(f, "\tstruct %s *_self;\n", dsrna->dnaname); } else { fprintf(f, "\tstruct %s *_self;\n", srna->identifier); } } else if (func->flag & FUNC_USE_SELF_TYPE) { fprintf(f, "\tstruct StructRNA *_type;\n"); } dparm = dfunc->cont.properties.first; for (; dparm; dparm = dparm->next) { type = dparm->prop->type; flag = dparm->prop->flag; flag_parameter = dparm->prop->flag_parameter; pout = (flag_parameter & PARM_OUTPUT); cptr = ((type == PROP_POINTER) && !(flag_parameter & PARM_RNAPTR)); if (dparm->prop == func->c_ret) { ptrstr = cptr || dparm->prop->arraydimension ? "*" : ""; /* XXX only arrays and strings are allowed to be dynamic, is this checked anywhere? */ } else if (cptr || (flag & PROP_DYNAMIC)) { if (type == PROP_STRING) { ptrstr = pout ? "*" : ""; } else { ptrstr = pout ? "**" : "*"; } /* Fixed size arrays and RNA pointers are pre-allocated on the ParameterList stack, * pass a pointer to it. */ } else if (type == PROP_POINTER || dparm->prop->arraydimension) { ptrstr = "*"; } else if ((type == PROP_POINTER) && (flag_parameter & PARM_RNAPTR) && !(flag & PROP_THICK_WRAP)) { ptrstr = "*"; /* PROP_THICK_WRAP strings are pre-allocated on the ParameterList stack, * but type name for string props is already (char *), so leave empty */ } else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) { ptrstr = ""; } else { ptrstr = pout ? "*" : ""; } /* for dynamic parameters we pass an additional int for the length of the parameter */ if (flag & PROP_DYNAMIC) { fprintf(f, "\tint %s%s_len;\n", pout ? "*" : "", dparm->prop->identifier); } fprintf(f, "\t%s%s %s%s;\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, dparm->prop->identifier); } if (has_data) { fprintf(f, "\tchar *_data"); if (func->c_ret) { fprintf(f, ", *_retdata"); } fprintf(f, ";\n"); fprintf(f, "\t\n"); } /* assign self */ if (func->flag & FUNC_USE_SELF_ID) { fprintf(f, "\t_selfid = (struct ID *)_ptr->owner_id;\n"); } if ((func->flag & FUNC_NO_SELF) == 0) { if (dsrna->dnafromprop) { fprintf(f, "\t_self = (struct %s *)_ptr->data;\n", dsrna->dnafromname); } else if (dsrna->dnaname) { fprintf(f, "\t_self = (struct %s *)_ptr->data;\n", dsrna->dnaname); } else { fprintf(f, "\t_self = (struct %s *)_ptr->data;\n", srna->identifier); } } else if (func->flag & FUNC_USE_SELF_TYPE) { fprintf(f, "\t_type = _ptr->type;\n"); } if (has_data) { fprintf(f, "\t_data = (char *)_parms->data;\n"); } dparm = dfunc->cont.properties.first; for (; dparm; dparm = dparm->next) { type = dparm->prop->type; flag = dparm->prop->flag; flag_parameter = dparm->prop->flag_parameter; pout = (flag_parameter & PARM_OUTPUT); cptr = ((type == PROP_POINTER) && !(flag_parameter & PARM_RNAPTR)); if (dparm->prop == func->c_ret) { fprintf(f, "\t_retdata = _data;\n"); } else { const char *data_str; if (cptr || (flag & PROP_DYNAMIC)) { if (type == PROP_STRING) { ptrstr = "*"; valstr = ""; } else { ptrstr = "**"; valstr = "*"; } } else if ((type == PROP_POINTER) && !(flag & PROP_THICK_WRAP)) { ptrstr = "**"; valstr = "*"; } else if (type == PROP_POINTER || dparm->prop->arraydimension) { ptrstr = "*"; valstr = ""; } else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) { ptrstr = ""; valstr = ""; } else { ptrstr = "*"; valstr = "*"; } /* This must be kept in sync with RNA_parameter_dynamic_length_get_data and * RNA_parameter_get, we could just call the function directly, but this is faster. */ if (flag & PROP_DYNAMIC) { fprintf(f, "\t%s_len = %s((ParameterDynAlloc *)_data)->array_tot;\n", dparm->prop->identifier, pout ? "(int *)&" : "(int)"); data_str = "(&(((ParameterDynAlloc *)_data)->array))"; } else { data_str = "_data"; } fprintf(f, "\t%s = ", dparm->prop->identifier); if (!pout) { fprintf(f, "%s", valstr); } fprintf(f, "((%s%s %s)%s);\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, data_str); } if (dparm->next) { fprintf(f, "\t_data += %d;\n", rna_parameter_size_pad(rna_parameter_size(dparm->prop))); } } if (dfunc->call) { fprintf(f, "\t\n"); fprintf(f, "\t"); if (func->c_ret) { fprintf(f, "%s = ", func->c_ret->identifier); } fprintf(f, "%s(", dfunc->call); first = 1; if (func->flag & FUNC_USE_SELF_ID) { fprintf(f, "_selfid"); first = 0; } if ((func->flag & FUNC_NO_SELF) == 0) { if (!first) { fprintf(f, ", "); } fprintf(f, "_self"); first = 0; } else if (func->flag & FUNC_USE_SELF_TYPE) { if (!first) { fprintf(f, ", "); } fprintf(f, "_type"); first = 0; } if (func->flag & FUNC_USE_MAIN) { if (!first) { fprintf(f, ", "); } first = 0; fprintf(f, "CTX_data_main(C)"); /* may have direct access later */ } if (func->flag & FUNC_USE_CONTEXT) { if (!first) { fprintf(f, ", "); } first = 0; fprintf(f, "C"); } if (func->flag & FUNC_USE_REPORTS) { if (!first) { fprintf(f, ", "); } first = 0; fprintf(f, "reports"); } dparm = dfunc->cont.properties.first; for (; dparm; dparm = dparm->next) { if (dparm->prop == func->c_ret) { continue; } if (!first) { fprintf(f, ", "); } first = 0; if (dparm->prop->flag & PROP_DYNAMIC) { fprintf(f, "%s_len, %s", dparm->prop->identifier, dparm->prop->identifier); } else { fprintf(f, "%s", dparm->prop->identifier); } } fprintf(f, ");\n"); if (func->c_ret) { dparm = rna_find_parameter_def(func->c_ret); ptrstr = (((dparm->prop->type == PROP_POINTER) && !(dparm->prop->flag_parameter & PARM_RNAPTR)) || (dparm->prop->arraydimension)) ? "*" : ""; fprintf(f, "\t*((%s%s %s*)_retdata) = %s;\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, func->c_ret->identifier); } } fprintf(f, "}\n\n"); dfunc->gencall = funcname; } static void rna_auto_types(void) { StructDefRNA *ds; PropertyDefRNA *dp; for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { /* DNA name for Screen is patched in 2.5, we do the reverse here. */ if (ds->dnaname) { if (STREQ(ds->dnaname, "Screen")) { ds->dnaname = "bScreen"; } if (STREQ(ds->dnaname, "Group")) { ds->dnaname = "Collection"; } if (STREQ(ds->dnaname, "GroupObject")) { ds->dnaname = "CollectionObject"; } } for (dp = ds->cont.properties.first; dp; dp = dp->next) { if (dp->dnastructname) { if (STREQ(dp->dnastructname, "Screen")) { dp->dnastructname = "bScreen"; } if (STREQ(dp->dnastructname, "Group")) { dp->dnastructname = "Collection"; } if (STREQ(dp->dnastructname, "GroupObject")) { dp->dnastructname = "CollectionObject"; } } if (dp->dnatype) { if (dp->prop->type == PROP_POINTER) { PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop; StructRNA *type; if (!pprop->type && !pprop->get) { pprop->type = (StructRNA *)rna_find_type(dp->dnatype); } if (pprop->type) { type = rna_find_struct((const char *)pprop->type); if (type && (type->flag & STRUCT_ID_REFCOUNT)) { pprop->property.flag |= PROP_ID_REFCOUNT; } } } else if (dp->prop->type == PROP_COLLECTION) { CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)dp->prop; if (!cprop->item_type && !cprop->get && STREQ(dp->dnatype, "ListBase")) { cprop->item_type = (StructRNA *)rna_find_type(dp->dnatype); } } } } } } static void rna_sort(BlenderRNA *brna) { StructDefRNA *ds; StructRNA *srna; rna_sortlist(&brna->structs, cmp_struct); rna_sortlist(&DefRNA.structs, cmp_def_struct); for (srna = brna->structs.first; srna; srna = srna->cont.next) { rna_sortlist(&srna->cont.properties, cmp_property); } for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { rna_sortlist(&ds->cont.properties, cmp_def_property); } } static const char *rna_property_structname(PropertyType type) { switch (type) { case PROP_BOOLEAN: return "BoolPropertyRNA"; case PROP_INT: return "IntPropertyRNA"; case PROP_FLOAT: return "FloatPropertyRNA"; case PROP_STRING: return "StringPropertyRNA"; case PROP_ENUM: return "EnumPropertyRNA"; case PROP_POINTER: return "PointerPropertyRNA"; case PROP_COLLECTION: return "CollectionPropertyRNA"; default: return "UnknownPropertyRNA"; } } static const char *rna_property_subtypename(PropertySubType type) { switch (type) { case PROP_NONE: return "PROP_NONE"; case PROP_FILEPATH: return "PROP_FILEPATH"; case PROP_FILENAME: return "PROP_FILENAME"; case PROP_DIRPATH: