/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup modifiers */ #include "BLI_utildefines.h" #include "BLI_bitmap.h" #include "BLI_math.h" #include "BLI_utildefines_stack.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_types.h" #include "MEM_guardedalloc.h" #include "BKE_deform.h" #include "BKE_mesh.h" #include "BKE_particle.h" #include "MOD_modifiertypes.h" #include "MOD_solidify_util.h" /* own include */ #include "MOD_util.h" #ifdef __GNUC__ # pragma GCC diagnostic error "-Wsign-conversion" #endif /* -------------------------------------------------------------------- */ /** \name Local Utilities * \{ */ /* specific function for solidify - define locally */ BLI_INLINE void madd_v3v3short_fl(float r[3], const short a[3], const float f) { r[0] += (float)a[0] * f; r[1] += (float)a[1] * f; r[2] += (float)a[2] * f; } /** \} */ /* -------------------------------------------------------------------- */ /** \name High Quality Normal Calculation Function * \{ */ /* skip shell thickness for non-manifold edges, see T35710. */ #define USE_NONMANIFOLD_WORKAROUND /* *** derived mesh high quality normal calculation function *** */ /* could be exposed for other functions to use */ typedef struct EdgeFaceRef { int p1; /* init as -1 */ int p2; } EdgeFaceRef; BLI_INLINE bool edgeref_is_init(const EdgeFaceRef *edge_ref) { return !((edge_ref->p1 == 0) && (edge_ref->p2 == 0)); } /** * \param mesh: Mesh to calculate normals for. * \param poly_nors: Precalculated face normals. * \param r_vert_nors: Return vert normals. */ static void mesh_calc_hq_normal(Mesh *mesh, float (*poly_nors)[3], float (*r_vert_nors)[3]) { int i, numVerts, numEdges, numPolys; MPoly *mpoly, *mp; MLoop *mloop, *ml; MEdge *medge, *ed; MVert *mvert, *mv; numVerts = mesh->totvert; numEdges = mesh->totedge; numPolys = mesh->totpoly; mpoly = mesh->mpoly; medge = mesh->medge; mvert = mesh->mvert; mloop = mesh->mloop; /* we don't want to overwrite any referenced layers */ /* Doesn't work here! */ #if 0 mv = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, numVerts); cddm->mvert = mv; #endif mv = mvert; mp = mpoly; { EdgeFaceRef *edge_ref_array = MEM_calloc_arrayN( (size_t)numEdges, sizeof(EdgeFaceRef), "Edge Connectivity"); EdgeFaceRef *edge_ref; float edge_normal[3]; /* Add an edge reference if it's not there, pointing back to the face index. */ for (i = 0; i < numPolys; i++, mp++) { int j; ml = mloop + mp->loopstart; for (j = 0; j < mp->totloop; j++, ml++) { /* --- add edge ref to face --- */ edge_ref = &edge_ref_array[ml->e]; if (!edgeref_is_init(edge_ref)) { edge_ref->p1 = i; edge_ref->p2 = -1; } else if ((edge_ref->p1 != -1) && (edge_ref->p2 == -1)) { edge_ref->p2 = i; } else { /* 3+ faces using an edge, we can't handle this usefully */ edge_ref->p1 = edge_ref->p2 = -1; #ifdef USE_NONMANIFOLD_WORKAROUND medge[ml->e].flag |= ME_EDGE_TMP_TAG; #endif } /* --- done --- */ } } for (i = 0, ed = medge, edge_ref = edge_ref_array; i < numEdges; i++, ed++, edge_ref++) { /* Get the edge vert indices, and edge value (the face indices that use it) */ if (edgeref_is_init(edge_ref) && (edge_ref->p1 != -1)) { if (edge_ref->p2 != -1) { /* We have 2 faces using this edge, calculate the edges normal * using the angle between the 2 faces as a weighting */ #if 0 add_v3_v3v3(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]); normalize_v3_length( edge_normal, angle_normalized_v3v3(face_nors[edge_ref->f1], face_nors[edge_ref->f2])); #else mid_v3_v3v3_angle_weighted( edge_normal, poly_nors[edge_ref->p1], poly_nors[edge_ref->p2]); #endif } else { /* only one face attached to that edge */ /* an edge without another attached- the weight on this is undefined */ copy_v3_v3(edge_normal, poly_nors[edge_ref->p1]); } add_v3_v3(r_vert_nors[ed->v1], edge_normal); add_v3_v3(r_vert_nors[ed->v2], edge_normal); } } MEM_freeN(edge_ref_array); } /* normalize vertex normals and assign */ for (i = 0; i < numVerts; i++, mv++) { if (normalize_v3(r_vert_nors[i]) == 0.0f) { normal_short_to_float_v3(r_vert_nors[i], mv->no); } } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Main