/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "BLI_array.hh" #include "BLI_task.hh" #include "BLI_timeit.hh" #include "BKE_pointcloud.h" #include "BKE_spline.hh" #include "UI_interface.h" #include "UI_resources.h" #include "node_geometry_util.hh" static bNodeSocketTemplate geo_node_curve_to_points_in[] = { {SOCK_GEOMETRY, N_("Geometry")}, {SOCK_INT, N_("Count"), 10, 0, 0, 0, 2, 100000}, {SOCK_FLOAT, N_("Length"), 0.1f, 0.0f, 0.0f, 0.0f, 0.001f, FLT_MAX, PROP_DISTANCE}, {-1, ""}, }; static bNodeSocketTemplate geo_node_curve_to_points_out[] = { {SOCK_GEOMETRY, N_("Geometry")}, {-1, ""}, }; static void geo_node_curve_to_points_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr) { uiItemR(layout, ptr, "mode", 0, "", ICON_NONE); } static void geo_node_curve_to_points_init(bNodeTree *UNUSED(tree), bNode *node) { NodeGeometryCurveToPoints *data = (NodeGeometryCurveToPoints *)MEM_callocN( sizeof(NodeGeometryCurveToPoints), __func__); data->mode = GEO_NODE_CURVE_SAMPLE_COUNT; node->storage = data; } static void geo_node_curve_to_points_update(bNodeTree *UNUSED(ntree), bNode *node) { NodeGeometryCurveToPoints &node_storage = *(NodeGeometryCurveToPoints *)node->storage; const GeometryNodeCurveSampleMode mode = (GeometryNodeCurveSampleMode)node_storage.mode; bNodeSocket *count_socket = ((bNodeSocket *)node->inputs.first)->next; bNodeSocket *length_socket = count_socket->next; nodeSetSocketAvailability(count_socket, mode == GEO_NODE_CURVE_SAMPLE_COUNT); nodeSetSocketAvailability(length_socket, mode == GEO_NODE_CURVE_SAMPLE_LENGTH); } namespace blender::nodes { /** * Evaluate splines in parallel to speed up the rest of the node's execution. */ static void evaluate_splines(Span splines) { threading::parallel_for_each(splines, [](const SplinePtr &spline) { /* These functions fill the corresponding caches on each spline. */ spline->evaluated_positions(); spline->evaluated_tangents(); spline->evaluated_normals(); spline->evaluated_lengths(); }); } static Array calculate_spline_point_offsets(GeoNodeExecParams ¶ms, const GeometryNodeCurveSampleMode mode, const CurveEval &curve, const Span splines) { const int size = curve.splines().size(); switch (mode) { case GEO_NODE_CURVE_SAMPLE_COUNT: { const int count = params.extract_input("Count"); if (count < 1) { return {0}; } Array offsets(size + 1); for (const int i : offsets.index_range()) { offsets[i] = count * i; } return offsets; } case GEO_NODE_CURVE_SAMPLE_LENGTH: { /* Don't allow asymptotic count increase for low resolution values. */ const float resolution = std::max(params.extract_input("Length"), 0.0001f); Array offsets(size + 1); int offset = 0; for (const int i : IndexRange(size)) { offsets[i] = offset; offset += splines[i]->length() / resolution; } offsets.last() = offset; return offsets; } case GEO_NODE_CURVE_SAMPLE_EVALUATED: { return curve.evaluated_point_offsets(); } } BLI_assert_unreachable(); return {0}; } /** * \note This doesn't store a map for spline domain attributes. */ struct ResultAttributes { int result_size; MutableSpan positions; MutableSpan radii; MutableSpan tilts; Map point_attributes; MutableSpan tangents; MutableSpan normals; MutableSpan rotations; }; static GMutableSpan create_attribute_and_retrieve_span(PointCloudComponent &points, const StringRef name, const CustomDataType data_type) { points.attribute_try_create(name, ATTR_DOMAIN_POINT, data_type, AttributeInitDefault()); WriteAttributeLookup attribute = points.attribute_try_get_for_write(name); BLI_assert(attribute); return attribute.varray->get_internal_span(); } template static MutableSpan create_attribute_and_retrieve_span(PointCloudComponent &points, const StringRef name) { GMutableSpan attribute = create_attribute_and_retrieve_span( points, name, bke::cpp_type_to_custom_data_type(CPPType::get())); return attribute.typed(); } /** * Create references for all result point cloud attributes to simplify