return "PROP_DIRPATH"; case PROP_PIXEL: return "PROP_PIXEL"; case PROP_BYTESTRING: return "PROP_BYTESTRING"; case PROP_UNSIGNED: return "PROP_UNSIGNED"; case PROP_PERCENTAGE: return "PROP_PERCENTAGE"; case PROP_FACTOR: return "PROP_FACTOR"; case PROP_ANGLE: return "PROP_ANGLE"; case PROP_TIME: return "PROP_TIME"; case PROP_TIME_ABSOLUTE: return "PROP_TIME_ABSOLUTE"; case PROP_DISTANCE: return "PROP_DISTANCE"; case PROP_DISTANCE_CAMERA: return "PROP_DISTANCE_CAMERA"; case PROP_COLOR: return "PROP_COLOR"; case PROP_TRANSLATION: return "PROP_TRANSLATION"; case PROP_DIRECTION: return "PROP_DIRECTION"; case PROP_MATRIX: return "PROP_MATRIX"; case PROP_EULER: return "PROP_EULER"; case PROP_QUATERNION: return "PROP_QUATERNION"; case PROP_AXISANGLE: return "PROP_AXISANGLE"; case PROP_VELOCITY: return "PROP_VELOCITY"; case PROP_ACCELERATION: return "PROP_ACCELERATION"; case PROP_XYZ: return "PROP_XYZ"; case PROP_COLOR_GAMMA: return "PROP_COLOR_GAMMA"; case PROP_COORDS: return "PROP_COORDS"; case PROP_LAYER: return "PROP_LAYER"; case PROP_LAYER_MEMBER: return "PROP_LAYER_MEMBER"; case PROP_PASSWORD: return "PROP_PASSWORD"; case PROP_POWER: return "PROP_POWER"; case PROP_TEMPERATURE: return "PROP_TEMPERATURE"; default: { /* in case we don't have a type preset that includes the subtype */ if (RNA_SUBTYPE_UNIT(type)) { return rna_property_subtypename(type & ~RNA_SUBTYPE_UNIT(type)); } return "PROP_SUBTYPE_UNKNOWN"; } } } static const char *rna_property_subtype_unit(PropertySubType type) { switch (RNA_SUBTYPE_UNIT(type)) { case PROP_UNIT_NONE: return "PROP_UNIT_NONE"; case PROP_UNIT_LENGTH: return "PROP_UNIT_LENGTH"; case PROP_UNIT_AREA: return "PROP_UNIT_AREA"; case PROP_UNIT_VOLUME: return "PROP_UNIT_VOLUME"; case PROP_UNIT_MASS: return "PROP_UNIT_MASS"; case PROP_UNIT_ROTATION: return "PROP_UNIT_ROTATION"; case PROP_UNIT_TIME: return "PROP_UNIT_TIME"; case PROP_UNIT_TIME_ABSOLUTE: return "PROP_UNIT_TIME_ABSOLUTE"; case PROP_UNIT_VELOCITY: return "PROP_UNIT_VELOCITY"; case PROP_UNIT_ACCELERATION: return "PROP_UNIT_ACCELERATION"; case PROP_UNIT_CAMERA: return "PROP_UNIT_CAMERA"; case PROP_UNIT_POWER: return "PROP_UNIT_POWER"; case PROP_UNIT_TEMPERATURE: return "PROP_UNIT_TEMPERATURE"; default: return "PROP_UNIT_UNKNOWN"; } } static void rna_generate_struct_rna_prototypes(BlenderRNA *brna, FILE *f) { StructRNA *srna; for (srna = brna->structs.first; srna; srna = srna->cont.next) { fprintf(f, "extern struct StructRNA RNA_%s;\n", srna->identifier); } fprintf(f, "\n"); } static void rna_generate_blender(BlenderRNA *brna, FILE *f) { StructRNA *srna; fprintf(f, "BlenderRNA BLENDER_RNA = {\n" "\t.structs = {"); srna = brna->structs.first; if (srna) { fprintf(f, "&RNA_%s, ", srna->identifier); } else { fprintf(f, "NULL, "); } srna = brna->structs.last; if (srna) { fprintf(f, "&RNA_%s},\n", srna->identifier); } else { fprintf(f, "NULL},\n"); } fprintf(f, "\t.structs_map = NULL,\n" "\t.structs_len = 0,\n" "};\n\n"); } static void rna_generate_external_property_prototypes(BlenderRNA *brna, FILE *f) { rna_generate_struct_rna_prototypes(brna, f); for (StructRNA *srna = brna->structs.first; srna; srna = srna->cont.next) { for (PropertyRNA *prop = srna->cont.properties.first; prop; prop = prop->next) { fprintf(f, "extern struct PropertyRNA rna_%s_%s;\n", srna->identifier, prop->identifier); } fprintf(f, "\n"); } } static void rna_generate_internal_property_prototypes(BlenderRNA *UNUSED(brna), StructRNA *srna, FILE *f) { PropertyRNA *prop; StructRNA *base; base = srna->base; while (base) { fprintf(f, "\n"); for (prop = base->cont.properties.first; prop; prop = prop->next) { fprintf(f, "%s%s rna_%s_%s;\n", "extern ", rna_property_structname(prop->type), base->identifier, prop->identifier); } base = base->base; } if (srna->cont.properties.first) { fprintf(f, "\n"); } for (prop = srna->cont.properties.first; prop; prop = prop->next) { fprintf(f, "%s rna_%s_%s;\n", rna_property_structname(prop->type), srna->identifier, prop->identifier); } fprintf(f, "\n"); } static void rna_generate_parameter_prototypes(BlenderRNA *UNUSED(brna), StructRNA *srna, FunctionRNA *func, FILE *f) { PropertyRNA *parm; for (parm = func->cont.properties.first; parm; parm = parm->next) { fprintf(f, "%s%s rna_%s_%s_%s;\n", "extern ", rna_property_structname(parm->type), srna->identifier, func->identifier, parm->identifier); } if (func->cont.properties.first) { fprintf(f, "\n"); } } static void rna_generate_function_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f) { FunctionRNA *func; StructRNA *base; base = srna->base; while (base) { for (func = base->functions.first; func; func = func->cont.next) { fprintf(f, "%s%s rna_%s_%s_func;\n", "extern ", "FunctionRNA", base->identifier, func->identifier); rna_generate_parameter_prototypes(brna, base, func, f); } if (base->functions.first) { fprintf(f, "\n"); } base = base->base; } for (func = srna->functions.first; func; func = func->cont.next) { fprintf( f, "%s%s rna_%s_%s_func;\n", "extern ", "FunctionRNA", srna->identifier, func->identifier); rna_generate_parameter_prototypes(brna, srna, func, f); } if (srna->functions.first) { fprintf(f, "\n"); } } static void rna_generate_static_parameter_prototypes(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc, const char *name_override, int close_prototype) { FunctionRNA *func; PropertyDefRNA *dparm; StructDefRNA *dsrna; PropertyType type; int flag, flag_parameter, pout, cptr, first; const char *ptrstr; dsrna = rna_find_struct_def(srna); func = dfunc->func; /* return type */ for (dparm = dfunc->cont.properties.first; dparm; dparm = dparm->next) { if (dparm->prop == func->c_ret) { if (dparm->prop->arraydimension) { fprintf(f, "XXX no array return types yet"); /* XXX not supported */ } else if (dparm->prop->type == PROP_POINTER && !(dparm->prop->flag_parameter & PARM_RNAPTR)) { fprintf(f, "%s%s *", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop)); } else { fprintf(f, "%s%s ", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop)); } break; } } /* void if nothing to return */ if (!dparm) { fprintf(f, "void "); } /* function name */ if (name_override == NULL || name_override[0] == '\0') { fprintf(f, "%s(", dfunc->call); } else { fprintf(f, "%s(", name_override); } first = 1; /* self, context and reports parameters */ if (func->flag & FUNC_USE_SELF_ID) { fprintf(f, "struct ID *_selfid"); first = 0; } if ((func->flag & FUNC_NO_SELF) == 0) { if (!first) { fprintf(f, ", "); } if (dsrna->dnafromprop) { fprintf(f, "struct %s *_self", dsrna->dnafromname); } else if (dsrna->dnaname) { fprintf(f, "struct %s *_self", dsrna->dnaname); } else { fprintf(f, "struct %s *_self", srna->identifier); } first = 0; } else if (func->flag & FUNC_USE_SELF_TYPE) { if (!first) { fprintf(f, ", "); } fprintf(f, "struct StructRNA *_type"); first = 0; } if (func->flag & FUNC_USE_MAIN) { if (!first) { fprintf(f, ", "); } first = 0; fprintf(f, "Main *bmain"); } if (func->flag & FUNC_USE_CONTEXT) { if (!first) { fprintf(f, ", "); } first = 0; fprintf(f, "bContext *C"); } if (func->flag & FUNC_USE_REPORTS) { if (!first) { fprintf(f, ", "); } first = 0; fprintf(f, "ReportList *reports"); } /* defined parameters */ for (dparm = dfunc->cont.properties.first; dparm; dparm = dparm->next) { type = dparm->prop->type; flag = dparm->prop->flag; flag_parameter = dparm->prop->flag_parameter; pout = (flag_parameter & PARM_OUTPUT); cptr = ((type == PROP_POINTER) && !(flag_parameter & PARM_RNAPTR)); if (dparm->prop == func->c_ret) { continue; } if (cptr || (flag & PROP_DYNAMIC)) { if (type == PROP_STRING) { ptrstr = pout ? "*" : ""; } else { ptrstr = pout ? "**" : "*"; } } else if (type == PROP_POINTER || dparm->prop->arraydimension) { ptrstr = "*"; } else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) { ptrstr = ""; } else { ptrstr = pout ? "*" : ""; } if (!first) { fprintf(f, ", "); } first = 0; if (flag & PROP_DYNAMIC) { fprintf(f, "int %s%s_len, ", pout ? "*" : "", dparm->prop->identifier); } if (!