Solidify Function * \{ */ /* NOLINTNEXTLINE: readability-function-size */ Mesh *MOD_solidify_extrude_modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh) { Mesh *result; const SolidifyModifierData *smd = (SolidifyModifierData *)md; MVert *mv, *mvert, *orig_mvert; MEdge *ed, *medge, *orig_medge; MLoop *ml, *mloop, *orig_mloop; MPoly *mp, *mpoly, *orig_mpoly; const uint numVerts = (uint)mesh->totvert; const uint numEdges = (uint)mesh->totedge; const uint numPolys = (uint)mesh->totpoly; const uint numLoops = (uint)mesh->totloop; uint newLoops = 0, newPolys = 0, newEdges = 0, newVerts = 0, rimVerts = 0; /* only use material offsets if we have 2 or more materials */ const short mat_nr_max = ctx->object->totcol > 1 ? ctx->object->totcol - 1 : 0; const short mat_ofs = mat_nr_max ? smd->mat_ofs : 0; const short mat_ofs_rim = mat_nr_max ? smd->mat_ofs_rim : 0; /* use for edges */ /* over-alloc new_vert_arr, old_vert_arr */ uint *new_vert_arr = NULL; STACK_DECLARE(new_vert_arr); uint *new_edge_arr = NULL; STACK_DECLARE(new_edge_arr); uint *old_vert_arr = MEM_calloc_arrayN( numVerts, sizeof(*old_vert_arr), "old_vert_arr in solidify"); uint *edge_users = NULL; char *edge_order = NULL; float(*vert_nors)[3] = NULL; float(*poly_nors)[3] = NULL; const bool need_poly_normals = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) || (smd->flag & MOD_SOLIDIFY_EVEN) || (smd->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP) || (smd->bevel_convex != 0); const float ofs_orig = -(((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset); const float ofs_new = smd->offset + ofs_orig; const float offset_fac_vg = smd->offset_fac_vg; const float offset_fac_vg_inv = 1.0f - smd->offset_fac_vg; const float bevel_convex = smd->bevel_convex; const bool do_flip = (smd->flag & MOD_SOLIDIFY_FLIP) != 0; const bool do_clamp = (smd->offset_clamp != 0.0f); const bool do_angle_clamp = do_clamp && (smd->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP) != 0; const bool do_bevel_convex = bevel_convex != 0.0f; const bool do_rim = (smd->flag & MOD_SOLIDIFY_RIM) != 0; const bool do_shell = !(do_rim && (smd->flag & MOD_SOLIDIFY_NOSHELL) != 0); /* weights */ MDeformVert *dvert; const bool defgrp_invert = (smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0; int defgrp_index; const int shell_defgrp_index = BKE_object_defgroup_name_index(ctx->object, smd->shell_defgrp_name); const int rim_defgrp_index = BKE_object_defgroup_name_index(ctx->object, smd->rim_defgrp_name); /* array size is doubled in case of using a shell */ const uint stride = do_shell ? 2 : 1; MOD_get_vgroup(ctx->object, mesh, smd->defgrp_name, &dvert, &defgrp_index); orig_mvert = mesh->mvert; orig_medge = mesh->medge; orig_mloop = mesh->mloop; orig_mpoly = mesh->mpoly; if (need_poly_normals) { /* calculate only face normals */ poly_nors = MEM_malloc_arrayN(numPolys, sizeof(*poly_nors), __func__); BKE_mesh_calc_normals_poly(orig_mvert, NULL, (int)numVerts, orig_mloop, orig_mpoly, (int)numLoops, (int)numPolys, poly_nors, true); } STACK_INIT(new_vert_arr, numVerts * 2); STACK_INIT(new_edge_arr, numEdges * 2); if (do_rim) { BLI_bitmap *orig_mvert_tag = BLI_BITMAP_NEW(numVerts, __func__); uint eidx; uint i; #define INVALID_UNUSED ((uint)-1) #define INVALID_PAIR ((uint)-2) new_vert_arr = MEM_malloc_arrayN(numVerts, 2 * sizeof(*new_vert_arr), __func__); new_edge_arr = MEM_malloc_arrayN(((numEdges * 2) + numVerts), sizeof(*new_edge_arr), __func__); edge_users = MEM_malloc_arrayN(numEdges, sizeof(*edge_users), "solid_mod edges"); edge_order = MEM_malloc_arrayN(numEdges, sizeof(*edge_order), "solid_mod order"); /* save doing 2 loops here... */ #if 0 copy_vn_i(edge_users, numEdges, INVALID_UNUSED); #endif for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) { edge_users[eidx] = INVALID_UNUSED; } for (i = 0, mp = orig_mpoly; i < numPolys; i++, mp++) { MLoop *ml_prev; int j; ml = orig_mloop + mp->loopstart; ml_prev = ml + (mp->totloop - 1); for (j = 0; j < mp->totloop; j++, ml++) { /* add