/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "BLI_array.hh" #include "BLI_task.hh" #include "BLI_timeit.hh" #include "BKE_pointcloud.h" #include "BKE_spline.hh" #include "UI_interface.h" #include "UI_resources.h" #include "node_geometry_util.hh" namespace blender::nodes { static GMutableSpan create_attribute_and_retrieve_span(PointCloudComponent &points, const AttributeIDRef &attribute_id, const CustomDataType data_type) { points.attribute_try_create(attribute_id, ATTR_DOMAIN_POINT, data_type, AttributeInitDefault()); WriteAttributeLookup attribute = points.attribute_try_get_for_write(attribute_id); BLI_assert(attribute); return attribute.varray.get_internal_span(); } template static MutableSpan create_attribute_and_retrieve_span(PointCloudComponent &points, const AttributeIDRef &attribute_id) { GMutableSpan attribute = create_attribute_and_retrieve_span( points, attribute_id, bke::cpp_type_to_custom_data_type(CPPType::get())); return attribute.typed(); } CurveToPointsResults curve_to_points_create_result_attributes(PointCloudComponent &points, const CurveEval &curve) { CurveToPointsResults attributes; attributes.result_size = points.attribute_domain_size(ATTR_DOMAIN_POINT); attributes.positions = create_attribute_and_retrieve_span(points, "position"); attributes.radii = create_attribute_and_retrieve_span(points, "radius"); attributes.tilts = create_attribute_and_retrieve_span(points, "tilt"); /* Because of the invariants of the curve component, we use the attributes of the * first spline as a representative for the attribute meta data all splines. */ curve.splines().first()->attributes.foreach_attribute( [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) { attributes.point_attributes.add_new( attribute_id, create_attribute_and_retrieve_span(points, attribute_id, meta_data.data_type)); return true; }, ATTR_DOMAIN_POINT); attributes.tangents = create_attribute_and_retrieve_span(points, "tangent"); attributes.normals = create_attribute_and_retrieve_span(points, "normal"); attributes.rotations = create_attribute_and_retrieve_span(points, "rotation"); return attributes; } } // namespace blender::nodes namespace blender::nodes::node_geo_legacy_curve_to_points_cc { static void node_declare(NodeDeclarationBuilder &b) { b.add_input(N_("Geometry")); b.add_input(N_("Count")).default_value(10).min(2).max(100000); b.add_input(N_("Length")).default_value(0.1f).min(0.001f).subtype(PROP_DISTANCE); b.add_output(N_("Geometry")); } static void node_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr) { uiItemR(layout, ptr, "mode", 0, "", ICON_NONE); } static void node_init(bNodeTree *UNUSED(tree), bNode *node) { NodeGeometryCurveToPoints *data = MEM_cnew(__func__); data->mode = GEO_NODE_CURVE_RESAMPLE_COUNT; node->storage = data; } static void node_update(bNodeTree *ntree, bNode *node) { NodeGeometryCurveToPoints &node_storage = *(NodeGeometryCurveToPoints *)node->storage; const GeometryNodeCurveResampleMode mode = (GeometryNodeCurveResampleMode)node_storage.mode; bNodeSocket *count_socket = ((bNodeSocket *)node->inputs.first)->next; bNodeSocket *length_socket = count_socket->next; nodeSetSocketAvailability(ntree, count_socket, mode == GEO_NODE_CURVE_RESAMPLE_COUNT); nodeSetSocketAvailability(ntree, length_socket, mode == GEO_NODE_CURVE_RESAMPLE_LENGTH); } /** * Evaluate splines in parallel to speed up the rest of the node's execution. */ static void evaluate_splines(Span splines) { threading::parallel_for_each(splines, [](const SplinePtr &spline) { /* These functions fill the corresponding caches on each spline. */ spline->evaluated_positions(); spline->evaluated_tangents(); spline->evaluated_normals(); spline->evaluated_lengths(); }); } static Array