/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "BLI_array.hh" #include "BLI_delaunay_2d.h" #include "BLI_math_vec_types.hh" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "BKE_mesh.h" #include "BKE_spline.hh" #include "BLI_task.hh" #include "UI_interface.h" #include "UI_resources.h" #include "node_geometry_util.hh" namespace blender::nodes::node_geo_curve_fill_cc { NODE_STORAGE_FUNCS(NodeGeometryCurveFill) static void node_declare(NodeDeclarationBuilder &b) { b.add_input(N_("Curve")).supported_type(GEO_COMPONENT_TYPE_CURVE); b.add_output(N_("Mesh")); } static void node_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr) { uiItemR(layout, ptr, "mode", UI_ITEM_R_EXPAND, nullptr, ICON_NONE); } static void node_init(bNodeTree *UNUSED(ntree), bNode *node) { NodeGeometryCurveFill *data = MEM_cnew(__func__); data->mode = GEO_NODE_CURVE_FILL_MODE_TRIANGULATED; node->storage = data; } static blender::meshintersect::CDT_result do_cdt(const CurveEval &curve, const CDT_output_type output_type) { Span splines = curve.splines(); blender::meshintersect::CDT_input input; input.need_ids = false; Array offsets = curve.evaluated_point_offsets(); input.vert.reinitialize(offsets.last()); input.face.reinitialize(splines.size()); for (const int i_spline : splines.index_range()) { const SplinePtr &spline = splines[i_spline]; const int vert_offset = offsets[i_spline]; Span positions = spline->evaluated_positions(); for (const int i : positions.index_range()) { input.vert[vert_offset + i] = double2(positions[i].x, positions[i].y); } input.face[i_spline].resize(spline->evaluated_edges_size()); MutableSpan face_verts = input.face[i_spline]; for (const int i : IndexRange(spline->evaluated_edges_size())) { face_verts[i] = vert_offset + i; } } blender::meshintersect::CDT_result result = delaunay_2d_calc(input, output_type); return result; } /* Converts the CDT result into a Mesh. */ static Mesh *cdt_to_mesh(const blender::meshintersect::CDT_result &result) { int vert_len = result.vert.size(); int edge_len = result.edge.size(); int poly_len = result.face.size(); int loop_len = 0; for (const Vector &face : result.face) { loop_len += face.size(); } Mesh *mesh = BKE_mesh_new_nomain(vert_len, edge_len, 0, loop_len, poly_len); MutableSpan verts{mesh->mvert, mesh->totvert}; MutableSpan edges{mesh->medge, mesh->totedge}; MutableSpan loops{mesh->mloop, mesh->totloop}; MutableSpan polys{mesh->mpoly, mesh->totpoly}; for (const int i : IndexRange(result.vert.size())) { copy_v3_v3(verts[i].co, float3((float)result.vert[i].x, (float)result.vert[i].y, 0.0f)); } for (const int i : IndexRange(result.edge.size())) { edges[i].v1 = result.edge[i].first; edges[i].v2 = result.edge[i].second; edges[i].flag = ME_EDGEDRAW | ME_EDGERENDER; } int i_loop = 0; for (const int i : IndexRange(result.face.size())) { polys[i].loopstart = i_loop; polys[i].totloop = result.face[i].size(); for (const int j : result.face[i].index_range()) { loops[i_loop].v = result.face[i][j]; i_loop++; } } /* The delaunay triangulation doesn't seem to return all of the necessary edges, even in * triangulation mode. */ BKE_mesh_calc_edges(mesh, true, false); return mesh; } static void curve_fill_calculate(GeometrySet &geometry_set, const GeometryNodeCurveFillMode mode) { if (!geometry_set.has_curve()) { return; } const CurveEval &curve = *geometry_set.get_curve_for_read(); if (curve.splines().is_empty()) { geometry_set.replace_curve(nullptr); return; } const CDT_output_type output_type = (mode == GEO_NODE_CURVE_FILL_MODE_NGONS) ? CDT_CONSTRAINTS_VALID_BMESH_WITH_HOLES : CDT_INSIDE_WITH_HOLES; const blender::meshintersect::CDT_result results = do_cdt(curve, output_type); Mesh *mesh = cdt_to_mesh(results); geometry_set.replace_mesh(mesh); geometry_set.replace_curve(nullptr); } static void node_geo_exec(GeoNodeExecParams params) { GeometrySet geometry_set = params.extract_input("Curve"); const NodeGeometryCurveFill &storage = node_storage(params.node()); const GeometryNodeCurveFillMode mode = (GeometryNodeCurveFillMode)storage.mode; geometry_set.modify_geometry_sets( [&](GeometrySet &geometry_set) { curve_fill_calculate(geometry_set, mode); }); params.set_output("Mesh", std::move(geometry_set)); } } // namespace blender::nodes::node_geo_curve_fill_cc void register_node_type_geo_curve_fill() { namespace file_ns = blender::nodes::node_geo_curve_fill_cc; static bNodeType ntype; geo_node_type_base(&ntype, GEO_NODE_FILL_CURVE, "Fill Curve", NODE_CLASS_GEOMETRY); node_type_init(&ntype, file_ns::node_init); node_type_storage( &ntype, "NodeGeometryCurveFill", node_free_standard_storage, node_copy_standard_storage); ntype.declare = file_ns::node_declare; ntype.geometry_node_execute = file_ns::node_geo_exec; ntype.draw_buttons = file_ns::node_layout; nodeRegisterType(&ntype); }