edge user */ eidx = ml_prev->e; if (edge_users[eidx] == INVALID_UNUSED) { ed = orig_medge + eidx; BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) && ELEM(ml->v, ed->v1, ed->v2)); edge_users[eidx] = (ml_prev->v > ml->v) == (ed->v1 < ed->v2) ? i : (i + numPolys); edge_order[eidx] = j; } else { edge_users[eidx] = INVALID_PAIR; } ml_prev = ml; } } for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) { if (!ELEM(edge_users[eidx], INVALID_UNUSED, INVALID_PAIR)) { BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v1); BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v2); STACK_PUSH(new_edge_arr, eidx); newPolys++; newLoops += 4; } } for (i = 0; i < numVerts; i++) { if (BLI_BITMAP_TEST(orig_mvert_tag, i)) { old_vert_arr[i] = STACK_SIZE(new_vert_arr); STACK_PUSH(new_vert_arr, i); rimVerts++; } else { old_vert_arr[i] = INVALID_UNUSED; } } MEM_freeN(orig_mvert_tag); } if (do_shell == false) { /* only add rim vertices */ newVerts = rimVerts; /* each extruded face needs an opposite edge */ newEdges = newPolys; } else { /* (stride == 2) in this case, so no need to add newVerts/newEdges */ BLI_assert(newVerts == 0); BLI_assert(newEdges == 0); } if (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) { vert_nors = MEM_calloc_arrayN(numVerts, sizeof(float[3]), "mod_solid_vno_hq"); mesh_calc_hq_normal(mesh, poly_nors, vert_nors); } result = BKE_mesh_new_nomain_from_template(mesh, (int)((numVerts * stride) + newVerts), (int)((numEdges * stride) + newEdges + rimVerts), 0, (int)((numLoops * stride) + newLoops), (int)((numPolys * stride) + newPolys)); mpoly = result->mpoly; mloop = result->mloop; medge = result->medge; mvert = result->mvert; if (do_bevel_convex) { /* Make sure bweight is enabled. */ result->cd_flag |= ME_CDFLAG_EDGE_BWEIGHT; } if (do_shell) { CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, (int)numVerts); CustomData_copy_data(&mesh->vdata, &result->vdata, 0, (int)numVerts, (int)numVerts); CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, (int)numEdges); CustomData_copy_data(&mesh->edata, &result->edata, 0, (int)numEdges, (int)numEdges); CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, (int)numLoops); /* DO NOT copy here the 'copied' part of loop data, we want to reverse loops * (so that winding of copied face get reversed, so that normals get reversed * and point in expected direction...). * If we also copy data here, then this data get overwritten * (and allocated memory becomes memleak). */ CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, (int)numPolys); CustomData_copy_data(&mesh->pdata, &result->pdata, 0, (int)numPolys, (int)numPolys); } else { int i, j; CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, (int)numVerts); for (i = 0, j = (int)numVerts; i < numVerts; i++) { if (old_vert_arr[i] != INVALID_UNUSED) { CustomData_copy_data(&mesh->vdata, &result->vdata, i, j, 1); j++; } } CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, (int)numEdges); for (i = 0, j = (int)numEdges; i < numEdges; i++) { if (!ELEM(edge_users[i], INVALID_UNUSED, INVALID_PAIR)) { MEdge *ed_src, *ed_dst; CustomData_copy_data(&mesh->edata, &result->edata, i, j, 1); ed_src = &medge[i]; ed_dst = &medge[j]; ed_dst->v1 = old_vert_arr[ed_src->v1] + numVerts; ed_dst->v2 = old_vert_arr[ed_src->v2] + numVerts; j++; } } /* will be created later */ CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, (int)numLoops); CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, (int)numPolys); } /* initializes: (i_end, do_shell_align, mv) */ #define INIT_VERT_ARRAY_OFFSETS(test) \ if (((ofs_new >= ofs_orig) == do_flip) == test) { \ i_end = numVerts; \ do_shell_align = true; \ mv = mvert; \ } \ else { \ if (do_shell) { \ i_end = numVerts; \ do_shell_align = true; \ } \ else { \ i_end = newVerts; \ do_shell_align = false; \ } \ mv = &mvert[numVerts]; \ } \ (void)0 /* flip normals */ if (do_shell) { uint i; mp = mpoly + numPolys; for (i = 0; i < mesh->totpoly; i++, mp++) { const int loop_end = mp->totloop - 1; MLoop *ml2; uint e; int