calculate_spline_point_offsets(GeoNodeExecParams ¶ms, const GeometryNodeCurveResampleMode mode, const CurveEval &curve, const Span splines) { const int size = curve.splines().size(); switch (mode) { case GEO_NODE_CURVE_RESAMPLE_COUNT: { const int count = params.extract_input("Count"); if (count < 1) { return {0}; } Array offsets(size + 1); for (const int i : offsets.index_range()) { offsets[i] = count * i; } return offsets; } case GEO_NODE_CURVE_RESAMPLE_LENGTH: { /* Don't allow asymptotic count increase for low resolution values. */ const float resolution = std::max(params.extract_input("Length"), 0.0001f); Array offsets(size + 1); int offset = 0; for (const int i : IndexRange(size)) { offsets[i] = offset; offset += splines[i]->length() / resolution + 1; } offsets.last() = offset; return offsets; } case GEO_NODE_CURVE_RESAMPLE_EVALUATED: { return curve.evaluated_point_offsets(); } } BLI_assert_unreachable(); return {0}; } /** * TODO: For non-poly splines, this has double copies that could be avoided as part * of a general look at optimizing uses of #Spline::interpolate_to_evaluated. */ static void copy_evaluated_point_attributes(Span splines, Span offsets, CurveToPointsResults &data) { threading::parallel_for(splines.index_range(), 64, [&](IndexRange range) { for (const int i : range) { const Spline &spline = *splines[i]; const int offset = offsets[i]; const int size = offsets[i + 1] - offsets[i]; data.positions.slice(offset, size).copy_from(spline.evaluated_positions()); spline.interpolate_to_evaluated(spline.radii()).materialize(data.radii.slice(offset, size)); spline.interpolate_to_evaluated(spline.tilts()).materialize(data.tilts.slice(offset, size)); for (const Map::Item item : data.point_attributes.items()) { const AttributeIDRef attribute_id = item.key; GMutableSpan point_span = item.value; BLI_assert(spline.attributes.get_for_read(attribute_id)); GSpan spline_span = *spline.attributes.get_for_read(attribute_id); spline.interpolate_to_evaluated(spline_span) .materialize(point_span.slice(offset, size).data()); } data.tangents.slice(offset, size).copy_from(spline.evaluated_tangents()); data.normals.slice(offset, size).copy_from(spline.evaluated_normals()); } }); } static void copy_uniform_sample_point_attributes(Span splines, Span offsets, CurveToPointsResults &data) { threading::parallel_for(splines.index_range(), 64, [&](IndexRange range) { for (const int i : range) { const Spline &spline = *splines[i]; const int offset = offsets[i]; const int size = offsets[i + 1] - offsets[i]; if (size == 0) { continue; } const Array uniform_samples = spline.sample_uniform_index_factors(size); spline.sample_with_index_factors( spline.evaluated_positions(), uniform_samples, data.positions.slice(offset, size)); spline.sample_with_index_factors(spline.interpolate_to_evaluated(spline.radii()), uniform_samples, data.radii.slice(offset, size)); spline.sample_with_index_factors(spline.interpolate_to_evaluated(spline.tilts()), uniform_samples, data.tilts.slice(offset, size)); for (const Map::Item item : data.point_attributes.items()) { const AttributeIDRef attribute_id = item.key; GMutableSpan point_span = item.value; BLI_assert(spline.attributes.get_for_read(attribute_id)); GSpan spline_span = *spline.attributes.get_for_read(attribute_id); spline.sample_with_index_factors(spline.interpolate_to_evaluated(spline_span), uniform_samples, point_span.slice(offset, size)); } spline.sample_with_index_factors( spline.evaluated_tangents(), uniform_samples, data.tangents.slice(offset, size)); for (float3 &tangent : data.tangents) { tangent.normalize(); } spline.sample_with_index_factors( spline.evaluated_normals(), uniform_samples, data.normals.slice(offset, size)); for (float3 &normals : data.normals) { normals.normalize(); } } }); } /** * \note Use attributes from the curve component rather than the attribute data directly on the * attribute storage to allow reading the virtual spline attributes like "cyclic" and "resolution". */ static void copy_spline_domain_attributes(const CurveComponent &curve_component, Span offsets, PointCloudComponent &points) { curve_component.attribute_foreach( [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) { if (meta_data.domain != ATTR_DOMAIN_CURVE) { return true; } GVArray spline_attribute = curve_component.attribute_get_for_read( attribute_id, ATTR_DOMAIN_CURVE, meta_data.data_type); const CPPType &type = spline_attribute.type(); OutputAttribute result_attribute = points.attribute_try_get_for_output_only( attribute_id, ATTR_DOMAIN_POINT, meta_data.data_type); GMutableSpan result = result_attribute.as_span(); for (const int i : spline_attribute.index_range()) { const int offset = offsets[i]; const int size = offsets[i + 1] - offsets[i]; if (size != 0) { BUFFER_FOR_CPP_TYPE_VALUE(type, buffer); spline_attribute.get(i, buffer); type.fill_assign_n(buffer, result[offset], size); } } result_attribute.save(); return true; }); } static void node_geo_exec(GeoNodeExecParams params) { NodeGeometryCurveToPoints &node_storage = *(NodeGeometryCurveToPoints *)params.node().storage; const GeometryNodeCurveResampleMode mode = (GeometryNodeCurveResampleMode)node_storage.mode; GeometrySet geometry_set = params.extract_input("Geometry"); geometry_set = geometry::realize_instances_legacy(geometry_set); if (!geometry_set.has_curve()) { params.set_output("Geometry", GeometrySet()); return; } const CurveComponent &curve_component = *geometry_set.get_component_for_read(); const CurveEval &curve = *curve_component.get_for_read(); const Span splines = curve.splines(); curve.assert_valid_point_attributes(); evaluate_splines(splines); const Array offsets = calculate_spline_point_offsets(params, mode, curve, splines); const int total_size = offsets.last(); if (total_size == 0) { params.set_output("Geometry", GeometrySet()); return; } GeometrySet result = GeometrySet::create_with_pointcloud(BKE_pointcloud_new_nomain(total_size)); PointCloudComponent &point_component = result.get_component_for_write(); CurveToPointsResults new_attributes = curve_to_points_create_result_attributes(point_component, curve); switch (mode) { case GEO_NODE_CURVE_RESAMPLE_COUNT: case GEO_NODE_CURVE_RESAMPLE_LENGTH: copy_uniform_sample_point_attributes(splines, offsets, new_attributes); break; case GEO_NODE_CURVE_RESAMPLE_EVALUATED: copy_evaluated_point_attributes(splines, offsets, new_attributes); break; } copy_spline_domain_attributes(curve_component, offsets, point_component); curve_create_default_rotation_attribute( new_attributes.tangents, new_attributes.normals, new_attributes.rotations); /* The default radius is way too large for points, divide by 10. */ for (float &radius : new_attributes.radii) { radius *= 0.1f; } params.set_output("Geometry", std::move(result)); } } // namespace blender::nodes::node_geo_legacy_curve_to_points_cc void register_node_type_geo_legacy_curve_to_points() { namespace file_ns = blender::nodes::node_geo_legacy_curve_to_points_cc; static bNodeType ntype; geo_node_type_base( &ntype, GEO_NODE_LEGACY_CURVE_TO_POINTS, "Curve to Points", NODE_CLASS_GEOMETRY); ntype.declare = file_ns::node_declare; ntype.geometry_node_execute = file_ns::node_geo_exec; ntype.draw_buttons = file_ns::node_layout; node_type_storage( &ntype, "NodeGeometryCurveToPoints", node_free_standard_storage, node_copy_standard_storage); node_type_init(&ntype, file_ns::node_init); node_type_update(&ntype, file_ns::node_update); nodeRegisterType(&ntype); }