accessing them later on. */ static ResultAttributes create_point_attributes(PointCloudComponent &points, const CurveEval &curve) { ResultAttributes attributes; attributes.result_size = points.attribute_domain_size(ATTR_DOMAIN_POINT); attributes.positions = create_attribute_and_retrieve_span(points, "position"); attributes.radii = create_attribute_and_retrieve_span(points, "radius"); attributes.tilts = create_attribute_and_retrieve_span(points, "tilt"); /* Because of the invariants of the curve component, we use the attributes of the * first spline as a representative for the attribute meta data all splines. */ curve.splines().first()->attributes.foreach_attribute( [&](StringRefNull name, const AttributeMetaData &meta_data) { attributes.point_attributes.add_new( name, create_attribute_and_retrieve_span(points, name, meta_data.data_type)); return true; }, ATTR_DOMAIN_POINT); attributes.tangents = create_attribute_and_retrieve_span(points, "tangent"); attributes.normals = create_attribute_and_retrieve_span(points, "normal"); attributes.rotations = create_attribute_and_retrieve_span(points, "rotation"); return attributes; } /** * TODO: For non-poly splines, this has double copies that could be avoided as part * of a general look at optimizing uses of #Spline::interpolate_to_evaluated. */ static void copy_evaluated_point_attributes(Span splines, Span offsets, ResultAttributes &data) { threading::parallel_for(splines.index_range(), 64, [&](IndexRange range) { for (const int i : range) { const Spline &spline = *splines[i]; const int offset = offsets[i]; const int size = offsets[i + 1] - offsets[i]; data.positions.slice(offset, size).copy_from(spline.evaluated_positions()); spline.interpolate_to_evaluated(spline.radii())->materialize(data.radii.slice(offset, size)); spline.interpolate_to_evaluated(spline.tilts())->materialize(data.tilts.slice(offset, size)); for (const Map::Item &item : data.point_attributes.items()) { const StringRef name = item.key; GMutableSpan point_span = item.value; BLI_assert(spline.attributes.get_for_read(name)); GSpan spline_span = *spline.attributes.get_for_read(name); spline.interpolate_to_evaluated(spline_span) ->materialize(point_span.slice(offset, size).data()); } data.tangents.slice(offset, size).copy_from(spline.evaluated_tangents()); data.normals.slice(offset, size).copy_from(spline.evaluated_normals()); } }); } static void copy_uniform_sample_point_attributes(Span splines, Span offsets, ResultAttributes &data) { threading::parallel_for(splines.index_range(), 64, [&](IndexRange range) { for (const int i : range) { const Spline &spline = *splines[i]; const int offset = offsets[i]; const int size = offsets[i + 1] - offsets[i]; if (size == 0) { continue; } const Array uniform_samples = spline.sample_uniform_index_factors(size); spline.sample_with_index_factors( spline.evaluated_positions(), uniform_samples, data.positions.slice(offset, size)); spline.sample_with_index_factors(spline.interpolate_to_evaluated(spline.radii()), uniform_samples, data.radii.slice(offset, size)); spline.sample_with_index_factors(spline.interpolate_to_evaluated(spline.tilts()), uniform_samples, data.tilts.slice(offset, size)); for (const Map::Item &item : data.point_attributes.items()) { const StringRef name = item.key; GMutableSpan point_span = item.value; BLI_assert(spline.attributes.get_for_read(name)); GSpan spline_span = *spline.attributes.get_for_read(name); spline.sample_with_index_factors(*spline.interpolate_to_evaluated(spline_span), uniform_samples, point_span.slice(offset, size)); } spline.sample_with_index_factors( spline.evaluated_tangents(), uniform_samples, data.tangents.slice(offset, size)); for (float3 &tangent : data.tangents) { tangent.normalize(); } spline.sample_with_index_factors( spline.evaluated_normals(), uniform_samples, data.normals.slice(offset, size)); for (float3 &normals : data.normals) { normals.normalize(); } } }); } /** * \note