j; /* reverses the loop direction (MLoop.v as well as custom-data) * MLoop.e also needs to be corrected too, done in a separate loop below. */ ml2 = mloop + mp->loopstart + mesh->totloop; #if 0 for (j = 0; j < mp->totloop; j++) { CustomData_copy_data(&mesh->ldata, &result->ldata, mp->loopstart + j, mp->loopstart + (loop_end - j) + mesh->totloop, 1); } #else /* slightly more involved, keep the first vertex the same for the copy, * ensures the diagonals in the new face match the original. */ j = 0; for (int j_prev = loop_end; j < mp->totloop; j_prev = j++) { CustomData_copy_data(&mesh->ldata, &result->ldata, mp->loopstart + j, mp->loopstart + (loop_end - j_prev) + mesh->totloop, 1); } #endif if (mat_ofs) { mp->mat_nr += mat_ofs; CLAMP(mp->mat_nr, 0, mat_nr_max); } e = ml2[0].e; for (j = 0; j < loop_end; j++) { ml2[j].e = ml2[j + 1].e; } ml2[loop_end].e = e; mp->loopstart += mesh->totloop; for (j = 0; j < mp->totloop; j++) { ml2[j].e += numEdges; ml2[j].v += numVerts; } } for (i = 0, ed = medge + numEdges; i < numEdges; i++, ed++) { ed->v1 += numVerts; ed->v2 += numVerts; } } /* note, copied vertex layers don't have flipped normals yet. do this after applying offset */ if ((smd->flag & MOD_SOLIDIFY_EVEN) == 0) { /* no even thickness, very simple */ float scalar_short; float scalar_short_vgroup; /* for clamping */ float *vert_lens = NULL; float *vert_angs = NULL; const float offset = fabsf(smd->offset) * smd->offset_clamp; const float offset_sq = offset * offset; /* for bevel weight */ float *edge_angs = NULL; if (do_clamp) { vert_lens = MEM_malloc_arrayN(numVerts, sizeof(float), "vert_lens"); copy_vn_fl(vert_lens, (int)numVerts, FLT_MAX); for (uint i = 0; i < numEdges; i++) { const float ed_len_sq = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co); vert_lens[medge[i].v1] = min_ff(vert_lens[medge[i].v1], ed_len_sq); vert_lens[medge[i].v2] = min_ff(vert_lens[medge[i].v2], ed_len_sq); } } if (do_angle_clamp || do_bevel_convex) { uint eidx; if (do_angle_clamp) { vert_angs = MEM_malloc_arrayN(numVerts, sizeof(float), "vert_angs"); copy_vn_fl(vert_angs, (int)numVerts, 0.5f * M_PI); } if (do_bevel_convex) { edge_angs = MEM_malloc_arrayN(numEdges, sizeof(float), "edge_angs"); if (!do_rim) { edge_users = MEM_malloc_arrayN(numEdges, sizeof(*edge_users), "solid_mod edges"); } } uint(*edge_user_pairs)[2] = MEM_malloc_arrayN( numEdges, sizeof(*edge_user_pairs), "edge_user_pairs"); for (eidx = 0; eidx < numEdges; eidx++) { edge_user_pairs[eidx][0] = INVALID_UNUSED; edge_user_pairs[eidx][1] = INVALID_UNUSED; } mp = orig_mpoly; for (uint i = 0; i < numPolys; i++, mp++) { ml = orig_mloop + mp->loopstart; MLoop *ml_prev = ml + (mp->totloop - 1); for (uint j = 0; j < mp->totloop; j++, ml++) { /* add edge user */ eidx = ml_prev->e; ed = orig_medge + eidx; BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) && ELEM(ml->v, ed->v1, ed->v2)); char flip = (char)((ml_prev->v > ml->v) == (ed->v1 < ed->v2)); if (edge_user_pairs[eidx][flip] == INVALID_UNUSED) { edge_user_pairs[eidx][flip] = i; } else { edge_user_pairs[eidx][0] = INVALID_PAIR; edge_user_pairs[eidx][1] = INVALID_PAIR; } ml_prev = ml; } } ed = orig_medge; float e[3]; for (uint i = 0; i < numEdges; i++, ed++) { if (!ELEM(edge_user_pairs[i][0], INVALID_UNUSED, INVALID_PAIR) && !ELEM(edge_user_pairs[i][1], INVALID_UNUSED, INVALID_PAIR)) { const float *n0 = poly_nors[edge_user_pairs[i][0]]; const float *n1 = poly_nors[edge_user_pairs[i][1]]; sub_v3_v3v3(e, orig_mvert[ed->v1].co, orig_mvert[ed->v2].co); normalize_v3(e); const float angle = angle_signed_on_axis_v3v3_v3(n0, n1, e); if (do_angle_clamp) { vert_angs[ed->v1] = max_ff(vert_angs[ed->v1], angle); vert_angs[ed->v2] = max_ff(vert_angs[ed->v2], angle); } if (do_bevel_convex) { edge_angs[i] = angle; if (!do_rim) { edge_users[i] = INVALID_PAIR; } } } } MEM_freeN(edge_user_pairs); } if (ofs_new != 0.0f) { uint i_orig, i_end; bool do_shell_align; scalar_short = scalar_short_vgroup = ofs_new / 32767.0f; INIT_VERT_ARRAY_OFFSETS(false); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const