/* SPDX-License-Identifier: GPL-2.0-or-later */ /** * This file mainly converts a #bNodeTree into a lazy-function graph. This generally works by * creating a lazy-function for every node, which is then put into the lazy-function graph. Then * the nodes in the new graph are linked based on links in the original #bNodeTree. Some additional * nodes are inserted for things like type conversions and multi-input sockets. * * Currently, lazy-functions are even created for nodes that don't strictly require it, like * reroutes or muted nodes. In the future we could avoid that at the cost of additional code * complexity. So far, this does not seem to be a performance issue. */ #include "NOD_geometry_exec.hh" #include "NOD_geometry_nodes_lazy_function.hh" #include "NOD_multi_function.hh" #include "NOD_node_declaration.hh" #include "BLI_lazy_threading.hh" #include "BLI_map.hh" #include "DNA_ID.h" #include "BKE_compute_contexts.hh" #include "BKE_geometry_set.hh" #include "BKE_type_conversions.hh" #include "FN_field_cpp_type.hh" #include "FN_lazy_function_graph_executor.hh" #include "DEG_depsgraph_query.h" namespace blender::nodes { using fn::ValueOrField; using fn::ValueOrFieldCPPType; using namespace fn::multi_function_types; static const CPPType *get_socket_cpp_type(const bNodeSocketType &typeinfo) { const CPPType *type = typeinfo.geometry_nodes_cpp_type; if (type == nullptr) { return nullptr; } BLI_assert(type->has_special_member_functions()); return type; } static const CPPType *get_socket_cpp_type(const bNodeSocket &socket) { return get_socket_cpp_type(*socket.typeinfo); } static const CPPType *get_vector_type(const CPPType &type) { /* This could be generalized in the future. For now we only support a small set of vectors. */ if (type.is()) { return &CPPType::get>(); } if (type.is>()) { return &CPPType::get>>(); } return nullptr; } /** * Checks which sockets of the node are available and creates corresponding inputs/outputs on the * lazy-function. */ static void lazy_function_interface_from_node(const bNode &node, Vector &r_used_inputs, Vector &r_used_outputs, Vector &r_inputs, Vector &r_outputs) { const bool is_muted = node.is_muted(); const bool supports_laziness = node.typeinfo->geometry_node_execute_supports_laziness || node.is_group(); const lf::ValueUsage input_usage = supports_laziness ? lf::ValueUsage::Maybe : lf::ValueUsage::Used; for (const bNodeSocket *socket : node.input_sockets()) { if (!socket->is_available()) { continue; } const CPPType *type = get_socket_cpp_type(*socket); if (type == nullptr) { continue; } if (socket->is_multi_input() && !is_muted) { type = get_vector_type(*type); } r_inputs.append({socket->identifier, *type, input_usage}); r_used_inputs.append(socket); } for (const bNodeSocket *socket : node.output_sockets()) { if (!socket->is_available()) { continue; } const CPPType *type = get_socket_cpp_type(*socket); if (type == nullptr) { continue; } r_outputs.append({socket->identifier, *type}); r_used_outputs.append(socket); } } /** * Used for most normal geometry nodes like Subdivision Surface and Set Position. */ class LazyFunctionForGeometryNode : public LazyFunction { private: const bNode &node_; public: LazyFunctionForGeometryNode(const bNode &node, Vector &r_used_inputs, Vector &r_used_outputs) : node_(node) { BLI_assert(node.typeinfo->geometry_node_execute != nullptr); debug_name_ = node.name; lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_); } void execute_impl(lf::Params ¶ms, const lf::Context &context) const override { GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); GeoNodeExecParams geo_params{node_, params, context}; geo_eval_log::TimePoint start_time = geo_eval_log::Clock::now(); node_.typeinfo->geometry_node_execute(geo_params); geo_eval_log::TimePoint end_time = geo_eval_log::Clock::now(); if (geo_eval_log::GeoModifierLog *modifier_log = user_data->modifier_data->eval_log) { geo_eval_log::GeoTreeLogger &tree_logger = modifier_log->get_local_tree_logger( *user_data->compute_context); tree_logger.node_execution_times.append( {tree_logger.allocator->copy_string(node_.name), start_time, end_time}); } } }; /** * Used to gather all inputs of a multi-input socket. A separate node is necessary because * multi-inputs are not supported in lazy-function graphs. */ class LazyFunctionForMultiInput : public LazyFunction { private: const CPPType *base_type_; public: LazyFunctionForMultiInput(const bNodeSocket &socket) { debug_name_ = "Multi Input"; base_type_ = get_socket_cpp_type(socket); BLI_assert(base_type_ != nullptr); BLI_assert(socket.is_multi_input()); const bNodeTree &btree = socket.owner_tree(); for (const bNodeLink *link : socket.directly_linked_links()) { if (!(link->is_muted() || nodeIsDanglingReroute(&btree, link->fromnode))) { inputs_.append({"Input", *base_type_}); } } const CPPType *vector_type = get_vector_type(*base_type_); BLI_assert(vector_type != nullptr); outputs_.append({"Output", *vector_type}); } void execute_impl(lf::Params ¶ms, const lf::Context & /*context*/) const override { /* Currently we only have multi-inputs for geometry and string sockets. This could be * generalized in the future. */ base_type_->to_static_type_tag>([&](auto type_tag) { using T = typename decltype(type_tag)::type; if constexpr (std::is_void_v) { /* This type is not supported in this node for now. */ BLI_assert_unreachable(); } else { void *output_ptr = params.get_output_data_ptr(0); Vector &values = *new (output_ptr) Vector(); for (const int i : inputs_.index_range()) { values.append(params.extract_input(i)); } params.output_set(0); } }); } }; /** * Simple lazy-function that just forwards the input. */ class LazyFunctionForRerouteNode : public LazyFunction { public: LazyFunctionForRerouteNode(const CPPType &type) { debug_name_ = "Reroute"; inputs_.append({"Input", type}); outputs_.append({"Output", type}); } void execute_impl(lf::Params ¶ms, const lf::Context & /*context*/) const override { void *input_value = params.try_get_input_data_ptr(0); void *output_value = params.get_output_data_ptr(0); BLI_assert(input_value != nullptr); BLI_assert(output_value != nullptr); const CPPType &type = *inputs_[0].type; type.move_construct(input_value, output_value); params.output_set(0); } }; /** * Lazy functions for nodes whose type cannot be found. An undefined function just outputs default * values. It's useful to have so other parts of the conversion don't have to care about undefined * nodes. */ class LazyFunctionForUndefinedNode : public LazyFunction { public: LazyFunctionForUndefinedNode(const bNode &node, Vector &r_used_outputs) { debug_name_ = "Undefined"; Vector dummy_used_inputs; Vector dummy_inputs; lazy_function_interface_from_node( node, dummy_used_inputs, r_used_outputs, dummy_inputs, outputs_); } void execute_impl(lf::Params ¶ms, const lf::Context & /*context*/) const override { params.set_default_remaining_outputs(); } }; /** * Executes a multi-function. If all inputs are single values, the results will also be single * values. If any input is a field, the outputs will also be fields. */ static void execute_multi_function_on_value_or_field( const MultiFunction &fn, const std::shared_ptr &owned_fn, const Span input_types, const Span output_types, const Span input_values, const Span output_values) { BLI_assert(fn.param_amount() == input_types.size() + output_types.size()); BLI_assert(input_types.size() == input_values.size()); BLI_assert(output_types.size() == output_values.size()); /* Check if any input is a field. */ bool any_input_is_field = false; for (const int i : input_types.index_range()) { const ValueOrFieldCPPType &type = *input_types[i]; const void *value_or_field = input_values[i]; if (type.is_field(value_or_field)) { any_input_is_field = true; break; } } if (any_input_is_field) { /* Convert all inputs into fields, so