Use attributes from the curve component rather than the attribute data directly on the * attribute storage to allow reading the virtual spline attributes like "cyclic" and "resolution". */ static void copy_spline_domain_attributes(const CurveComponent &curve_component, Span offsets, PointCloudComponent &points) { curve_component.attribute_foreach([&](StringRefNull name, const AttributeMetaData &meta_data) { if (meta_data.domain != ATTR_DOMAIN_CURVE) { return true; } GVArrayPtr spline_attribute = curve_component.attribute_get_for_read( name, ATTR_DOMAIN_CURVE, meta_data.data_type); const CPPType &type = spline_attribute->type(); OutputAttribute result_attribute = points.attribute_try_get_for_output_only( name, ATTR_DOMAIN_POINT, meta_data.data_type); GMutableSpan result = result_attribute.as_span(); for (const int i : IndexRange(spline_attribute->size())) { const int offset = offsets[i]; const int size = offsets[i + 1] - offsets[i]; if (size != 0) { BUFFER_FOR_CPP_TYPE_VALUE(type, buffer); spline_attribute->get(i, buffer); type.fill_assign_n(buffer, result[offset], size); } } result_attribute.save(); return true; }); } static void create_default_rotation_attribute(ResultAttributes &data) { threading::parallel_for(IndexRange(data.result_size), 512, [&](IndexRange range) { for (const int i : range) { data.rotations[i] = float4x4::from_normalized_axis_data( {0, 0, 0}, data.normals[i], data.tangents[i]) .to_euler(); } }); } static void geo_node_curve_to_points_exec(GeoNodeExecParams params) { NodeGeometryCurveToPoints &node_storage = *(NodeGeometryCurveToPoints *)params.node().storage; const GeometryNodeCurveSampleMode mode = (GeometryNodeCurveSampleMode)node_storage.mode; GeometrySet geometry_set = params.extract_input("Geometry"); geometry_set = bke::geometry_set_realize_instances(geometry_set); if (!geometry_set.has_curve()) { params.set_output("Geometry", GeometrySet()); return; } const CurveComponent &curve_component = *geometry_set.get_component_for_read(); const CurveEval &curve = *curve_component.get_for_read(); const Span splines = curve.splines(); curve.assert_valid_point_attributes(); evaluate_splines(splines); const Array offsets = calculate_spline_point_offsets(params, mode, curve, splines); const int total_size = offsets.last(); if (total_size == 0) { params.set_output("Geometry", GeometrySet()); return; } GeometrySet result = GeometrySet::create_with_pointcloud(BKE_pointcloud_new_nomain(total_size)); PointCloudComponent &point_component = result.get_component_for_write(); ResultAttributes new_attributes = create_point_attributes(point_component, curve); switch (mode) { case GEO_NODE_CURVE_SAMPLE_COUNT: case GEO_NODE_CURVE_SAMPLE_LENGTH: copy_uniform_sample_point_attributes(splines, offsets, new_attributes); break; case GEO_NODE_CURVE_SAMPLE_EVALUATED: copy_evaluated_point_attributes(splines, offsets, new_attributes); break; } copy_spline_domain_attributes(curve_component, offsets, point_component); create_default_rotation_attribute(new_attributes); /* The default radius is way too large for points, divide by 10. */ for (float &radius : new_attributes.radii) { radius *= 0.1f; } params.set_output("Geometry", std::move(result)); } } // namespace blender::nodes void register_node_type_geo_curve_to_points() { static bNodeType ntype; geo_node_type_base(&ntype, GEO_NODE_CURVE_TO_POINTS, "Curve to Points", NODE_CLASS_GEOMETRY, 0); node_type_socket_templates(&ntype, geo_node_curve_to_points_in, geo_node_curve_to_points_out); ntype.geometry_node_execute = blender::nodes::geo_node_curve_to_points_exec; ntype.draw_buttons = geo_node_curve_to_points_layout; node_type_storage( &ntype, "NodeGeometryCurveToPoints", node_free_standard_storage, node_copy_standard_storage); node_type_init(&ntype, geo_node_curve_to_points_init); node_type_update(&ntype, geo_node_curve_to_points_update); nodeRegisterType(&ntype); }