uint i = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (dvert) { MDeformVert *dv = &dvert[i]; if (defgrp_invert) { scalar_short_vgroup = 1.0f - BKE_defvert_find_weight(dv, defgrp_index); } else { scalar_short_vgroup = BKE_defvert_find_weight(dv, defgrp_index); } scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short; } if (do_clamp && offset > FLT_EPSILON) { /* always reset because we may have set before */ if (dvert == NULL) { scalar_short_vgroup = scalar_short; } if (do_angle_clamp) { float cos_ang = cosf(((2 * M_PI) - vert_angs[i]) * 0.5f); if (cos_ang > 0) { float max_off = sqrtf(vert_lens[i]) * 0.5f / cos_ang; if (max_off < offset * 0.5f) { scalar_short_vgroup *= max_off / offset * 2; } } } else { if (vert_lens[i] < offset_sq) { float scalar = sqrtf(vert_lens[i]) / offset; scalar_short_vgroup *= scalar; } } } madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup); } } if (ofs_orig != 0.0f) { uint i_orig, i_end; bool do_shell_align; scalar_short = scalar_short_vgroup = ofs_orig / 32767.0f; /* as above but swapped */ INIT_VERT_ARRAY_OFFSETS(true); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const uint i = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (dvert) { MDeformVert *dv = &dvert[i]; if (defgrp_invert) { scalar_short_vgroup = 1.0f - BKE_defvert_find_weight(dv, defgrp_index); } else { scalar_short_vgroup = BKE_defvert_find_weight(dv, defgrp_index); } scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short; } if (do_clamp && offset > FLT_EPSILON) { /* always reset because we may have set before */ if (dvert == NULL) { scalar_short_vgroup = scalar_short; } if (do_angle_clamp) { float cos_ang = cosf(vert_angs[i_orig] * 0.5f); if (cos_ang > 0) { float max_off = sqrtf(vert_lens[i]) * 0.5f / cos_ang; if (max_off < offset * 0.5f) { scalar_short_vgroup *= max_off / offset * 2; } } } else { if (vert_lens[i] < offset_sq) { float scalar = sqrtf(vert_lens[i]) / offset; scalar_short_vgroup *= scalar; } } } madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup); } } if (do_bevel_convex) { for (uint i = 0; i < numEdges; i++) { if (edge_users[i] == INVALID_PAIR) { float angle = edge_angs[i]; medge[i].bweight = (char)clamp_i( (int)medge[i].bweight + (int)((angle < M_PI ? clamp_f(bevel_convex, 0.0f, 1.0f) : clamp_f(bevel_convex, -1.0f, 0.0f)) * 255), 0, 255); if (do_shell) { medge[i + numEdges].bweight = (char)clamp_i( (int)medge[i + numEdges].bweight + (int)((angle > M_PI ? clamp_f(bevel_convex, 0.0f, 1.0f) : clamp_f(bevel_convex, -1.0f, 0.0f)) * 255), 0, 255); } } } if (!do_rim) { MEM_freeN(edge_users); } MEM_freeN(edge_angs); } if (do_clamp) { MEM_freeN(vert_lens); if (do_angle_clamp) { MEM_freeN(vert_angs); } } } else { #ifdef USE_NONMANIFOLD_WORKAROUND const bool check_non_manifold = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) != 0; #endif /* same as EM_solidify() in editmesh_lib.c */ float *vert_angles = MEM_calloc_arrayN( numVerts, sizeof(float[2]), "mod_solid_pair"); /* 2 in 1 */ float *vert_accum = vert_angles + numVerts; uint vidx; uint i; if (vert_nors == NULL) { vert_nors = MEM_malloc_arrayN(numVerts, sizeof(float[3]), "mod_solid_vno"); for (i = 0, mv = mvert; i < numVerts; i++, mv++) { normal_short_to_float_v3(vert_nors[i], mv->no); } } for (i = 0, mp = mpoly; i < numPolys; i++, mp++) { /* #BKE_mesh_calc_poly_angles logic is inlined here */ float nor_prev[3]; float nor_next[3]; int i_curr = mp->totloop - 1; int i_next = 0; ml = &mloop[mp->loopstart]; sub_v3_v3v3(nor_prev, mvert[ml[i_curr - 1].v].co, mvert[ml[i_curr].v].co); normalize_v3(nor_prev); while (i_next < mp->totloop) { float angle; sub_v3_v3v3(nor_next, mvert[ml[i_curr].v].co, mvert[ml[i_next].v].co); normalize_v3(nor_next); angle = angle_normalized_v3v3(nor_prev, nor_next); /* --- not related to angle calc --- */ if (angle < FLT_EPSILON) { angle = FLT_EPSILON; } vidx = ml[i_curr].v; vert_accum[vidx] += angle; #ifdef USE_NONMANIFOLD_WORKAROUND /* skip 3+ face user edges */ if ((check_non_manifold == false) || LIKELY(((orig_medge[ml[i_curr].e].flag & ME_EDGE_TMP_TAG) == 0) && ((orig_medge[ml[i_next].e].flag & ME_EDGE_TMP_TAG) == 0))) { vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], poly_nors[i]) * angle; } else { vert_angles[vidx] += angle; } #else vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], poly_nors[i]) * angle; #endif /* --- end non-angle-calc section --- */ /* step */ copy_v3_v3(nor_prev, nor_next); i_curr = i_next; i_next++; } } /* vertex group support */ if (dvert) { MDeformVert *dv = dvert; float scalar; if (defgrp_invert) { for (i = 0; i < numVerts; i++, dv++) { scalar = 1.0f - BKE_defvert_find_weight(dv, defgrp_index); scalar = offset_fac_vg + (scalar * offset_fac_vg_inv); vert_angles[i] *= scalar; } } else { for (i = 0; i < numVerts; i++, dv++) { scalar = BKE_defvert_find_weight(dv, defgrp_index); scalar = offset_fac_vg + (scalar * offset_fac_vg_inv); vert_angles[i] *= scalar; } } } /* for angle clamp */ float *vert_angs = NULL; /* for bevel convex */ float *edge_angs = NULL; if (do_angle_clamp || do_bevel_convex) { uint eidx; if (do_angle_clamp) { vert_angs = MEM_malloc_arrayN(numVerts, sizeof(float), "vert_angs even"); copy_vn_fl(vert_angs, (int)numVerts, 0.5f * M_PI); } if (do_bevel_convex) { edge_angs = MEM_malloc_arrayN(numEdges, sizeof(float), "edge_angs even"); if (!do_rim) { edge_users = MEM_malloc_arrayN(numEdges, sizeof(*edge_users), "solid_mod edges"); } } uint(*edge_user_pairs)[2] = MEM_malloc_arrayN( numEdges, sizeof(*edge_user_pairs), "edge_user_pairs"); for (eidx = 0; eidx < numEdges; eidx++) { edge_user_pairs[eidx][0] = INVALID_UNUSED; edge_user_pairs[eidx][1] = INVALID_UNUSED; } for (i = 0, mp = orig_mpoly; i < numPolys; i++, mp++) { ml = orig_mloop + mp->loopstart; MLoop *ml_prev = ml + (mp->totloop - 1); for (int j = 0; j < mp->totloop; j++, ml++) { /* add edge user */ eidx = ml_prev->e; ed = orig_medge + eidx; BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) && ELEM(ml->v, ed->v1, ed->v2)); char flip = (char)((ml_prev->v > ml->v) == (ed->v1 < ed->v2)); if (edge_user_pairs[eidx][flip] == INVALID_UNUSED) { edge_user_pairs[eidx][flip] = i; } else { edge_user_pairs[eidx][0] = INVALID_PAIR; edge_user_pairs[eidx][1] = INVALID_PAIR; } ml_prev = ml; } } ed = orig_medge; float e[3]; for (i = 0; i < numEdges; i++, ed++) { if (!ELEM(edge_user_pairs[i][0], INVALID_UNUSED, INVALID_PAIR) && !ELEM(edge_user_pairs[i][1], INVALID_UNUSED, INVALID_PAIR)) { const float *n0 = poly_nors[edge_user_pairs[i][0]]; const float *n1 = poly_nors[edge_user_pairs[i][1]]; if (do_angle_clamp) { const float angle = M_PI - angle_normalized_v3v3(n0, n1); vert_angs[ed->v1] = max_ff(vert_angs[ed->v1], angle); vert_angs[ed->v2] = max_ff(vert_angs[ed->v2], angle); } if (do_bevel_convex) { sub_v3_v3v3(e, orig_mvert[ed->v1].co, orig_mvert[ed->v2].co); normalize_v3(e); edge_angs[i] = angle_signed_on_axis_v3v3_v3(n0, n1, e); if (!do_rim) { edge_users[i] = INVALID_PAIR; } } } } MEM_freeN(edge_user_pairs); } if (do_clamp) { const float clamp_fac = 1 + (do_angle_clamp ? fabsf(smd->offset_fac) : 0); const float offset = fabsf(smd->offset) * smd->offset_clamp * clamp_fac; if (offset > FLT_EPSILON) { float *vert_lens_sq = MEM_malloc_arrayN(numVerts, sizeof(float), "vert_lens_sq"); const float offset_sq = offset * offset; copy_vn_fl(vert_lens_sq, (int)numVerts, FLT_MAX); for (i = 0; i < numEdges; i++) { const float ed_len = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co); vert_lens_sq[medge[i].v1] = min_ff(vert_lens_sq[medge[i].v1], ed_len); vert_lens_sq[medge[i].v2] = min_ff(vert_lens_sq[medge[i].v2], ed_len); } if (do_angle_clamp) { for (i = 0; i < numVerts; i++) { float cos_ang = cosf(vert_angs[i] * 0.5f); if (cos_ang > 0) { float max_off = sqrtf(vert_lens_sq[i]) * 0.5f / cos_ang; if (max_off < offset * 0.5f) { vert_angles[i] *= max_off / offset * 2; } } } MEM_freeN(vert_angs); } else { for (i = 0; i < numVerts; i++) { if (vert_lens_sq[i] < offset_sq) { float scalar = sqrtf(vert_lens_sq[i]) / offset; vert_angles[i] *= scalar; } } } MEM_freeN(vert_lens_sq); } } if (do_bevel_convex) { for (i = 0; i < numEdges; i++) { if (edge_users[i] == INVALID_PAIR) { float angle = edge_angs[i]; medge[i].bweight = (char)clamp_i( (int)medge[i].bweight + (int)((angle < M_PI ? clamp_f(bevel_convex, 0, 1) : clamp_f(bevel_convex, -1, 0)) * 255), 0, 255); if (do_shell) { medge[i + numEdges].bweight = (char)clamp_i( (int)medge[i + numEdges].bweight + (int)((angle > M_PI ? clamp_f(bevel_convex, 0, 1) : clamp_f(bevel_convex, -1, 0)) * 255), 0, 255); } } } if (!do_rim) { MEM_freeN(edge_users); } MEM_freeN(edge_angs); } #undef INVALID_UNUSED #undef INVALID_PAIR if (ofs_new != 0.0f) { uint i_orig, i_end; bool do_shell_align; INIT_VERT_ARRAY_OFFSETS(false); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const uint i_other = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (vert_accum[i_other]) { /* zero if unselected */ madd_v3_v3fl( mv->co, vert_nors[i_other], ofs_new * (vert_angles[i_other] / vert_accum[i_other])); } } } if (ofs_orig != 0.0f) { uint i_orig, i_end; bool do_shell_align; /* same as above but swapped, intentional use of 'ofs_new' */ INIT_VERT_ARRAY_OFFSETS(true); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const uint i_other = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (vert_accum[i_other]) { /* zero if unselected */ madd_v3_v3fl( mv->co, vert_nors[i_other], ofs_orig * (vert_angles[i_other] / vert_accum[i_other])); } } } MEM_freeN(vert_angles); } if (vert_nors) { MEM_freeN(vert_nors); } /* must recalculate normals with vgroups since they can displace unevenly T26888. */ if ((mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) || do_rim || dvert) { result->runtime.cd_dirty_vert |= CD_MASK_NORMAL; } else if (do_shell) { uint i; /* flip vertex normals for copied verts */ mv = mvert + numVerts; for (i = 0; i < numVerts; i++, mv++) { negate_v3_short(mv->no); } } /* Add vertex weights for rim and shell vgroups. */ if (shell_defgrp_index != -1 || rim_defgrp_index != -1) { dvert = CustomData_duplicate_referenced_layer(&result->vdata, CD_MDEFORMVERT, result->totvert); /* If no vertices were ever added to an object's vgroup, dvert might be NULL. */ if (dvert == NULL) { /* Add a valid data layer! */ dvert = CustomData_add_layer( &result->vdata, CD_MDEFORMVERT, CD_CALLOC, NULL, result->totvert); } /* Ultimate security check. */ if (dvert != NULL) { result->dvert = dvert; if (rim_defgrp_index != -1) { for (uint i = 0; i < rimVerts; i++) { BKE_defvert_ensure_index(&result->dvert[new_vert_arr[i]], rim_defgrp_index)->weight = 1.0f; BKE_defvert_ensure_index(&result->dvert[(do_shell ? new_vert_arr[i] : i) + numVerts], rim_defgrp_index) ->weight = 1.0f; } } if (shell_defgrp_index != -1) { for (uint i = numVerts; i < result->totvert; i++) { BKE_defvert_ensure_index(&result->dvert[i], shell_defgrp_index)->weight = 1.0f; } } } } if (do_rim) { uint i; /* bugger, need to re-calculate the normals for the new edge faces. * This could be done in many ways, but probably the quickest way * is to calculate the average normals for side faces only. * Then blend them with the normals of the edge verts. * * at the moment its easiest to allocate an entire array for every vertex, * even though we only need edge verts - campbell */ #define SOLIDIFY_SIDE_NORMALS #ifdef SOLIDIFY_SIDE_NORMALS /* Note that, due to the code setting cd_dirty_vert a few lines above, * do_side_normals is always false. - Sybren */ const bool do_side_normals = !(result->runtime.cd_dirty_vert & CD_MASK_NORMAL); /* annoying to allocate these since we only need the edge verts, */ float(*edge_vert_nos)[3] = do_side_normals ? MEM_calloc_arrayN(numVerts, sizeof(float[3]), __func__) : NULL; float nor[3]; #endif const uchar crease_rim = smd->crease_rim * 255.0f; const uchar crease_outer = smd->crease_outer * 255.0f; const uchar crease_inner = smd->crease_inner * 255.0f; int *origindex_edge; int *orig_ed; uint j; if (crease_rim || crease_outer || crease_inner) { result->cd_flag |= ME_CDFLAG_EDGE_CREASE; } /* add faces & edges */ origindex_edge = CustomData_get_layer(&result->edata, CD_ORIGINDEX); orig_ed = (origindex_edge) ? &origindex_edge[(numEdges * stride) + newEdges] : NULL; ed = &medge[(numEdges * stride) + newEdges]; /* start after copied edges */ for (i = 0; i < rimVerts; i++, ed++) { ed->v1 = new_vert_arr[i]; ed->v2 = (do_shell ? new_vert_arr[i] : i) + numVerts; ed->flag |= ME_EDGEDRAW | ME_EDGERENDER; if (orig_ed) { *orig_ed = ORIGINDEX_NONE; orig_ed++; } if (crease_rim) { ed->crease = crease_rim; } } /* faces */ mp = mpoly + (numPolys * stride); ml = mloop + (numLoops * stride); j = 0; for (i = 0; i < newPolys; i++, mp++) { uint eidx = new_edge_arr[i]; uint pidx = edge_users[eidx]; int k1, k2; bool flip; if (pidx >= numPolys) { pidx -= numPolys; flip = true; } else { flip = false; } ed = medge + eidx; /* copy most of the face settings */ CustomData_copy_data( &mesh->pdata, &result->pdata, (int)pidx, (int)((numPolys * stride) + i), 1); mp->loopstart = (int)(j + (numLoops * stride)); mp->flag = mpoly[pidx].flag; /* notice we use 'mp->totloop' which is later overwritten, * we could lookup the original face but there's no point since this is a copy * and will have the same value, just take care when changing order of assignment */ /* prev loop */ k1 = mpoly[pidx].loopstart + (((edge_order[eidx] - 1) + mp->totloop) % mp->totloop); k2 = mpoly[pidx].loopstart + (edge_order[eidx]); mp->totloop = 4; CustomData_copy_data( &mesh->ldata, &result->ldata, k2, (int)((numLoops * stride) + j + 0), 1); CustomData_copy_data( &mesh->ldata, &result->ldata, k1, (int)((numLoops * stride) + j + 1), 1); CustomData_copy_data( &mesh->ldata, &result->ldata, k1, (int)((numLoops * stride) + j + 2), 1); CustomData_copy_data( &mesh->ldata, &result->ldata, k2, (int)((numLoops * stride) + j + 3), 1); if (flip == false) { ml[j].v = ed->v1; ml[j++].e = eidx; ml[j].v = ed->v2; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges; ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts; ml[j++].e = (do_shell ? eidx : i) + numEdges; ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges; } else { ml[j].v = ed->v2; ml[j++].e = eidx; ml[j].v = ed->v1; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges; ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts; ml[j++].e = (do_shell ? eidx : i) + numEdges; ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges; } if (origindex_edge) { origindex_edge[ml[j - 3].e] = ORIGINDEX_NONE; origindex_edge[ml[j - 1].e] = ORIGINDEX_NONE; } /* use the next material index if option enabled */ if (mat_ofs_rim) { mp->mat_nr += mat_ofs_rim; CLAMP(mp->mat_nr, 0, mat_nr_max); } if (crease_outer) { /* crease += crease_outer; without wrapping */ char *cr = &(ed->crease); int tcr = *cr + crease_outer; *cr = tcr > 255 ? 255 : tcr; } if (crease_inner) { /* crease += crease_inner; without wrapping */ char *cr = &(medge[numEdges + (do_shell ? eidx : i)].crease); int tcr = *cr + crease_inner; *cr = tcr > 255 ? 255 : tcr; } #ifdef SOLIDIFY_SIDE_NORMALS if (do_side_normals) { normal_quad_v3(nor, mvert[ml[j - 4].v].co, mvert[ml[j - 3].v].co, mvert[ml[j - 2].v].co, mvert[ml[j - 1].v].co); add_v3_v3(edge_vert_nos[ed->v1], nor); add_v3_v3(edge_vert_nos[ed->v2], nor); } #endif } #ifdef SOLIDIFY_SIDE_NORMALS if (do_side_normals) { const MEdge *ed_orig = medge; ed = medge + (numEdges * stride); for (i = 0; i < rimVerts; i++, ed++, ed_orig++) { float nor_cpy[3]; short *nor_short; int k; /* note, only the first vertex (lower half of the index) is calculated */ BLI_assert(ed->v1 < numVerts); normalize_v3_v3(nor_cpy, edge_vert_nos[ed_orig->v1]); for (k = 0; k < 2; k++) { /* loop over both verts of the edge */ nor_short = mvert[*(&ed->v1 + k)].no; normal_short_to_float_v3(nor, nor_short); add_v3_v3(nor, nor_cpy); normalize_v3(nor); normal_float_to_short_v3(nor_short, nor); } } MEM_freeN(edge_vert_nos); } #endif MEM_freeN(new_vert_arr); MEM_freeN(new_edge_arr); MEM_freeN(edge_users); MEM_freeN(edge_order); } if (old_vert_arr) { MEM_freeN(old_vert_arr); } if (poly_nors) { MEM_freeN(poly_nors); } return result; } #undef SOLIDIFY_SIDE_NORMALS /** \} */