that they can be used as input in the new field. */ Vector input_fields; for (const int i : input_types.index_range()) { const ValueOrFieldCPPType &type = *input_types[i]; const void *value_or_field = input_values[i]; input_fields.append(type.as_field(value_or_field)); } /* Construct the new field node. */ std::shared_ptr operation; if (owned_fn) { operation = std::make_shared(owned_fn, std::move(input_fields)); } else { operation = std::make_shared(fn, std::move(input_fields)); } /* Store the new fields in the output. */ for (const int i : output_types.index_range()) { const ValueOrFieldCPPType &type = *output_types[i]; void *value_or_field = output_values[i]; type.construct_from_field(value_or_field, GField{operation, i}); } } else { /* In this case, the multi-function is evaluated directly. */ MFParamsBuilder params{fn, 1}; MFContextBuilder context; for (const int i : input_types.index_range()) { const ValueOrFieldCPPType &type = *input_types[i]; const CPPType &base_type = type.base_type(); const void *value_or_field = input_values[i]; const void *value = type.get_value_ptr(value_or_field); params.add_readonly_single_input(GVArray::ForSingleRef(base_type, 1, value)); } for (const int i : output_types.index_range()) { const ValueOrFieldCPPType &type = *output_types[i]; const CPPType &base_type = type.base_type(); void *value_or_field = output_values[i]; type.default_construct(value_or_field); void *value = type.get_value_ptr(value_or_field); base_type.destruct(value); params.add_uninitialized_single_output(GMutableSpan{base_type, value, 1}); } fn.call(IndexRange(1), params, context); } } /** * Behavior of muted nodes: * - Some inputs are forwarded to outputs without changes. * - Some inputs are converted to a different type which becomes the output. * - Some outputs are value initialized because they don't have a corresponding input. */ class LazyFunctionForMutedNode : public LazyFunction { private: Array input_by_output_index_; public: LazyFunctionForMutedNode(const bNode &node, Vector &r_used_inputs, Vector &r_used_outputs) { debug_name_ = "Muted"; lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_); for (lf::Input &fn_input : inputs_) { fn_input.usage = lf::ValueUsage::Maybe; } for (lf::Input &fn_input : inputs_) { fn_input.usage = lf::ValueUsage::Unused; } input_by_output_index_.reinitialize(outputs_.size()); input_by_output_index_.fill(-1); for (const bNodeLink *internal_link : node.internal_links_span()) { const int input_i = r_used_inputs.first_index_of_try(internal_link->fromsock); const int output_i = r_used_outputs.first_index_of_try(internal_link->tosock); if (ELEM(-1, input_i, output_i)) { continue; } input_by_output_index_[output_i] = input_i; inputs_[input_i].usage = lf::ValueUsage::Maybe; } } void execute_impl(lf::Params ¶ms, const lf::Context & /*context*/) const override { for (const int output_i : outputs_.index_range()) { if (params.output_was_set(output_i)) { continue; } const CPPType &output_type = *outputs_[output_i].type; void *output_value = params.get_output_data_ptr(output_i); const int input_i = input_by_output_index_[output_i]; if (input_i == -1) { /* The output does not have a corresponding input. */ output_type.value_initialize(output_value); params.output_set(output_i); continue; } const void *input_value = params.try_get_input_data_ptr_or_request(input_i); if (input_value == nullptr) { continue; } const CPPType &input_type = *inputs_[input_i].type; if (input_type == output_type) { /* Forward the value as is. */ input_type.copy_construct(input_value, output_value); params.output_set(output_i); continue; } /* Perform a type conversion and then format the value. */ const bke::DataTypeConversions &conversions = bke::get_implicit_type_conversions(); const auto *from_field_type = dynamic_cast(&input_type); const auto *to_field_type = dynamic_cast(&output_type); if (from_field_type != nullptr && to_field_type != nullptr) { const CPPType &from_base_type = from_field_type->base_type(); const CPPType &to_base_type = to_field_type->base_type(); if (conversions.is_convertible(from_base_type, to_base_type)) { const MultiFunction &multi_fn = *conversions.get_conversion_multi_function( MFDataType::ForSingle(from_base_type), MFDataType::ForSingle(to_base_type)); execute_multi_function_on_value_or_field( multi_fn, {}, {from_field_type}, {to_field_type}, {input_value}, {output_value}); } params.output_set(output_i); continue; } /* Use a value initialization if the conversion does not work. */ output_type.value_initialize(output_value); params.output_set(output_i); } } }; /** * Type conversions are generally implemented as multi-functions. This node checks if the input is * a field or single value and outputs a field or single value respectively. */ class LazyFunctionForMultiFunctionConversion : public LazyFunction { private: const MultiFunction &fn_; const ValueOrFieldCPPType &from_type_; const ValueOrFieldCPPType &to_type_; const Vector target_sockets_; public: LazyFunctionForMultiFunctionConversion(const MultiFunction &fn, const ValueOrFieldCPPType &from, const ValueOrFieldCPPType &to, Vector &&target_sockets) : fn_(fn), from_type_(from), to_type_(to), target_sockets_(std::move(target_sockets)) { debug_name_ = "Convert"; inputs_.append({"From", from}); outputs_.append({"To", to}); } void execute_impl(lf::Params ¶ms, const lf::Context & /*context*/) const override { const void *from_value = params.try_get_input_data_ptr(0); void *to_value = params.get_output_data_ptr(0); BLI_assert(from_value != nullptr); BLI_assert(to_value != nullptr); execute_multi_function_on_value_or_field( fn_, {}, {&from_type_}, {&to_type_}, {from_value}, {to_value}); params.output_set(0); } }; /** * This lazy-function wraps nodes that are implemented as multi-function (mostly math nodes). */ class LazyFunctionForMultiFunctionNode : public LazyFunction { private: const NodeMultiFunctions::Item fn_item_; Vector input_types_; Vector output_types_; public: LazyFunctionForMultiFunctionNode(const bNode &node, NodeMultiFunctions::Item fn_item, Vector &r_used_inputs, Vector &r_used_outputs) : fn_item_(std::move(fn_item)) { BLI_assert(fn_item_.fn != nullptr); debug_name_ = node.name; lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_); for (const lf::Input &fn_input : inputs_) { input_types_.append(dynamic_cast(fn_input.type)); } for (const lf::Output &fn_output : outputs_) { output_types_.append(dynamic_cast(fn_output.type)); } } void execute_impl(lf::Params ¶ms, const lf::Context & /*context*/) const override { Vector input_values(inputs_.size()); Vector output_values(outputs_.size()); for (const int i : inputs_.index_range()) { input_values[i] = params.try_get_input_data_ptr(i); } for (const int i : outputs_.index_range()) { output_values[i] = params.get_output_data_ptr(i); } execute_multi_function_on_value_or_field( *fn_item_.fn, fn_item_.owned_fn, input_types_, output_types_, input_values, output_values); for (const int i : outputs_.index_range()) { params.output_set(i); } } }; /** * Some sockets have non-trivial implicit inputs (e.g. the Position input of the Set Position * node). Those are implemented as a separate node that outputs the value. */ class LazyFunctionForImplicitInput : public LazyFunction { private: /** * The function that generates the implicit input. The passed in memory is uninitialized. */ std::function init_fn_; public: LazyFunctionForImplicitInput(const CPPType &type, std::function init_fn) : init_fn_(std::move(init_fn)) { debug_name_ = "Input"; outputs_.append({"Output", type}); } void execute_impl(lf::Params ¶ms, const lf::Context & /*context*/) const override { void *value = params.get_output_data_ptr(0); init_fn_(value); params.output_set(0); } }; /** * The viewer node does not have outputs. Instead it is executed because the executor