(flag & PROP_DYNAMIC) && dparm->prop->arraydimension) { fprintf(f, "%s%s %s[%u]", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), rna_safe_id(dparm->prop->identifier), dparm->prop->totarraylength); } else { fprintf(f, "%s%s %s%s", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, rna_safe_id(dparm->prop->identifier)); } } /* ensure func(void) if there are no args */ if (first) { fprintf(f, "void"); } fprintf(f, ")"); if (close_prototype) { fprintf(f, ";\n"); } } static void rna_generate_static_function_prototypes(BlenderRNA *UNUSED(brna), StructRNA *srna, FILE *f) { FunctionRNA *func; FunctionDefRNA *dfunc; int first = 1; for (func = srna->functions.first; func; func = func->cont.next) { dfunc = rna_find_function_def(func); if (dfunc->call) { if (first) { fprintf(f, "/* Repeated prototypes to detect errors */\n\n"); first = 0; } rna_generate_static_parameter_prototypes(f, srna, dfunc, NULL, 1); } } fprintf(f, "\n"); } static void rna_generate_struct_prototypes(FILE *f) { StructDefRNA *ds; PropertyDefRNA *dp; FunctionDefRNA *dfunc; const char *structures[2048]; int all_structures = 0; /* structures definitions */ for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) { if (dfunc->call) { for (dp = dfunc->cont.properties.first; dp; dp = dp->next) { if (dp->prop->type == PROP_POINTER) { int a, found = 0; const char *struct_name = rna_parameter_type_name(dp->prop); if (struct_name == NULL) { printf("No struct found for property '%s'\n", dp->prop->identifier); exit(1); } for (a = 0; a < all_structures; a++) { if (STREQ(struct_name, structures[a])) { found = 1; break; } } if (found == 0) { fprintf(f, "struct %s;\n", struct_name); if (all_structures >= ARRAY_SIZE(structures)) { printf("Array size to store all structures names is too small\n"); exit(1); } structures[all_structures++] = struct_name; } } } } } } fprintf(f, "\n"); } static void rna_generate_property(FILE *f, StructRNA *srna, const char *nest, PropertyRNA *prop) { char *strnest = (char *)"", *errnest = (char *)""; int len, freenest = 0; if (nest != NULL) { len = strlen(nest); strnest = MEM_mallocN(sizeof(char) * (len + 2), "rna_generate_property -> strnest"); errnest = MEM_mallocN(sizeof(char) * (len + 2), "rna_generate_property -> errnest"); strcpy(strnest, "_"); strcat(strnest, nest); strcpy(errnest, "."); strcat(errnest, nest); freenest = 1; } switch (prop->type) { case PROP_ENUM: { EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop; int i, defaultfound = 0, totflag = 0; if (eprop->item) { /* Inline the enum if this is not a defined in "RNA_enum_items.h". */ const char *item_global_id = rna_enum_id_from_pointer(eprop->item); if (item_global_id == NULL) { fprintf(f, "static const EnumPropertyItem rna_%s%s_%s_items[%d] = {\n\t", srna->identifier, strnest, prop->identifier, eprop->totitem + 1); for (i = 0; i < eprop->totitem; i++) { fprintf(f, "{%d, ", eprop->item[i].value); rna_print_c_string(f, eprop->item[i].identifier); fprintf(f, ", "); fprintf(f, "%d, ", eprop->item[i].icon); rna_print_c_string(f, eprop->item[i].name); fprintf(f, ", "); rna_print_c_string(f, eprop->item[i].description); fprintf(f, "},\n\t"); if (eprop->item[i].identifier[0]) { if (prop->flag & PROP_ENUM_FLAG) { totflag |= eprop->item[i].value; } else { if (eprop->defaultvalue == eprop->item[i].value) { defaultfound = 1; } } } } fprintf(f, "{0, NULL, 0, NULL, NULL}\n};\n\n"); } else { for (i = 0; i < eprop->totitem; i++) { if (eprop->item[i].identifier[0]) { if (prop->flag & PROP_ENUM_FLAG) { totflag |= eprop->item[i].value; } else { if (eprop->defaultvalue == eprop->item[i].value) { defaultfound = 1; } } } } } if (prop->flag & PROP_ENUM_FLAG) { if (eprop->defaultvalue & ~totflag) { CLOG_ERROR(&LOG, "%s%s.%s, enum default includes unused bits (%d).", srna->identifier, errnest, prop->identifier, eprop->defaultvalue & ~totflag); DefRNA.error = true; } } else { if (!defaultfound && !(eprop->item_fn && eprop->item == DummyRNA_NULL_items)) { CLOG_ERROR(&LOG, "%s%s.%s, enum default is not in items.", srna->identifier, errnest, prop->identifier); DefRNA.error = true; } } } else { CLOG_ERROR(&LOG, "%s%s.%s, enum must have items defined.", srna->identifier, errnest, prop->identifier); DefRNA.error = true; } break; } case PROP_BOOLEAN: { BoolPropertyRNA *bprop = (BoolPropertyRNA *)prop; uint i; if (prop->arraydimension && prop->totarraylength) { fprintf(f, "static bool rna_%s%s_%s_default[%u] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength); for (i = 0; i < prop->totarraylength; i++) { if (bprop->defaultarray) { fprintf(f, "%d", bprop->defaultarray[i]); } else { fprintf(f, "%d", bprop->defaultvalue); } if (i != prop->totarraylength - 1) { fprintf(f, ",\n\t"); } } fprintf(f, "\n};\n\n"); } break; } case PROP_INT: { IntPropertyRNA *iprop = (IntPropertyRNA *)prop; uint i; if (prop->arraydimension && prop->totarraylength) { fprintf(f, "static int rna_%s%s_%s_default[%u] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength); for (i = 0; i < prop->totarraylength; i++) { if (iprop->defaultarray) { fprintf(f, "%d", iprop->defaultarray[i]); } else { fprintf(f, "%d", iprop->defaultvalue); } if (i != prop->totarraylength - 1) { fprintf(f, ",\n\t"); } } fprintf(f, "\n};\n\n"); } break; } case PROP_FLOAT: { FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop; uint i; if (prop->arraydimension && prop->totarraylength) { fprintf(f, "static float rna_%s%s_%s_default[%u] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength); for (i = 0; i < prop->totarraylength; i++) { if (fprop->defaultarray) { rna_float_print(f, fprop->defaultarray[i]); } else { rna_float_print(f, fprop->defaultvalue); } if (i != prop->totarraylength - 1) { fprintf(f, ",\n\t"); } } fprintf(f, "\n};\n\n"); } break; } case PROP_POINTER: { PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop; /* XXX This systematically enforces that flag on ID pointers... * we'll probably have to revisit. :/ */ StructRNA *type = rna_find_struct((const char *)pprop->type); if (type && (type->flag & STRUCT_ID) && !(prop->flag_internal & PROP_INTERN_PTR_OWNERSHIP_FORCED)) { prop->flag |= PROP_PTR_NO_OWNERSHIP; } break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop; /* XXX This systematically enforces that flag on ID pointers... * we'll probably have to revisit. :/ */ StructRNA *type = rna_find_struct((const char *)cprop->item_type); if (type && (type->flag & STRUCT_ID) && !(prop->flag_internal & PROP_INTERN_PTR_OWNERSHIP_FORCED)) { prop->flag |= PROP_PTR_NO_OWNERSHIP; } break; } default: break; } fprintf(f, "%s rna_%s%s_%s = {\n", rna_property_structname(prop->type), srna->identifier, strnest, prop->identifier); if (prop->next) { fprintf( f, "\t{(PropertyRNA *)&rna_%s%s_%s, ", srna->identifier, strnest, prop->next->identifier); } else { fprintf(f, "\t{NULL, "); } if (prop->prev) { fprintf( f, "(PropertyRNA *)&rna_%s%s_%s,\n", srna->identifier, strnest, prop->prev->identifier); } else { fprintf(f, "NULL,\n"); } fprintf(f, "\t%d, ", prop->magic); rna_print_c_string(f, prop->identifier); fprintf(f, ", %d, %d, %d, %d, %d, ", prop->flag, prop->flag_override, prop->flag_parameter, prop->flag_internal, prop->tags); rna_print_c_string(f, prop->name); fprintf(f, ",\n\t"); rna_print_c_string(f, prop->description); fprintf(f, ",\n\t"); fprintf(f, "%d, ", prop->icon); rna_print_c_string(f, prop->translation_context); fprintf(f, ",\n"); fprintf(f, "\t%s, %s | %s, %s, %u, {%u, %u, %u}, %u,\n", RNA_property_typename(prop->type), rna_property_subtypename(prop->subtype), rna_property_subtype_unit(prop->subtype), rna_function_string(prop->getlength), prop->arraydimension, prop->arraylength[0], prop->arraylength[1], prop->arraylength[2], prop->totarraylength); fprintf(f, "\t%s%s, %d, %s, %s, %s, %s, %s,\n", (prop->flag & PROP_CONTEXT_UPDATE) ? "(UpdateFunc)" : "", rna_function_string(prop->update), prop->noteflag, rna_function_string(prop->editable), rna_function_string(prop->itemeditable), rna_function_string(prop->override_diff), rna_function_string(prop->override_store), rna_function_string(prop->override_apply)); if (prop->flag_internal & PROP_INTERN_RAW_ACCESS) { rna_set_raw_offset(f, srna, prop); } else { fprintf(f, "\t0, -1"); } /* our own type - collections/arrays only */ if (prop->srna) { fprintf(f, ", &RNA_%s", (const char *)prop->srna); } else { fprintf(f, ", NULL"); } fprintf(f, "},\n"); switch (prop->type) { case PROP_BOOLEAN: { BoolPropertyRNA *bprop = (BoolPropertyRNA *)prop; fprintf(f, "\t%s, %s, %s, %s, %s, %s, %s, %s, %d, ", rna_function_string(bprop->get), rna_function_string(bprop->set), rna_function_string(bprop->getarray), rna_function_string(bprop->setarray), rna_function_string(bprop->get_ex), rna_function_string(bprop->set_ex), rna_function_string(bprop->getarray_ex), rna_function_string(bprop->setarray_ex), bprop->defaultvalue); if (prop->arraydimension && prop->totarraylength) { fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier); } else { fprintf(f, "NULL\n"); } break; } case PROP_INT: { IntPropertyRNA *iprop = (IntPropertyRNA *)prop; fprintf(f, "\t%s, %s, %s, %s, %s, %s, %s, %s, %s, %s,\n\t", rna_function_string(iprop->get), rna_function_string(iprop->set), rna_function_string(iprop->getarray), rna_function_string(iprop->setarray), rna_function_string(iprop->range), rna_function_string(iprop->get_ex), rna_function_string(iprop->set_ex), rna_function_string(iprop->getarray_ex), rna_function_string(iprop->setarray_ex), rna_function_string(iprop->range_ex)); rna_int_print(f, iprop->ui_scale_type); fprintf(f, ", "); rna_int_print(f, iprop->softmin); fprintf(f, ", "); rna_int_print(f, iprop->softmax); fprintf(f, ", "); rna_int_print(f, iprop->hardmin); fprintf(f, ", "); rna_int_print(f, iprop->hardmax); fprintf(f, ", "); rna_int_print(f, iprop->step); fprintf(f, ", "); rna_int_print(f, iprop->defaultvalue); fprintf(f, ", "); if (prop->arraydimension && prop->totarraylength) { fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier); } else { fprintf(f, "NULL\n"); } break; } case PROP_FLOAT: { FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop; fprintf(f, "\t%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, ", rna_function_string(fprop->get), rna_function_string(fprop->set), rna_function_string(fprop->getarray), rna_function_string(fprop->setarray), rna_function_string(fprop->range), rna_function_string(fprop->get_ex), rna_function_string(fprop->set_ex), rna_function_string(fprop->getarray_ex), rna_function_string(fprop->setarray_ex), rna_function_string(fprop->range_ex)); rna_float_print(f, fprop->ui_scale_type); fprintf(f, ", "); rna_float_print(f, fprop->softmin); fprintf(f, ", "); rna_float_print(f, fprop->softmax); fprintf(f, ", "); rna_float_print(f, fprop->hardmin); fprintf(f, ", "); rna_float_print(f, fprop->hardmax); fprintf(f, ", "); rna_float_print(f, fprop->step); fprintf(f, ", "); rna_int_print(f, (int)fprop->precision); fprintf(f, ", "); rna_float_print(f, fprop->defaultvalue); fprintf(f, ", "); if (prop->arraydimension && prop->totarraylength) { fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier); } else { fprintf(f, "NULL\n"); } break; } case PROP_STRING: { StringPropertyRNA *sprop = (StringPropertyRNA *)prop; fprintf(f, "\t%s, %s, %s, %s, %s, %s, %s, %d, %d, ", rna_function_string(sprop->get), rna_function_string(sprop->length), rna_function_string(sprop->set), rna_function_string(sprop->get_ex), rna_function_string(sprop->length_ex), rna_function_string(sprop->set_ex), rna_function_string(sprop->search), (int)sprop->search_flag, sprop->maxlength); rna_print_c_string(f, sprop->defaultvalue); fprintf(f, "\n"); break; } case PROP_ENUM: { EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop; fprintf(f, "\t%s, %s, %s, %s, %s, ", rna_function_string(eprop->get), rna_function_string(eprop->set), rna_function_string(eprop->item_fn), rna_function_string(eprop->get_ex), rna_function_string(eprop->set_ex)); if (eprop->item) { const char *item_global_id = rna_enum_id_from_pointer(eprop->item); if (item_global_id != NULL) { fprintf(f, "%s, ", item_global_id); } else { fprintf(f, "rna_%s%s_%s_items, ", srna->identifier, strnest, prop->identifier); } } else { fprintf(f, "NULL, "); } fprintf(f, "%d, %d\n", eprop->totitem, eprop->defaultvalue); break; } case PROP_POINTER: { PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop; fprintf(f, "\t%s, %s, %s, %s,", rna_function_string(pprop->get), rna_function_string(pprop->set), rna_function_string(pprop->type_fn), rna_function_string(pprop->poll)); if (pprop->type) { fprintf(f, "&RNA_%s\n", (const char *)pprop->type); } else { fprintf(f, "NULL\n"); } break; } case PROP_COLLECTION: { CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop; fprintf(f, "\t%s, %s, %s, %s, %s, %s, %s, %s, ", rna_function_string(cprop->begin), rna_function_string(cprop->next), rna_function_string(cprop->end), rna_function_string(cprop->get), rna_function_string(cprop->length), rna_function_string(cprop->lookupint), rna_function_string(cprop->lookupstring), rna_function_string(cprop->assignint)); if (cprop->item_type) { fprintf(f, "&RNA_%s\n", (const char *)cprop->item_type); } else { fprintf(f, "NULL\n"); } break; } } fprintf(f, "};\n\n"); if (freenest) { MEM_freeN(strnest); MEM_freeN(errnest); } } static void rna_generate_struct(BlenderRNA *UNUSED(brna), StructRNA *srna, FILE *f) { FunctionRNA *func; FunctionDefRNA *dfunc; PropertyRNA *prop, *parm; StructRNA *base; fprintf(f, "/* %s */\n", srna->name); for (prop = srna->cont.properties.first; prop; prop = prop->next) { rna_generate_property(f, srna, NULL, prop); } for (func = srna->functions.first; func; func = func->cont.next) { for (parm = func->cont.properties.first; parm; parm = parm->next) { rna_generate_property(f, srna, func->identifier, parm); } fprintf(f, "%s%s rna_%s_%s_func = {\n", "", "FunctionRNA", srna->identifier, func->identifier); if (func->cont.next) { fprintf(f, "\t{(FunctionRNA *)&rna_%s_%s_func, ", srna->identifier, ((FunctionRNA *)func->cont.next)->identifier); } else { fprintf(f, "\t{NULL, "); } if (func->cont.prev) { fprintf(f, "(FunctionRNA *)&rna_%s_%s_func,\n", srna->identifier, ((FunctionRNA *)func->cont.prev)->identifier); } else { fprintf(f, "NULL,\n"); } fprintf(f, "\tNULL,\n"); parm = func->cont.properties.first; if (parm) { fprintf(f, "\t{(PropertyRNA *)&rna_%s_%s_%s, ", srna->identifier, func->identifier, parm->identifier); } else { fprintf(f, "\t{NULL, "); } parm = func->cont.properties.last; if (parm) { fprintf(f, "(PropertyRNA *)&rna_%s_%s_%s}},\n", srna->identifier, func->identifier, parm->identifier); } else { fprintf(f, "NULL}},\n"); } fprintf(f, "\t"); rna_print_c_string(f, func->identifier); fprintf(f, ", %d, ", func->flag); rna_print_c_string(f, func->description); fprintf(f, ",\n"); dfunc = rna_find_function_def(func); if (dfunc->gencall) { fprintf(f, "\t%s,\n", dfunc->gencall); } else { fprintf(f, "\tNULL,\n"); } if (func->c_ret) { fprintf(f, "\t(PropertyRNA *)&rna_%s_%s_%s\n", srna->identifier, func->identifier, func->c_ret->identifier); } else { fprintf(f, "\tNULL\n"); } fprintf(f, "};\n"); fprintf(f, "\n"); } fprintf(f, "StructRNA RNA_%s = {\n", srna->identifier); if (srna->cont.next) { fprintf(f, "\t{(ContainerRNA *)&RNA_%s, ", ((StructRNA *)srna->cont.next)->identifier); } else { fprintf(f, "\t{NULL, "); } if (srna->cont.prev) { fprintf(f, "(ContainerRNA *)&RNA_%s,\n", ((StructRNA *)srna->cont.prev)->identifier); } else { fprintf(f, "NULL,\n"); } fprintf(f, "\tNULL,\n"); prop = srna->cont.properties.first; if (prop) { fprintf(f, "\t{(PropertyRNA *)&rna_%s_%s, ", srna->identifier, prop->identifier); } else { fprintf(f, "\t{NULL, "); } prop = srna->cont.properties.last; if (prop) { fprintf(f, "(PropertyRNA *)&rna_%s_%s}},\n", srna->identifier, prop->identifier); } else { fprintf(f, "NULL}},\n"); } fprintf(f, "\t"); rna_print_c_string(f, srna->identifier); fprintf(f, ", NULL, NULL"); /* PyType - Can't initialize here */ fprintf(f, ", %d, NULL, ", srna->flag); rna_print_c_string(f, srna->name); fprintf(f, ",\n\t"); rna_print_c_string(f, srna->description); fprintf(f, ",\n\t"); rna_print_c_string(f, srna->translation_context); fprintf(f, ", %d,\n", srna->icon); prop = srna->nameproperty; if (prop) { base = srna; while (base->base && base->base->nameproperty == prop) { base = base->base; } fprintf(f, "\t(PropertyRNA *)&rna_%s_%s, ", base->identifier, prop->identifier); } else { fprintf(f, "\tNULL, "); } prop = srna->iteratorproperty; base = srna; while (base->base && base->base->iteratorproperty == prop) { base = base->base; } fprintf(f, "(PropertyRNA *)&rna_%s_rna_properties,\n", base->identifier); if (srna->base) { fprintf(f, "\t&RNA_%s,\n", srna->base->identifier); } else { fprintf(f, "\tNULL,\n"); } if (srna->nested) { fprintf(f, "\t&RNA_%s,\n", srna->nested->identifier); } else { fprintf(f, "\tNULL,\n"); } fprintf(f, "\t%s,\n", rna_function_string(srna->refine)); fprintf(f, "\t%s,\n", rna_function_string(srna->path)); fprintf(f, "\t%s,\n", rna_function_string(srna->reg)); fprintf(f, "\t%s,\n", rna_function_string(srna->unreg)); fprintf(f, "\t%s,\n", rna_function_string(srna->instance)); fprintf(f, "\t%s,\n", rna_function_string(srna->idproperties)); if (srna->reg && !srna->refine) { CLOG_ERROR( &LOG, "%s has a register function, must also have refine function.", srna->identifier); DefRNA.error = true; } func = srna->functions.first; if (func) { fprintf(f, "\t{(FunctionRNA *)&rna_%s_%s_func, ", srna->identifier, func->identifier); } else { fprintf(f, "\t{NULL, "); } func = srna->functions.last; if (func) { fprintf(f, "(FunctionRNA *)&rna_%s_%s_func}\n", srna->identifier, func->identifier); } else { fprintf(f, "NULL}\n"); } fprintf(f, "};\n"); fprintf(f, "\n"); } typedef struct RNAProcessItem { const char *filename; const char *api_filename; void (*define)(BlenderRNA *brna); } RNAProcessItem; static RNAProcessItem PROCESS_ITEMS[] = { {"rna_rna.c", NULL, RNA_def_rna}, {"rna_ID.c", NULL, RNA_def_ID}, {"rna_texture.c", "rna_texture_api.c", RNA_def_texture}, {"rna_action.c", "rna_action_api.c", RNA_def_action}, {"rna_animation.c", "rna_animation_api.c", RNA_def_animation}, {"rna_animviz.c", NULL, RNA_def_animviz}, {"rna_armature.c", "rna_armature_api.c", RNA_def_armature}, {"rna_attribute.c", NULL, RNA_def_attribute}, {"rna_asset.c", NULL, RNA_def_asset}, {"rna_boid.c", NULL, RNA_def_boid}, {"rna_brush.c", NULL, RNA_def_brush}, {"rna_cachefile.c", NULL, RNA_def_cachefile}, {"rna_camera.c", "rna_camera_api.c", RNA_def_camera}, {"rna_cloth.c", NULL, RNA_def_cloth}, {"rna_collection.c", NULL, RNA_def_collections}, {"rna_color.c", NULL, RNA_def_color}, {"rna_constraint.c", NULL, RNA_def_constraint}, {"rna_context.c", NULL, RNA_def_context}, {"rna_curve.c", "rna_curve_api.c", RNA_def_curve}, {"rna_dynamicpaint.c", NULL, RNA_def_dynamic_paint}, {"rna_fcurve.c", "rna_fcurve_api.c", RNA_def_fcurve}, {"rna_gpencil.c", NULL, RNA_def_gpencil}, {"rna_curves.c", NULL, RNA_def_curves}, {"rna_image.c", "rna_image_api.c", RNA_def_image}, {"rna_key.c", NULL, RNA_def_key}, {"rna_light.c", NULL, RNA_def_light}, {"rna_lattice.c", "rna_lattice_api.c", RNA_def_lattice}, {"rna_layer.c", NULL, RNA_def_view_layer}, {"rna_linestyle.c", NULL, RNA_def_linestyle}, {"rna_main.c", "rna_main_api.c", RNA_def_main}, {"rna_fluid.c", NULL, RNA_def_fluid}, {"rna_material.c", "rna_material_api.c", RNA_def_material}, {"rna_mesh.c", "rna_mesh_api.c", RNA_def_mesh}, {"rna_meta.c", "rna_meta_api.c", RNA_def_meta}, {"rna_modifier.c", NULL, RNA_def_modifier}, {"rna_gpencil_modifier.c", NULL, RNA_def_greasepencil_modifier}, {"rna_shader_fx.c", NULL, RNA_def_shader_fx}, {"rna_nla.c", NULL, RNA_def_nla}, {"rna_nodetree.c", NULL, RNA_def_nodetree}, {"rna_object.c", "rna_object_api.c", RNA_def_object}, {"rna_object_force.c", NULL, RNA_def_object_force}, {"rna_depsgraph.c", NULL, RNA_def_depsgraph}, {"rna_packedfile.c", NULL, RNA_def_packedfile}, {"rna_palette.c", NULL, RNA_def_palette}, {"rna_particle.c", NULL, RNA_def_particle}, {"rna_pointcloud.c", NULL, RNA_def_pointcloud}, {"rna_pose.c", "rna_pose_api.c", RNA_def_pose}, {"rna_curveprofile.c", NULL, RNA_def_profile}, {"rna_lightprobe.c", NULL, RNA_def_lightprobe}, {"rna_render.c", NULL, RNA_def_render}, {"rna_rigidbody.c", NULL, RNA_def_rigidbody}, {"rna_scene.c", "rna_scene_api.c", RNA_def_scene}, {"rna_screen.c", NULL, RNA_def_screen}, {"rna_sculpt_paint.c", NULL, RNA_def_sculpt_paint}, {"rna_sequencer.c", "rna_sequencer_api.c", RNA_def_sequencer}, #ifdef WITH_SIMULATION_DATABLOCK {"rna_simulation.c", NULL, RNA_def_simulation}, #endif {"rna_space.c", "rna_space_api.c", RNA_def_space}, {"rna_speaker.c", NULL, RNA_def_speaker}, {"rna_test.c", NULL, RNA_def_test}, {"rna_text.c", "rna_text_api.c", RNA_def_text}, {"rna_timeline.c", NULL, RNA_def_timeline_marker}, {"rna_sound.c", "rna_sound_api.c", RNA_def_sound}, {"rna_ui.c", "rna_ui_api.c", RNA_def_ui}, {"rna_userdef.c", NULL, RNA_def_userdef}, {"rna_vfont.c", "rna_vfont_api.c", RNA_def_vfont}, {"rna_volume.c", NULL, RNA_def_volume}, {"rna_wm.c", "rna_wm_api.c", RNA_def_wm}, {"rna_wm_gizmo.c", "rna_wm_gizmo_api.c", RNA_def_wm_gizmo}, {"rna_workspace.c", "rna_workspace_api.c", RNA_def_workspace}, {"rna_world.c", NULL, RNA_def_world}, {"rna_movieclip.c", NULL, RNA_def_movieclip}, {"rna_tracking.c", NULL, RNA_def_tracking}, {"rna_mask.c", NULL, RNA_def_mask}, {"rna_xr.c", NULL, RNA_def_xr}, {NULL, NULL}, }; static void rna_generate(BlenderRNA *brna, FILE *f, const char *filename, const char *api_filename) { StructDefRNA *ds; PropertyDefRNA *dp; FunctionDefRNA *dfunc; fprintf(f, "\n" "/* Automatically generated struct definitions for the Data API.\n" " * Do not edit manually, changes will be overwritten. */\n\n" "#define RNA_RUNTIME\n\n"); fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include \n\n"); fprintf(f, "#include \n\n"); fprintf(f, "#include \"MEM_guardedalloc.h\"\n\n"); fprintf(f, "#include \"DNA_ID.h\"\n"); fprintf(f, "#include \"DNA_scene_types.h\"\n"); fprintf(f, "#include \"DNA_node_types.h\"\n"); fprintf(f, "#include \"BLI_blenlib.h\"\n\n"); fprintf(f, "#include \"BLI_utildefines.h\"\n\n"); fprintf(f, "#include \"BKE_context.h\"\n"); fprintf(f, "#include \"BKE_lib_id.h\"\n"); fprintf(f, "#include \"BKE_main.h\"\n"); fprintf(f, "#include \"BKE_report.h\"\n"); fprintf(f, "#include \"RNA_define.h\"\n"); fprintf(f, "#include \"RNA_types.h\"\n"); fprintf(f, "#include \"rna_internal.h\"\n\n"); /* include the generated prototypes header */ fprintf(f, "#include \"rna_prototypes_gen.h\"\n\n"); if (filename) { fprintf(f, "#include \"%s\"\n", filename); } if (api_filename) { fprintf(f, "#include \"%s\"\n", api_filename); } fprintf(f, "\n"); /* we want the included C files to have warnings enabled but for the generated code * ignore unused-parameter warnings which are hard to prevent */ #if defined(__GNUC__) || defined(__clang__) fprintf(f, "#pragma GCC diagnostic ignored \"-Wunused-parameter\"\n\n"); #endif fprintf(f, "/* Auto-generated Functions. */\n\n"); for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (!filename || ds->filename == filename) { rna_generate_internal_property_prototypes(brna, ds->srna, f); rna_generate_function_prototypes(brna, ds->srna, f); } } for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (!filename || ds->filename == filename) { for (dp = ds->cont.properties.first; dp; dp = dp->next) { rna_def_property_funcs(f, ds->srna, dp); } } } for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (!filename || ds->filename == filename) { for (dp = ds->cont.properties.first; dp; dp = dp->next) { rna_def_property_wrapper_funcs(f, ds, dp); } for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) { rna_def_function_wrapper_funcs(f, ds, dfunc); rna_def_function_funcs(f, ds, dfunc); } rna_generate_static_function_prototypes(brna, ds->srna, f); } } for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (!filename || ds->filename == filename) { rna_generate_struct(brna, ds->srna, f); } } if (filename && STREQ(filename, "rna_ID.c")) { /* this is ugly, but we cannot have c files compiled for both * makesrna and blender with some build systems at the moment */ fprintf(f, "#include \"rna_define.c\"\n\n"); rna_generate_blender(brna, f); } } static void rna_generate_header(BlenderRNA *UNUSED(brna), FILE *f) { StructDefRNA *ds; PropertyDefRNA *dp; StructRNA *srna; FunctionDefRNA *dfunc; fprintf(f, "\n#ifndef __RNA_BLENDER_H__\n"); fprintf(f, "#define __RNA_BLENDER_H__\n\n"); fprintf(f, "/* Automatically generated function declarations for the Data API.