/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2005 by the Blender Foundation. * All rights reserved. */ /** \file * \ingroup modifiers * * Array modifier: duplicates the object multiple times along an axis. */ #include "MEM_guardedalloc.h" #include "BLI_utildefines.h" #include "BLI_math.h" #include "DNA_curve_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BKE_displist.h" #include "BKE_curve.h" #include "BKE_library.h" #include "BKE_library_query.h" #include "BKE_modifier.h" #include "BKE_mesh.h" #include "BKE_object_deform.h" #include "MOD_util.h" #include "DEG_depsgraph.h" #include "DEG_depsgraph_query.h" static void initData(ModifierData *md) { ArrayModifierData *amd = (ArrayModifierData *)md; /* default to 2 duplicates distributed along the x-axis by an * offset of 1 object-width */ amd->start_cap = amd->end_cap = amd->curve_ob = amd->offset_ob = NULL; amd->count = 2; zero_v3(amd->offset); amd->scale[0] = 1; amd->scale[1] = amd->scale[2] = 0; amd->length = 0; amd->merge_dist = 0.01; amd->fit_type = MOD_ARR_FIXEDCOUNT; amd->offset_type = MOD_ARR_OFF_RELATIVE; amd->flags = 0; } static void foreachObjectLink(ModifierData *md, Object *ob, ObjectWalkFunc walk, void *userData) { ArrayModifierData *amd = (ArrayModifierData *)md; walk(userData, ob, &amd->start_cap, IDWALK_CB_NOP); walk(userData, ob, &amd->end_cap, IDWALK_CB_NOP); walk(userData, ob, &amd->curve_ob, IDWALK_CB_NOP); walk(userData, ob, &amd->offset_ob, IDWALK_CB_NOP); } static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx) { ArrayModifierData *amd = (ArrayModifierData *)md; if (amd->start_cap != NULL) { DEG_add_object_relation( ctx->node, amd->start_cap, DEG_OB_COMP_TRANSFORM, "Array Modifier Start Cap"); DEG_add_object_relation( ctx->node, amd->start_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier Start Cap"); } if (amd->end_cap != NULL) { DEG_add_object_relation( ctx->node, amd->end_cap, DEG_OB_COMP_TRANSFORM, "Array Modifier End Cap"); DEG_add_object_relation( ctx->node, amd->end_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier End Cap"); } if (amd->curve_ob) { DEG_add_object_relation( ctx->node, amd->curve_ob, DEG_OB_COMP_GEOMETRY, "Array Modifier Curve"); DEG_add_special_eval_flag(ctx->node, &amd->curve_ob->id, DAG_EVAL_NEED_CURVE_PATH); } if (amd->offset_ob != NULL) { DEG_add_object_relation( ctx->node, amd->offset_ob, DEG_OB_COMP_TRANSFORM, "Array Modifier Offset"); } DEG_add_modifier_to_transform_relation(ctx->node, "Array Modifier"); } BLI_INLINE float sum_v3(const float v[3]) { return v[0] + v[1] + v[2]; } /* Structure used for sorting vertices, when processing doubles */ typedef struct SortVertsElem { int vertex_num; /* The original index of the vertex, prior to sorting */ float co[3]; /* Its coordinates */ float sum_co; /* sum_v3(co), just so we don't do the sum many times. */ } SortVertsElem; static int svert_sum_cmp(const void *e1, const void *e2) { const SortVertsElem *sv1 = e1; const SortVertsElem *sv2 = e2; if (sv1->sum_co > sv2->sum_co) { return 1; } else if (sv1->sum_co < sv2->sum_co) { return -1; } else { return 0; } } static void svert_from_mvert(SortVertsElem *sv, const MVert *mv, const int i_begin, const int i_end) { int i; for (i = i_begin; i < i_end; i++, sv++, mv++) { sv->vertex_num = i; copy_v3_v3(sv->co, mv->co); sv->sum_co = sum_v3(mv->co); } } /** * Take as inputs two sets of verts, to be processed for detection of doubles and mapping. * Each set of verts is defined by its start within mverts array and its num_verts; * It builds a mapping for all vertices within source, * to vertices within target, or -1 if no double found. * The int doubles_map[num_verts_source] array must have been allocated by caller. */ static void dm_mvert_map_doubles(int *doubles_map, const MVert *mverts, const int target_start, const int target_num_verts, const int source_start, const int source_num_verts, const float dist) { const