\n" " * Do not edit manually, changes will be overwritten. */\n\n"); fprintf(f, "#include \"RNA_types.h\"\n\n"); fprintf(f, "#include \"DNA_node_types.h\"\n\n"); fprintf(f, "#ifdef __cplusplus\nextern \"C\" {\n#endif\n\n"); fprintf(f, "#define FOREACH_BEGIN(property, sptr, itemptr) \\\n"); fprintf(f, " { \\\n"); fprintf(f, " CollectionPropertyIterator rna_macro_iter; \\\n"); fprintf(f, " for (property##_begin(&rna_macro_iter, sptr); rna_macro_iter.valid; " "property##_next(&rna_macro_iter)) { \\\n"); fprintf(f, " itemptr = rna_macro_iter.ptr;\n\n"); fprintf(f, "#define FOREACH_END(property) \\\n"); fprintf(f, " } \\\n"); fprintf(f, " property##_end(&rna_macro_iter); \\\n"); fprintf(f, " }\n\n"); for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { srna = ds->srna; fprintf(f, "/**************** %s ****************/\n\n", srna->name); while (srna) { fprintf(f, "extern StructRNA RNA_%s;\n", srna->identifier); srna = srna->base; } fprintf(f, "\n"); for (dp = ds->cont.properties.first; dp; dp = dp->next) { rna_def_property_funcs_header(f, ds->srna, dp); } for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) { rna_def_function_funcs_header(f, ds->srna, dfunc); } } fprintf(f, "#ifdef __cplusplus\n}\n#endif\n\n"); fprintf(f, "#endif /* __RNA_BLENDER_H__ */\n\n"); } static const char *cpp_classes = "" "\n" "#include /* for malloc */\n" "#include \n" "#include /* for memcpy */\n" "\n" "namespace BL {\n" "\n" "#define BOOLEAN_PROPERTY(sname, identifier) \\\n" " inline bool sname::identifier(void) { return sname##_##identifier##_get(&ptr) ? true: " "false; } \\\n" " inline void sname::identifier(bool value) { sname##_##identifier##_set(&ptr, value); }\n" "\n" "#define BOOLEAN_ARRAY_PROPERTY(sname, size, identifier) \\\n" " inline Array sname::identifier(void) \\\n" " { Array ar; sname##_##identifier##_get(&ptr, ar.data); return ar; } \\\n" " inline void sname::identifier(bool values[size]) \\\n" " { sname##_##identifier##_set(&ptr, values); } \\\n" "\n" "#define BOOLEAN_DYNAMIC_ARRAY_PROPERTY(sname, identifier) \\\n" " inline DynamicArray sname::identifier(void) { \\\n" " int arraylen[3]; \\\n" " int len = sname##_##identifier##_get_length(&ptr, arraylen); \\\n" " DynamicArray ar(len); \\\n" " sname##_##identifier##_get(&ptr, ar.data); \\\n" " return ar; } \\\n" " inline void sname::identifier(bool values[]) \\\n" " { sname##_##identifier##_set(&ptr, values); } \\\n" "\n" "#define INT_PROPERTY(sname, identifier) \\\n" " inline int sname::identifier(void) { return sname##_##identifier##_get(&ptr); } \\\n" " inline void sname::identifier(int value) { sname##_##identifier##_set(&ptr, value); }\n" "\n" "#define INT_ARRAY_PROPERTY(sname, size, identifier) \\\n" " inline Array sname::identifier(void) \\\n" " { Array ar; sname##_##identifier##_get(&ptr, ar.data); return ar; } \\\n" " inline void sname::identifier(int values[size]) \\\n" " { sname##_##identifier##_set(&ptr, values); } \\\n" "\n" "#define INT_DYNAMIC_ARRAY_PROPERTY(sname, identifier) \\\n" " inline DynamicArray sname::identifier(void) { \\\n" " int arraylen[3]; \\\n" " int len = sname##_##identifier##_get_length(&ptr, arraylen); \\\n" " DynamicArray ar(len); \\\n" " sname##_##identifier##_get(&ptr, ar.data); \\\n" " return ar; } \\\n" " inline void sname::identifier(int values[]) \\\n" " { sname##_##identifier##_set(&ptr, values); } \\\n" "\n" "#define FLOAT_PROPERTY(sname, identifier) \\\n" " inline float sname::identifier(void) { return sname##_##identifier##_get(&ptr); } \\\n" " inline void sname::identifier(float value) { sname##_##identifier##_set(&ptr, value); }\n" "\n" "#define FLOAT_ARRAY_PROPERTY(sname, size, identifier) \\\n" " inline Array sname::identifier(void) \\\n" " { Array ar; sname##_##identifier##_get(&ptr, ar.data); return ar; } \\\n" " inline void sname::identifier(float values[size]) \\\n" " { sname##_##identifier##_set(&ptr, values); } \\\n" "\n" "#define FLOAT_DYNAMIC_ARRAY_PROPERTY(sname, identifier) \\\n" " inline DynamicArray sname::identifier(void) { \\\n" " int arraylen[3]; \\\n" " int len = sname##_##identifier##_get_length(&ptr, arraylen); \\\n" " DynamicArray ar(len); \\\n" " sname##_##identifier##_get(&ptr, ar.data); \\\n" " return ar; } \\\n" " inline void sname::identifier(float values[]) \\\n" " { sname##_##identifier##_set(&ptr, values); } \\\n" "\n" "#define ENUM_PROPERTY(type, sname, identifier) \\\n" " inline sname::type sname::identifier(void) { return " "(type)sname##_##identifier##_get(&ptr); } \\\n" " inline void sname::identifier(sname::type value) { sname##_##identifier##_set(&ptr, " "value); }\n" "\n" "#define STRING_PROPERTY(sname, identifier) \\\n" " inline std::string sname::identifier(void) { \\\n" " int len = sname##_##identifier##_length(&ptr); \\\n" " std::string str; str.resize(len); \\\n" " sname##_##identifier##_get(&ptr, &str[0]); return str; } \\\n" " inline void sname::identifier(const std::string& value) { \\\n" " sname##_##identifier##_set(&ptr, value.c_str()); } \\\n" "\n" "#define POINTER_PROPERTY(type, sname, identifier) \\\n" " inline type sname::identifier(void) { return type(sname##_##identifier##_get(&ptr)); }\n" "\n" "#define COLLECTION_PROPERTY_LENGTH_false(sname, identifier) \\\n" " inline static int sname##_##identifier##_length_wrap(PointerRNA *ptr) \\\n" " { \\\n" " CollectionPropertyIterator iter; \\\n" " int length = 0; \\\n" " sname##_##identifier##_begin(&iter, ptr); \\\n" " while (iter.valid) { \\\n" " sname##_##identifier##_next(&iter); \\\n" " ++length; \\\n" " } \\\n" " sname##_##identifier##_end(&iter); \\\n" " return length; \\\n" " } \n" "#define COLLECTION_PROPERTY_LENGTH_true(sname, identifier) \\\n" " inline static int sname##_##identifier##_length_wrap(PointerRNA *ptr) \\\n" " { return sname##_##identifier##_length(ptr); } \n" "\n" "#define COLLECTION_PROPERTY_EMPTY_false(sname, identifier) \\\n" " inline static bool sname##_##identifier##_empty_wrap(PointerRNA *ptr) \\\n" " { \\\n" " CollectionPropertyIterator iter; \\\n" " sname##_##identifier##_begin(&iter, ptr); \\\n" " bool empty = !iter.valid; \\\n" " sname##_##identifier##_end(&iter); \\\n" " return empty; \\\n" " } \n" "#define COLLECTION_PROPERTY_EMPTY_true(sname, identifier) \\\n" " inline static bool sname##_##identifier##_empty_wrap(PointerRNA *ptr) \\\n" " { return sname##_##identifier##_length(ptr) == 0; } \n" "\n" "#define COLLECTION_PROPERTY_LOOKUP_INT_false(sname, identifier) \\\n" " inline static int sname##_##identifier##_lookup_int_wrap(PointerRNA *ptr, int key, " "PointerRNA *r_ptr) \\\n" " { \\\n" " CollectionPropertyIterator iter; \\\n" " int i = 0, found = 0; \\\n" " sname##_##identifier##_begin(&iter, ptr); \\\n" " while (iter.valid) { \\\n" " if (i == key) { \\\n" " *r_ptr = iter.ptr; \\\n" " found = 1; \\\n" " break; \\\n" " } \\\n" " sname##_##identifier##_next(&iter); \\\n" " ++i; \\\n" " } \\\n" " sname##_##identifier##_end(&iter); \\\n" " if (!found) { \\\n" " memset(r_ptr, 0, sizeof(*r_ptr)); \\\n" " } \\\n" " return found; \\\n" " } \n" "#define COLLECTION_PROPERTY_LOOKUP_INT_true(sname, identifier) \\\n" " inline static int sname##_##identifier##_lookup_int_wrap(PointerRNA *ptr, int key, " "PointerRNA *r_ptr) \\\n" " { \\\n" " int found = sname##_##identifier##_lookup_int(ptr, key, r_ptr); \\\n" " if (!found) { \\\n" " memset(r_ptr, 0, sizeof(*r_ptr)); \\\n" " } \\\n" " return found; \\\n" " } \n" "#define COLLECTION_PROPERTY_LOOKUP_STRING_false(sname, identifier) \\\n" " inline static int sname##_##identifier##_lookup_string_wrap(PointerRNA *ptr, const char " "*key, PointerRNA *r_ptr) \\\n" " { \\\n" " CollectionPropertyIterator iter; \\\n" " int found = 0; \\\n" " PropertyRNA *item_name_prop = RNA_struct_name_property(ptr->type); \\\n" " sname##_##identifier##_begin(&iter, ptr); \\\n" " while (iter.valid && !found) { \\\n" " char name_fixed[32]; \\\n" " const char *name; \\\n" " int name_length; \\\n" " name = RNA_property_string_get_alloc(&iter.ptr, item_name_prop, name_fixed, " "sizeof(name_fixed), &name_length); \\\n" " if (!strncmp(name, key, name_length)) { \\\n" " *r_ptr = iter.ptr; \\\n" " found = 1; \\\n" " } \\\n" " if (name_fixed != name) { \\\n" " MEM_freeN((void *) name); \\\n" " } \\\n" " sname##_##identifier##_next(&iter); \\\n" " } \\\n" " sname##_##identifier##_end(&iter); \\\n" " if (!found) { \\\n" " memset(r_ptr, 0, sizeof(*r_ptr)); \\\n" " } \\\n" " return found; \\\n" " } \n" "#define COLLECTION_PROPERTY_LOOKUP_STRING_true(sname, identifier) \\\n" " inline static int sname##_##identifier##_lookup_string_wrap(PointerRNA *ptr, const char " "*key, PointerRNA *r_ptr) \\\n" " { \\\n" " int found = sname##_##identifier##_lookup_string(ptr, key, r_ptr); \\\n" " if (!found) { \\\n" " memset(r_ptr, 0, sizeof(*r_ptr)); \\\n" " } \\\n" " return found; \\\n" " } \n" "#define COLLECTION_PROPERTY(collection_funcs, type, sname, identifier, has_length, " "has_lookup_int, has_lookup_string) \\\n" " typedef CollectionIterator identifier##_iterator; \\\n" " COLLECTION_PROPERTY_LENGTH_##has_length(sname, identifier) \\\n" " COLLECTION_PROPERTY_EMPTY_##has_length(sname, identifier) \\\n" " COLLECTION_PROPERTY_LOOKUP_INT_##has_lookup_int(sname, identifier) \\\n" " COLLECTION_PROPERTY_LOOKUP_STRING_##has_lookup_string(sname, identifier) \\\n" " CollectionRef identifier;\n" "\n" "class Pointer {\n" "public:\n" " Pointer(const PointerRNA &p) : ptr(p) { }\n" " operator const PointerRNA&() { return ptr; }\n" " bool is_a(StructRNA *type) { return RNA_struct_is_a(ptr.type, type) ? true: false; }\n" " operator void*() { return ptr.data; }\n" " operator bool() { return ptr.data != NULL; }\n" "\n" " bool operator==(const Pointer &other) const { return ptr.data == other.ptr.data; }\n" " bool operator!=(const Pointer &other) const { return ptr.data != other.ptr.data; }\n" " bool operator<(const Pointer &other) const { return ptr.data < other.ptr.data; }\n" "\n" " PointerRNA ptr;\n" "};\n" "\n" "\n" "template\n" "class Array {\n" "public:\n" " T data[Tsize];\n" "\n" " Array() {}\n" " Array(const Array& other) { memcpy(data, other.data, sizeof(T) * Tsize); }\n" " const Array& operator = (const Array& other) { memcpy(data, " "other.data, sizeof(T) * Tsize); " "return *this; }\n" "\n" " operator T*() { return data; }\n" " operator const T*() const { return data; }\n" "};\n" "\n" "template\n" "class DynamicArray {\n" "public:\n" " T *data;\n" " int length;\n" "\n" " DynamicArray() : data(NULL), length(0) {}\n" " DynamicArray(int new_length) : data(NULL), length(new_length) { data = (T " "*)malloc(sizeof(T) * new_length); }\n" " DynamicArray(const DynamicArray& other) : data(NULL), length(0) { copy_from(other); " "}\n" " const DynamicArray& operator = (const DynamicArray& other) { copy_from(other); " "return *this; }\n" "\n" " ~DynamicArray() { if (data) free(data); }\n" "\n" " operator T*() { return data; }\n" "\n" "protected:\n" " void copy_from(const DynamicArray& other) {\n" " if (data) free(data);\n" " data = (T *)malloc(sizeof(T) * other.length);\n" " memcpy(data, other.data, sizeof(T) * other.length);\n" " length = other.length;\n" " }\n" "};\n" "\n" "typedef void (*TBeginFunc)(CollectionPropertyIterator *iter, PointerRNA *ptr);\n" "typedef void (*TNextFunc)(CollectionPropertyIterator *iter);\n" "typedef void (*TEndFunc)(CollectionPropertyIterator *iter);\n" "typedef int (*TLengthFunc)(PointerRNA *ptr);\n" "typedef bool (*TEmptyFunc)(PointerRNA *ptr);\n" "typedef int (*TLookupIntFunc)(PointerRNA *ptr, int key, PointerRNA *r_ptr);\n" "typedef int (*TLookupStringFunc)(PointerRNA *ptr, const char *key, PointerRNA *r_ptr);\n" "\n" "template\n" "class CollectionIterator {\n" "public:\n" " CollectionIterator() : iter(), t(iter.ptr), init(false) { iter.valid = false; }\n" " CollectionIterator(const PointerRNA &ptr) : CollectionIterator() { this->begin(ptr); }\n" " ~CollectionIterator(void) { if (init) Tend(&iter); };\n" "\n" " CollectionIterator(const CollectionIterator &other) = delete;\n" " CollectionIterator(CollectionIterator &&other) = delete;\n" " CollectionIterator &operator=(const CollectionIterator &other) = delete;\n" " CollectionIterator &operator=(CollectionIterator &&other) = delete;\n" "\n" " operator bool(void)\n" " { return iter.valid != 0; }\n" " const CollectionIterator& operator++() { Tnext(&iter); t = " "T(iter.ptr); return *this; }\n" "\n" " T& operator*(void) { return t; }\n" " T* operator->(void) { return &t; }\n" " bool operator == (const CollectionIterator& other) " "{ return iter.valid == other.iter.valid; }\n" " bool operator!=(const CollectionIterator& other) " "{ return iter.valid != other.iter.valid; }\n" "\n" " void begin(const Pointer &ptr)\n" " { if (init) Tend(&iter); Tbegin(&iter, (PointerRNA *)&ptr.ptr); t = T(iter.ptr); init = " "true; }\n" "\n" "private:\n" " CollectionPropertyIterator iter;\n" " T t;\n" " bool init;\n" "};\n" "\n" "template\n" "class CollectionRef : public Tcollection_funcs {\n" "public:\n" " CollectionRef(const PointerRNA &p) : Tcollection_funcs(p), ptr(p) {}\n" "\n" " void begin(CollectionIterator& iter)\n" " { iter.begin(ptr); }\n" " CollectionIterator begin()\n" " { return CollectionIterator(ptr); }\n" " CollectionIterator end()\n" " { return CollectionIterator(); } /* test */ \n" "" " int length()\n" " { return Tlength(&ptr); }\n" " bool empty()\n" " { return Tempty(&ptr); }\n" " T operator[](int key)\n" " { PointerRNA r_ptr; Tlookup_int(&ptr, key, &r_ptr); return T(r_ptr); }\n" " T operator[](const std::string &key)\n" " { PointerRNA r_ptr; Tlookup_string(&ptr, key.c_str(), &r_ptr); return T(r_ptr); }\n" "\n" "private:\n" " PointerRNA ptr;\n" "};\n" "\n" "class DefaultCollectionFunctions {\n" "public:\n" " DefaultCollectionFunctions(const PointerRNA & /*p*/) {}\n" "};\n" "\n" "\n"; static int rna_is_collection_prop(PropertyRNA *prop) { if (!(prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN)) { if (prop->type == PROP_COLLECTION) { return 1; } } return 0; } static int rna_is_collection_functions_struct(const char **collection_structs, const char *struct_name) { int a = 0, found = 0; while (collection_structs[a]) { if (STREQ(collection_structs[a], struct_name)) { found = 1; break; } a++; } return found; } static void rna_generate_header_class_cpp(StructDefRNA *ds, FILE *f) { StructRNA *srna = ds->srna; PropertyDefRNA *dp; FunctionDefRNA *dfunc; fprintf(f, "/**************** %s ****************/\n\n", srna->name); fprintf(f, "class %s : public %s {\n", srna->identifier, (srna->base) ? srna->base->identifier : "Pointer"); fprintf(f, "public:\n"); fprintf(f, "\t%s(const PointerRNA &ptr_arg) :\n\t\t%s(ptr_arg)", srna->identifier, (srna->base) ? srna->base->identifier : "Pointer"); for (dp = ds->cont.properties.first; dp; dp = dp->next) { if (rna_is_collection_prop(dp->prop)) { fprintf(f, ",\n\t\t%s(ptr_arg)", dp->prop->identifier); } } fprintf(f, "\n\t\t{}\n\n"); for (dp = ds->cont.properties.first; dp; dp = dp->next) { rna_def_property_funcs_header_cpp(f, ds->srna, dp); } fprintf(f, "\n"); for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) { rna_def_struct_function_header_cpp(f, srna, dfunc); } fprintf(f, "};\n\n"); } static void rna_generate_header_cpp(BlenderRNA *UNUSED(brna), FILE *f) { StructDefRNA *ds; PropertyDefRNA *dp; StructRNA *srna; FunctionDefRNA *dfunc; const char *first_collection_func_struct = NULL; const char *collection_func_structs[256] = {NULL}; int all_collection_func_structs = 0; int max_collection_func_structs = sizeof(collection_func_structs) / sizeof(collection_func_structs[0]) - 1; fprintf(f, "\n#ifndef __RNA_BLENDER_CPP_H__\n"); fprintf(f, "#define __RNA_BLENDER_CPP_H__\n\n"); fprintf(f, "/* Automatically generated classes for the Data API.\n" " * Do not edit manually, changes will be overwritten. */\n\n"); fprintf(f, "#include \"RNA_blender.h\"\n"); fprintf(f, "#include \"RNA_types.h\"\n"); fprintf(f, "#include \"RNA_access.h\"\n"); fprintf(f, "#include \"DNA_node_types.h\"\n"); fprintf(f, "%s", cpp_classes); fprintf(f, "/**************** Declarations ****************/\n\n"); for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { fprintf(f, "class %s;\n", ds->srna->identifier); } fprintf(f, "\n"); /* first get list of all structures used as collection functions, so they'll be declared first */ for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { for (dp = ds->cont.properties.first; dp; dp = dp->next) { if (rna_is_collection_prop(dp->prop)) { PropertyRNA *prop = dp->prop; if (prop->srna) { /* store name of structure which first uses custom functions for collections */ if (first_collection_func_struct == NULL) { first_collection_func_struct = ds->srna->identifier; } if (!rna_is_collection_functions_struct(collection_func_structs, (char *)prop->srna)) { if (all_collection_func_structs >= max_collection_func_structs) { printf("Array size to store all collection structures names is too small\n"); exit(1); } collection_func_structs[all_collection_func_structs++] = (char *)prop->srna; } } } } } /* declare all structures in such order: * - first N structures which doesn't use custom functions for collections * - all structures used for custom functions in collections * - all the rest structures * such an order prevents usage of non-declared classes */ for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { srna = ds->srna; if (STREQ(srna->identifier, first_collection_func_struct)) { StructDefRNA *ds2; StructRNA *srna2; for (ds2 = DefRNA.structs.first; ds2; ds2 = ds2->cont.next) { srna2 = ds2->srna; if (rna_is_collection_functions_struct(collection_func_structs, srna2->identifier)) { rna_generate_header_class_cpp(ds2, f); } } } if (!rna_is_collection_functions_struct(collection_func_structs, srna->identifier)) { rna_generate_header_class_cpp(ds, f); } } fprintf(f, "} /* namespace BL */\n"); fprintf(f, "\n"); fprintf(f, "/**************** Implementation ****************/\n"); fprintf(f, "\n"); fprintf(f, "/* Structure prototypes */\n\n"); fprintf(f, "extern \"C\" {\n"); rna_generate_struct_prototypes(f); fprintf(f, "}\n\n"); fprintf(f, "namespace BL {\n"); for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { srna = ds->srna; for (dp = ds->cont.properties.first; dp; dp = dp->next) { rna_def_property_funcs_impl_cpp(f, ds->srna, dp); } fprintf(f, "\n"); for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) { rna_def_struct_function_impl_cpp(f, srna, dfunc); } fprintf(f, "\n"); } fprintf(f, "}\n\n#endif /* __RNA_BLENDER_CPP_H__ */\n\n"); } static void make_bad_file(const char *file, int line) { FILE *fp = fopen(file, "w"); fprintf(fp, "#error \"Error! can't make correct RNA file from %s:%d, " "check DNA properties.\"\n", __FILE__, line); fclose(fp); } /** * \param extern_outfile: Directory to put public headers into. Can be NULL, in which case * everything is put into \a outfile. */ static int rna_preprocess(const char *outfile, const char *public_header_outfile) { BlenderRNA *brna; StructDefRNA *ds; FILE *file; char deffile[4096]; int i, status; const char *deps[3]; /* expand as needed */ if (!public_header_outfile) { public_header_outfile = outfile; } /* define rna */ brna = RNA_create(); for (i = 0; PROCESS_ITEMS[i].filename; i++) { if (PROCESS_ITEMS[i].define) { PROCESS_ITEMS[i].define(brna); /* sanity check */ if (!DefRNA.animate) { fprintf(stderr, "Error: DefRNA.animate left disabled in %s\n", PROCESS_ITEMS[i].filename); } for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) { if (!ds->filename) { ds->filename = PROCESS_ITEMS[i].filename; } } } } rna_auto_types(); status = (DefRNA.error != 0); /* Create external rna struct prototype header file RNA_prototypes.h. */ strcpy(deffile, public_header_outfile); strcat(deffile, "RNA_prototypes.h" TMP_EXT); if (status) { make_bad_file(deffile, __LINE__); } file = fopen(deffile, "w"); if (!file) { fprintf(stderr, "Unable to open file: %s\n", deffile); status = 1; } else { fprintf(file, "/* Automatically generated RNA property declarations, to statically reference \n" " * properties as `rna_[struct-name]_[property-name]`.\n" " *\n" " * DO NOT EDIT MANUALLY, changes will be overwritten.\n" " */\n\n"); fprintf(file, "#pragma once\n\n"); fprintf(file, "#ifdef __cplusplus\n extern \"C\" {\n#endif\n\n"); rna_generate_external_property_prototypes(brna, file); fprintf(file, "#ifdef __cplusplus\n }\n#endif\n"); fclose(file); status = (DefRNA.error != 0); replace_if_different(deffile, NULL); } /* create internal rna struct prototype header file */ strcpy(deffile, outfile); strcat(deffile, "rna_prototypes_gen.h"); if (status) { make_bad_file(deffile, __LINE__); } file = fopen(deffile, "w"); if (!file) { fprintf(stderr, "Unable to open file: %s\n", deffile); status = 1; } else { fprintf(file, "/* Automatically generated function declarations for the Data API.\n" " * Do not edit manually, changes will be overwritten. */\n\n"); rna_generate_struct_rna_prototypes(brna, file); fclose(file); status = (DefRNA.error != 0); } /* create rna_gen_*.c files */ for (i = 0; PROCESS_ITEMS[i].filename; i++) { strcpy(deffile, outfile); strcat(deffile, PROCESS_ITEMS[i].filename); deffile[strlen(deffile) - 2] = '\0'; strcat(deffile, "_gen.c" TMP_EXT); if (status) { make_bad_file(deffile, __LINE__); } else { file = fopen(deffile, "w"); if (!file) { fprintf(stderr, "Unable to open file: %s\n", deffile); status = 1; } else { rna_generate(brna, file, PROCESS_ITEMS[i].filename, PROCESS_ITEMS[i].api_filename); fclose(file); status = (DefRNA.error != 0); } } /* avoid unneeded rebuilds */ deps[0] = PROCESS_ITEMS[i].filename; deps[1] = PROCESS_ITEMS[i].api_filename; deps[2] = NULL; replace_if_different(deffile, deps); } /* create RNA_blender_cpp.h */ strcpy(deffile, outfile); strcat(deffile, "RNA_blender_cpp.h" TMP_EXT); if (status) { make_bad_file(deffile, __LINE__); } else { file = fopen(deffile, "w"); if (!file) { fprintf(stderr, "Unable to open file: %s\n", deffile); status = 1; } else { rna_generate_header_cpp(brna, file); fclose(file); status = (DefRNA.error != 0); } } replace_if_different(deffile, NULL); rna_sort(brna); /* create RNA_blender.h */ strcpy(deffile, outfile); strcat(deffile, "RNA_blender.h" TMP_EXT); if (status) { make_bad_file(deffile, __LINE__); } else { file = fopen(deffile, "w"); if (!file) { fprintf(stderr, "Unable to open file: %s\n", deffile); status = 1; } else { rna_generate_header(brna, file); fclose(file); status = (DefRNA.error != 0); } } replace_if_different(deffile, NULL); /* free RNA */ RNA_define_free(brna); RNA_free(brna); return status; } static void mem_error_cb(const char *errorStr) { fprintf(stderr, "%s", errorStr); fflush(stderr); } int main(int argc, char **argv) { int return_status = 0; MEM_init_memleak_detection(); MEM_set_error_callback(mem_error_cb); CLG_init(); /* Some useful defaults since this runs standalone. */ CLG_output_use_basename_set(true); CLG_level_set(debugSRNA); if (argc < 2) { fprintf(stderr, "Usage: %s outdirectory [public header outdirectory]/\n", argv[0]); return_status = 1; } else { if (debugSRNA > 0) { fprintf(stderr, "Running makesrna\n"); } makesrna_path = argv[0]; return_status = rna_preprocess(argv[1], (argc > 2) ? argv[2] : NULL); } CLG_exit(); return return_status; }