float dist3 = ((float)M_SQRT3 + 0.00005f) * dist; /* Just above sqrt(3) */ int i_source, i_target, i_target_low_bound, target_end, source_end; SortVertsElem *sorted_verts_target, *sorted_verts_source; SortVertsElem *sve_source, *sve_target, *sve_target_low_bound; bool target_scan_completed; target_end = target_start + target_num_verts; source_end = source_start + source_num_verts; /* build array of MVerts to be tested for merging */ sorted_verts_target = MEM_malloc_arrayN(target_num_verts, sizeof(SortVertsElem), __func__); sorted_verts_source = MEM_malloc_arrayN(source_num_verts, sizeof(SortVertsElem), __func__); /* Copy target vertices index and cos into SortVertsElem array */ svert_from_mvert(sorted_verts_target, mverts + target_start, target_start, target_end); /* Copy source vertices index and cos into SortVertsElem array */ svert_from_mvert(sorted_verts_source, mverts + source_start, source_start, source_end); /* sort arrays according to sum of vertex coordinates (sumco) */ qsort(sorted_verts_target, target_num_verts, sizeof(SortVertsElem), svert_sum_cmp); qsort(sorted_verts_source, source_num_verts, sizeof(SortVertsElem), svert_sum_cmp); sve_target_low_bound = sorted_verts_target; i_target_low_bound = 0; target_scan_completed = false; /* Scan source vertices, in SortVertsElem sorted array, */ /* all the while maintaining the lower bound of possible doubles in target vertices */ for (i_source = 0, sve_source = sorted_verts_source; i_source < source_num_verts; i_source++, sve_source++) { int best_target_vertex = -1; float best_dist_sq = dist * dist; float sve_source_sumco; /* If source has already been assigned to a target (in an earlier call, with other chunks) */ if (doubles_map[sve_source->vertex_num] != -1) { continue; } /* If target fully scanned already, then all remaining source vertices cannot have a double */ if (target_scan_completed) { doubles_map[sve_source->vertex_num] = -1; continue; } sve_source_sumco = sum_v3(sve_source->co); /* Skip all target vertices that are more than dist3 lower in terms of sumco */ /* and advance the overall lower bound, applicable to all remaining vertices as well. */ while ((i_target_low_bound < target_num_verts) && (sve_target_low_bound->sum_co < sve_source_sumco - dist3)) { i_target_low_bound++; sve_target_low_bound++; } /* If end of target list reached, then no more possible doubles */ if (i_target_low_bound >= target_num_verts) { doubles_map[sve_source->vertex_num] = -1; target_scan_completed = true; continue; } /* Test target candidates starting at the low bound of possible doubles, * ordered in terms of sumco. */ i_target = i_target_low_bound; sve_target = sve_target_low_bound; /* i_target will scan vertices in the * [v_source_sumco - dist3; v_source_sumco + dist3] range */ while ((i_target < target_num_verts) && (sve_target->sum_co <= sve_source_sumco + dist3)) { /* Testing distance for candidate double in target */ /* v_target is within dist3 of v_source in terms of sumco; check real distance */ float dist_sq; if ((dist_sq = len_squared_v3v3(sve_source->co, sve_target->co)) <= best_dist_sq) { /* Potential double found */ best_dist_sq = dist_sq; best_target_vertex = sve_target->vertex_num; /* If target is already mapped, we only follow that mapping if final target remains * close enough from current vert (otherwise no mapping at all). * Note that if we later find another target closer than this one, then we check it. * But if other potential targets are farther, * then there will be no mapping at all for this source. */ while (best_target_vertex != -1 && !ELEM(doubles_map[best_target_vertex], -1, best_target_vertex)) { if (compare_len_v3v3(mverts[sve_source->vertex_num].co, mverts[doubles_map[best_target_vertex]].co, dist)) { best_target_vertex = doubles_map[best_target_vertex]; } else { best_target_vertex = -1; } } } i_target++; sve_target++; } /* End of candidate scan: if none found then no doubles */ doubles_map[sve_source->vertex_num] = best_target_vertex; } MEM_freeN(sorted_verts_source); MEM_freeN(sorted_verts_target); } static void mesh_merge_transform(Mesh *result, Mesh *cap_mesh, float cap_offset[4][4], unsigned int cap_verts_index, unsigned int cap_edges_index, int cap_loops_index, int cap_polys_index, int cap_nverts, int cap_nedges, int cap_nloops, int cap_npolys, int *remap, int remap_len) { int *index_orig; int i; MVert *mv; MEdge *me; MLoop *ml; MPoly *mp; CustomData_copy_data(&cap_mesh->vdata, &result->vdata, 0, cap_verts_index, cap_nverts); CustomData_copy_data(&cap_mesh->edata, &result->edata, 0, cap_edges_index, cap_nedges); CustomData_copy_data(&cap_mesh->ldata, &result->ldata, 0, cap_loops_index, cap_nloops); CustomData_copy_data(&cap_mesh->pdata, &result->pdata, 0, cap_polys_index, cap_npolys); mv = result->mvert + cap_verts_index; for (i = 0; i < cap_nverts; i++, mv++) { mul_m4_v3(cap_offset, mv->co); /* Reset MVert flags for caps */ mv->flag = mv->bweight = 0; } /* remap the vertex groups if necessary */ if (result->dvert != NULL) { BKE_object_defgroup_index_map_apply( &result->dvert[cap_verts_index], cap_nverts, remap, remap_len); } /* adjust cap edge vertex indices */ me = result->medge + cap_edges_index; for (i = 0; i < cap_nedges; i++, me++) { me->v1 += cap_verts_index; me->v2 += cap_verts_index; } /* adjust cap poly loopstart indices */ mp = result->mpoly + cap_polys_index; for (i = 0; i < cap_npolys; i++, mp++) { mp->loopstart += cap_loops_index; } /* adjust cap loop vertex and edge indices */ ml = result->mloop + cap_loops_index; for (i = 0; i < cap_nloops; i++, ml++) { ml->v += cap_verts_index; ml->e += cap_edges_index; } /* set origindex */ index_orig = CustomData_get_layer(&result->vdata, CD_ORIGINDEX); if (index_orig) { copy_vn_i(index_orig + cap_verts_index, cap_nverts, ORIGINDEX_NONE); } index_orig = CustomData_get_layer(&result->edata, CD_ORIGINDEX); if (index_orig) { copy_vn_i(index_orig + cap_edges_index, cap_nedges, ORIGINDEX_NONE); } index_orig = CustomData_get_layer(&result->pdata, CD_ORIGINDEX); if (index_orig) { copy_vn_i(index_orig + cap_polys_index, cap_npolys, ORIGINDEX_NONE); } index_orig = CustomData_get_layer(&result->ldata, CD_ORIGINDEX); if (index_orig) { copy_vn_i(index_orig + cap_loops_index, cap_nloops, ORIGINDEX_NONE); } } static Mesh *arrayModifier_doArray(ArrayModifierData *amd, const ModifierEvalContext *ctx, Mesh *mesh) { const float eps = 1e-6f; const MVert *src_mvert; MVert *mv, *mv_prev, *result_dm_verts; MEdge *me; MLoop *ml; MPoly *mp; int i, j, c, count; float length = amd->length; /* offset matrix */ float offset[4][4]; float scale[3]; bool offset_has_scale; float current_offset[4][4]; float final_offset[4][4]; int *full_doubles_map = NULL; int tot_doubles; const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0; const bool use_recalc_normals = (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) || use_merge; const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob != NULL); int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0; int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0; int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0; int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys; int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts; Mesh *result, *start_cap_mesh = NULL, *end_cap_mesh = NULL; int *vgroup_start_cap_remap = NULL; int vgroup_start_cap_remap_len = 0; int *vgroup_end_cap_remap = NULL; int vgroup_end_cap_remap_len = 0; chunk_nverts = mesh->totvert; chunk_nedges = mesh->totedge; chunk_nloops = mesh->totloop; chunk_npolys = mesh->totpoly; count = amd->count; Object *start_cap_ob = amd->start_cap; if (start_cap_ob && start_cap_ob != ctx->object) { vgroup_start_cap_remap = BKE_object_defgroup_index_map_create( start_cap_ob, ctx->object, &vgroup_start_cap_remap_len); start_cap_mesh = BKE_modifier_get_evaluated_mesh_from_evaluated_object(start_cap_ob, false); if (start_cap_mesh) { start_cap_nverts = start_cap_mesh->totvert; start_cap_nedges = start_cap_mesh->totedge; start_cap_nloops = start_cap_mesh->totloop; start_cap_npolys = start_cap_mesh->totpoly; } } Object *end_cap_ob = amd->end_cap; if (end_cap_ob && end_cap_ob != ctx->object) { vgroup_end_cap_remap = BKE_object_defgroup_index_map_create( end_cap_ob, ctx->object, &vgroup_end_cap_remap_len); end_cap_mesh = BKE_modifier_get_evaluated_mesh_from_evaluated_object(end_cap_ob, false); if (end_cap_mesh) { end_cap_nverts = end_cap_mesh->totvert; end_cap_nedges = end_cap_mesh->totedge; end_cap_nloops = end_cap_mesh->totloop; end_cap_npolys = end_cap_mesh->totpoly; } } /* Build up offset array, cumulating all settings options */ unit_m4(offset); src_mvert = mesh->mvert; if (amd->offset_type & MOD_ARR_OFF_CONST) { add_v3_v3(offset[3], amd->offset); } if (amd->offset_type & MOD_ARR_OFF_RELATIVE) { float min[3], max[3]; const MVert *src_mv; INIT_MINMAX(min, max); for (src_mv = src_mvert, j = chunk_nverts; j--; src_mv++) { minmax_v3v3_v3(min, max, src_mv->co); } for (j = 3; j--;) { offset[3][j] += amd->scale[j] * (max[j] - min[j]); } } if (use_offset_ob) { float obinv[4][4]; float result_mat[4][4]; if (ctx->object) { invert_m4_m4(obinv, ctx->object->obmat); } else { unit_m4(obinv); } mul_m4_series(result_mat, offset, obinv, amd->offset_ob->obmat); copy_m4_m4(offset, result_mat); } /* Check if there is some scaling. If scaling, then we will not translate mapping */ mat4_to_size(scale, offset); offset_has_scale = !is_one_v3(scale); if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob != NULL) { Object *curve_ob = amd->curve_ob; CurveCache *curve_cache = curve_ob->runtime.curve_cache; if (curve_cache != NULL && curve_cache->path != NULL) { float scale_fac = mat4_to_scale(curve_ob->obmat); length = scale_fac * curve_cache->path->totdist; } } /* calculate the maximum number of copies which will fit within the * prescribed length */ if (amd->fit_type == MOD_ARR_FITLENGTH || amd->fit_type == MOD_ARR_FITCURVE) { float dist = len_v3(offset[3]); if (dist > eps) { /* this gives length = first copy start to last copy end * add a tiny offset for floating point rounding errors */ count = (length + eps) / dist + 1; } else { /* if the offset has no translation, just make one copy */ count = 1; } } if (count < 1) { count = 1; } /* The number of verts, edges, loops, polys, before eventually merging doubles */ result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts; result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges; result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops; result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys; /* Initialize a result dm */ result = BKE_mesh_new_nomain_from_template( mesh, result_nverts, result_nedges, 0, result_nloops, result_npolys); result_dm_verts = result->mvert; if (use_merge) { /* Will need full_doubles_map for handling merge */ full_doubles_map = MEM_malloc_arrayN(result_nverts, sizeof(int), "mod array doubles map"); copy_vn_i(full_doubles_map, result_nverts, -1); } /* copy customdata to original geometry */ CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, chunk_nverts); CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, chunk_nedges); CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, chunk_nloops); CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, chunk_npolys); /* Subsurf for eg won't have mesh data in the custom data arrays. * now add mvert/medge/mpoly layers. */ if (!CustomData_has_layer(&mesh->vdata, CD_MVERT)) { memcpy(result->mvert, mesh->mvert, sizeof(*result->mvert) * mesh->totvert); } if (!CustomData_has_layer(&mesh->edata, CD_MEDGE)) { memcpy(result->medge, mesh->medge, sizeof(*result->medge) * mesh->totedge); } if (!CustomData_has_layer(&mesh->pdata, CD_MPOLY)) { memcpy(result->mloop, mesh->mloop, sizeof(*result->mloop) * mesh->totloop); memcpy(result->mpoly, mesh->mpoly, sizeof(*result->mpoly) * mesh->totpoly); } /* Remember first chunk, in case of cap merge */ first_chunk_start = 0; first_chunk_nverts = chunk_nverts; unit_m4(current_offset); for (c = 1; c < count; c++) { /* copy customdata to new geometry */ CustomData_copy_data(&mesh->vdata, &result->vdata, 0, c * chunk_nverts, chunk_nverts); CustomData_copy_data(&mesh->edata, &result->edata, 0, c * chunk_nedges, chunk_nedges); CustomData_copy_data(&mesh->ldata, &result->ldata, 0, c * chunk_nloops, chunk_nloops); CustomData_copy_data(&mesh->pdata, &result->pdata, 0, c * chunk_npolys, chunk_npolys); mv_prev = result_dm_verts; mv = mv_prev + c * chunk_nverts; /* recalculate cumulative offset here */ mul_m4_m4m4(current_offset, current_offset, offset); /* apply offset to all new verts */ for (i = 0; i < chunk_nverts; i++, mv++, mv_prev++) { mul_m4_v3(current_offset, mv->co); /* We have to correct normals too, if we do not tag them as dirty! */ if (!use_recalc_normals) { float no[3]; normal_short_to_float_v3(no, mv->no); mul_mat3_m4_v3(current_offset, no); normalize_v3(no); normal_float_to_short_v3(mv->no, no); } } /* adjust edge vertex indices */ me = result->medge + c * chunk_nedges; for (i = 0; i < chunk_nedges; i++, me++) { me->v1 += c * chunk_nverts; me->v2 += c * chunk_nverts; } mp = result->mpoly + c * chunk_npolys; for (i = 0; i < chunk_npolys; i++, mp++) { mp->loopstart += c * chunk_nloops; } /* adjust loop vertex and edge indices */ ml = result->mloop + c * chunk_nloops; for (i = 0; i < chunk_nloops; i++, ml++) { ml->v += c * chunk_nverts; ml->e += c * chunk_nedges; } /* Handle merge between chunk n and n-1 */ if (use_merge && (c >= 1)) { if (!offset_has_scale && (c >= 2)) { /* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1 * ... that is except if scaling makes the distance grow */ int k; int this_chunk_index = c * chunk_nverts; int prev_chunk_index = (c - 1) * chunk_nverts; for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) { int target = full_doubles_map[prev_chunk_index]; if (target != -1) { target += chunk_nverts; /* translate mapping */ while (target != -1 && !ELEM(full_doubles_map[target], -1, target)) { /* If target is already mapped, we only follow that mapping if final target remains * close enough from current vert (otherwise no mapping at all). */ if (compare_len_v3v3(result_dm_verts[this_chunk_index].co, result_dm_verts[full_doubles_map[target]].co, amd->merge_dist)) { target = full_doubles_map[target]; } else { target = -1; } } } full_doubles_map[this_chunk_index] = target; } } else { dm_mvert_map_doubles(full_doubles_map, result_dm_verts, (c - 1) * chunk_nverts, chunk_nverts, c * chunk_nverts, chunk_nverts, amd->merge_dist); } } } /* handle UVs */ if (chunk_nloops > 0 && is_zero_v2(amd->uv_offset) == false) { const int totuv = CustomData_number_of_layers(&result->ldata, CD_MLOOPUV); for (i = 0; i < totuv; i++) { MLoopUV *dmloopuv = CustomData_get_layer_n(&result->ldata, CD_MLOOPUV, i); dmloopuv += chunk_nloops; for (c = 1; c < count; c++) { const float uv_offset[2] = { amd->uv_offset[0] * (float)c, amd->uv_offset[1] * (float)c, }; int l_index = chunk_nloops; for (; l_index-- != 0; dmloopuv++) { dmloopuv->uv[0] += uv_offset[0]; dmloopuv->uv[1] += uv_offset[1]; } } } } last_chunk_start = (count - 1) * chunk_nverts; last_chunk_nverts = chunk_nverts; copy_m4_m4(final_offset, current_offset); if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) { /* Merge first and last copies */ dm_mvert_map_doubles(full_doubles_map, result_dm_verts, last_chunk_start, last_chunk_nverts, first_chunk_start, first_chunk_nverts, amd->merge_dist); } /* start capping */ if (start_cap_mesh) { float start_offset[4][4]; int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts; invert_m4_m4(start_offset, offset); mesh_merge_transform(result, start_cap_mesh, start_offset, result_nverts - start_cap_nverts - end_cap_nverts, result_nedges - start_cap_nedges - end_cap_nedges, result_nloops - start_cap_nloops - end_cap_nloops, result_npolys - start_cap_npolys - end_cap_npolys, start_cap_nverts, start_cap_nedges, start_cap_nloops, start_cap_npolys, vgroup_start_cap_remap, vgroup_start_cap_remap_len); /* Identify doubles with first chunk */ if (use_merge) { dm_mvert_map_doubles(full_doubles_map, result_dm_verts, first_chunk_start, first_chunk_nverts, start_cap_start, start_cap_nverts, amd->merge_dist); } } if (end_cap_mesh) { float end_offset[4][4]; int end_cap_start = result_nverts - end_cap_nverts; mul_m4_m4m4(end_offset, current_offset, offset); mesh_merge_transform(result, end_cap_mesh, end_offset, result_nverts - end_cap_nverts, result_nedges - end_cap_nedges, result_nloops - end_cap_nloops, result_npolys - end_cap_npolys, end_cap_nverts, end_cap_nedges, end_cap_nloops, end_cap_npolys, vgroup_end_cap_remap, vgroup_end_cap_remap_len); /* Identify doubles with last chunk */ if (use_merge) { dm_mvert_map_doubles(full_doubles_map, result_dm_verts, last_chunk_start, last_chunk_nverts, end_cap_start, end_cap_nverts, amd->merge_dist); } } /* done capping */ /* Handle merging */ tot_doubles = 0; if (use_merge) { for (i = 0; i < result_nverts; i++) { int new_i = full_doubles_map[i]; if (new_i != -1) { /* We have to follow chains of doubles * (merge start/end especially is likely to create some), * those are not supported at all by BKE_mesh_merge_verts! */ while (!ELEM(full_doubles_map[new_i], -1, new_i)) { new_i = full_doubles_map[new_i]; } if (i == new_i) { full_doubles_map[i] = -1; } else { full_doubles_map[i] = new_i; tot_doubles++; } } } if (tot_doubles > 0) { result = BKE_mesh_merge_verts( result, full_doubles_map, tot_doubles, MESH_MERGE_VERTS_DUMP_IF_EQUAL); } MEM_freeN(full_doubles_map); } /* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new mesh! * TODO: we may need to set other dirty flags as well? */ if (use_recalc_normals) { result->runtime.cd_dirty_vert |= CD_MASK_NORMAL; } if (vgroup_start_cap_remap) { MEM_freeN(vgroup_start_cap_remap); } if (vgroup_end_cap_remap) { MEM_freeN(vgroup_end_cap_remap); } return result; } static Mesh *applyModifier(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh) { ArrayModifierData *amd = (ArrayModifierData *)md; return arrayModifier_doArray(amd, ctx, mesh); } static bool isDisabled(const struct Scene *UNUSED(scene), ModifierData *md, bool UNUSED(useRenderParams)) { ArrayModifierData *amd = (ArrayModifierData *)md; /* The object type check is only needed here in case we have a placeholder * object assigned (because the library containing the curve/mesh is missing). * * In other cases it should be impossible to have a type mismatch. */ if (amd->curve_ob && amd->curve_ob->type != OB_CURVE) { return true; } else if (amd->start_cap && amd->start_cap->type != OB_MESH) { return true; } else if (amd->end_cap && amd->end_cap->type != OB_MESH) { return true; } return false; } ModifierTypeInfo modifierType_Array = { /* name */ "Array", /* structName */ "ArrayModifierData", /* structSize */ sizeof(ArrayModifierData), /* type */ eModifierTypeType_Constructive, /* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsMapping | eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode | eModifierTypeFlag_AcceptsCVs, /* copyData */ modifier_copyData_generic, /* deformVerts */ NULL, /* deformMatrices */ NULL, /* deformVertsEM */ NULL, /* deformMatricesEM */ NULL, /* applyModifier */ applyModifier, /* initData */ initData, /* requiredDataMask */ NULL, /* freeData */ NULL, /* isDisabled */ isDisabled, /* updateDepsgraph */ updateDepsgraph, /* dependsOnTime */ NULL, /* dependsOnNormals */ NULL, /* foreachObjectLink */ foreachObjectLink, /* foreachIDLink */ NULL, /* foreachTexLink */ NULL, /* freeRuntimeData */ NULL, };