knows that it * has side effects. The side effect is that the inputs to the viewer are logged. */ class LazyFunctionForViewerNode : public LazyFunction { private: const bNode &bnode_; /** The field is only logged when it is linked. */ bool use_field_input_ = true; public: LazyFunctionForViewerNode(const bNode &bnode, Vector &r_used_inputs) : bnode_(bnode) { debug_name_ = "Viewer"; Vector dummy_used_outputs; lazy_function_interface_from_node(bnode, r_used_inputs, dummy_used_outputs, inputs_, outputs_); const Span links = r_used_inputs[1]->directly_linked_links(); if (links.is_empty() || nodeIsDanglingReroute(&bnode.owner_tree(), links.first()->fromnode)) { use_field_input_ = false; r_used_inputs.pop_last(); inputs_.pop_last(); } } void execute_impl(lf::Params ¶ms, const lf::Context &context) const override { GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); if (user_data->modifier_data == nullptr) { return; } if (user_data->modifier_data->eval_log == nullptr) { return; } GeometrySet geometry = params.extract_input(0); const NodeGeometryViewer *storage = static_cast(bnode_.storage); if (use_field_input_) { const void *value_or_field = params.try_get_input_data_ptr(1); BLI_assert(value_or_field != nullptr); const ValueOrFieldCPPType &value_or_field_type = static_cast( *inputs_[1].type); GField field = value_or_field_type.as_field(value_or_field); const eAttrDomain domain = eAttrDomain(storage->domain); const StringRefNull viewer_attribute_name = ".viewer"; if (domain == ATTR_DOMAIN_INSTANCE) { if (geometry.has_instances()) { GeometryComponent &component = geometry.get_component_for_write( GEO_COMPONENT_TYPE_INSTANCES); bke::try_capture_field_on_geometry( component, viewer_attribute_name, ATTR_DOMAIN_INSTANCE, field); } } else { geometry.modify_geometry_sets([&](GeometrySet &geometry) { for (const GeometryComponentType type : {GEO_COMPONENT_TYPE_MESH, GEO_COMPONENT_TYPE_POINT_CLOUD, GEO_COMPONENT_TYPE_CURVE}) { if (geometry.has(type)) { GeometryComponent &component = geometry.get_component_for_write(type); eAttrDomain used_domain = domain; if (used_domain == ATTR_DOMAIN_AUTO) { if (const std::optional detected_domain = bke::try_detect_field_domain(component, field)) { used_domain = *detected_domain; } else { used_domain = type == GEO_COMPONENT_TYPE_MESH ? ATTR_DOMAIN_CORNER : ATTR_DOMAIN_POINT; } } bke::try_capture_field_on_geometry( component, viewer_attribute_name, used_domain, field); } } }); } } geo_eval_log::GeoTreeLogger &tree_logger = user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context); tree_logger.log_viewer_node(bnode_, std::move(geometry)); } }; /** * This lazy-function wraps a group node. Internally it just executes the lazy-function graph of * the referenced group. */ class LazyFunctionForGroupNode : public LazyFunction { private: const bNode &group_node_; bool has_many_nodes_ = false; bool use_fallback_outputs_ = false; std::optional lf_logger_; std::optional lf_side_effect_provider_; std::optional graph_executor_; public: LazyFunctionForGroupNode(const bNode &group_node, const GeometryNodesLazyFunctionGraphInfo &lf_graph_info, Vector &r_used_inputs, Vector &r_used_outputs) : group_node_(group_node) { debug_name_ = group_node.name; lazy_function_interface_from_node( group_node, r_used_inputs, r_used_outputs, inputs_, outputs_); bNodeTree *group_btree = reinterpret_cast(group_node_.id); BLI_assert(group_btree != nullptr); has_many_nodes_ = lf_graph_info.num_inline_nodes_approximate > 1000; Vector graph_inputs; for (const lf::OutputSocket *socket : lf_graph_info.mapping.group_input_sockets) { if (socket != nullptr) { graph_inputs.append(socket); } } Vector graph_outputs; if (const bNode *group_output_bnode = group_btree->group_output_node()) { for (const bNodeSocket *bsocket : group_output_bnode->input_sockets().drop_back(1)) { const lf::Socket *socket = lf_graph_info.mapping.dummy_socket_map.lookup_default(bsocket, nullptr); if (socket != nullptr) { graph_outputs.append(&socket->as_input()); } } } else { use_fallback_outputs_ = true; } lf_logger_.emplace(lf_graph_info); lf_side_effect_provider_.emplace(); graph_executor_.emplace(lf_graph_info.graph, std::move(graph_inputs), std::move(graph_outputs), &*lf_logger_, &*lf_side_effect_provider_); } void execute_impl(lf::Params ¶ms, const lf::Context &context) const override { GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); if (has_many_nodes_) { /* If the called node group has many nodes, it's likely that executing it takes a while even * if every individual node is very small. */ lazy_threading::send_hint(); } if (use_fallback_outputs_) { /* The node group itself does not have an output node, so use default values as outputs. * The group should still be executed in case it has side effects. */ params.set_default_remaining_outputs(); } /* The compute context changes when entering a node group. */ bke::NodeGroupComputeContext compute_context{user_data->compute_context, group_node_.name}; GeoNodesLFUserData group_user_data = *user_data; group_user_data.compute_context = &compute_context; lf::Context group_context = context; group_context.user_data = &group_user_data; graph_executor_->execute(params, group_context); } void *init_storage(LinearAllocator<> &allocator) const override { return graph_executor_->init_storage(allocator); } void destruct_storage(void *storage) const override { graph_executor_->destruct_storage(storage); } }; static GMutablePointer get_socket_default_value(LinearAllocator<> &allocator, const bNodeSocket &bsocket) { const bNodeSocketType &typeinfo = *bsocket.typeinfo; const CPPType *type = get_socket_cpp_type(typeinfo); if (type == nullptr) { return {}; } void *buffer = allocator.allocate(type->size(), type->alignment()); typeinfo.get_geometry_nodes_cpp_value(bsocket, buffer); return {type, buffer}; } /** * Utility class to build a lazy-function graph based on a geometry nodes tree. * This is mainly a separate class because it makes it easier to have variables that can be * accessed by many functions. */ struct GeometryNodesLazyFunctionGraphBuilder { private: const bNodeTree &btree_; GeometryNodesLazyFunctionGraphInfo *lf_graph_info_; lf::Graph *lf_graph_; GeometryNodeLazyFunctionGraphMapping *mapping_; MultiValueMap input_socket_map_; Map output_socket_map_; Map multi_input_socket_nodes_; const bke::DataTypeConversions *conversions_; /** * All group input nodes are combined into one dummy node in the lazy-function graph. * If some input has an invalid type, it is ignored in the new graph. In this case null and -1 is * used in the vectors below. */ Vector group_input_types_; Vector group_input_indices_; lf::DummyNode *group_input_lf_node_; /** * The output types or null if an output is invalid. Each group output node gets a separate * corresponding dummy node in the new graph. */ Vector group_output_types_; Vector group_output_indices_; public: GeometryNodesLazyFunctionGraphBuilder(const bNodeTree &btree, GeometryNodesLazyFunctionGraphInfo &lf_graph_info) : btree_(btree), lf_graph_info_(&lf_graph_info) { } void build() { btree_.ensure_topology_cache(); lf_graph_ = &lf_graph_info_->graph; mapping_ = &lf_graph_info_->mapping; conversions_ = &bke::get_implicit_type_conversions(); this->prepare_node_multi_functions(); this->prepare_group_inputs(); this->prepare_group_outputs(); this->build_group_input_node(); this->handle_nodes(); this->handle_links(); this->add_default_inputs(); lf_graph_->update_node_indices(); lf_graph_info_->num_inline_nodes_approximate += lf_graph_->nodes().size(); } private: void prepare_node_multi_functions() { lf_graph_info_->node_multi_functions = std::make_unique(btree_); } void prepare_group_inputs() { LISTBASE_FOREACH (const bNodeSocket *, interface_bsocket, &btree_.inputs) { const CPPType *type = get_socket_cpp_type(*interface_bsocket->typeinfo); if (type != nullptr) { const int index = group_input_types_.append_and_get_index(type); group_input_indices_.append(index); } else { group_input_indices_.append(-1); } } } void prepare_group_outputs() { LISTBASE_FOREACH (const bNodeSocket *, interface_bsocket, &btree_.outputs) { const CPPType *type = get_socket_cpp_type(*interface_bsocket->typeinfo); if (type != nullptr) { const int index = group_output_types_.append_and_get_index(type); group_output_indices_.append(index); } else { group_output_indices_.append(-1); } } } void build_group_input_node() { /* Create a dummy node for the group inputs. */ group_input_lf_node_ = &lf_graph_->add_dummy({}, group_input_types_); for (const int group_input_index : group_input_indices_) { if (group_input_index == -1) { mapping_->group_input_sockets.append(nullptr); } else { mapping_->group_input_sockets.append(&group_input_lf_node_->output(group_input_index)); } } } void handle_nodes() { /* Insert all nodes into the lazy function graph. */ for (const bNode *bnode : btree_.all_nodes()) { const bNodeType *node_type = bnode->typeinfo; if (node_type == nullptr) { continue; } if (bnode->is_muted()) { this->handle_muted_node(*bnode); continue; } switch (node_type->type) { case NODE_FRAME: { /* Ignored. */ break; } case NODE_REROUTE: { this->handle_reroute_node(*bnode); break; } case NODE_GROUP_INPUT: { this->handle_group_input_node(*bnode); break; } case NODE_GROUP_OUTPUT: { this->handle_group_output_node(*bnode); break; } case NODE_CUSTOM_GROUP: case NODE_GROUP: { this->handle_group_node(*bnode); break; } case GEO_NODE_VIEWER: { this->handle_viewer_node(*bnode); break; } default: { if (node_type->geometry_node_execute) { this->handle_geometry_node(*bnode); break; } const NodeMultiFunctions::Item &fn_item = lf_graph_info_->node_multi_functions->try_get( *bnode); if (fn_item.fn != nullptr) { this->handle_multi_function_node(*bnode, fn_item); break; } if (node_type == &NodeTypeUndefined) { this->handle_undefined_node(*bnode); break; } /* Nodes that don't match any of the criteria above are just ignored. */ break; } } } } void handle_muted_node(const bNode &bnode) { Vector used_inputs; Vector used_outputs; auto lazy_function = std::make_unique( bnode, used_inputs, used_outputs); lf::Node &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); for (const int i : used_inputs.index_range()) { const bNodeSocket &bsocket = *used_inputs[i]; lf::InputSocket &lf_socket = lf_node.input(i); input_socket_map_.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } for (const int i : used_outputs.index_range()) { const bNodeSocket &bsocket = *used_outputs[i]; lf::OutputSocket &lf_socket = lf_node.output(i); output_socket_map_.add_new(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } } void handle_reroute_node(const bNode &bnode) { const bNodeSocket &input_bsocket = bnode.input_socket(0); const bNodeSocket &output_bsocket = bnode.output_socket(0); const CPPType *type = get_socket_cpp_type(input_bsocket); if (type == nullptr) { return; } auto lazy_function = std::make_unique(*type); lf::Node &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); lf::InputSocket &lf_input = lf_node.input(0); lf::OutputSocket &lf_output = lf_node.output(0); input_socket_map_.add(&input_bsocket, &lf_input); output_socket_map_.add_new(&output_bsocket, &lf_output); mapping_->bsockets_by_lf_socket_map.add(&lf_input, &input_bsocket); mapping_->bsockets_by_lf_socket_map.add(&lf_output, &output_bsocket); } void handle_group_input_node(const bNode &bnode) { for (const int btree_index : group_input_indices_.index_range()) { const int lf_index = group_input_indices_[btree_index]; if (lf_index == -1) { continue; } const bNodeSocket &bsocket = bnode.output_socket(btree_index); lf::OutputSocket &lf_socket = group_input_lf_node_->output(lf_index); output_socket_map_.add_new(&bsocket, &lf_socket); mapping_->dummy_socket_map.add_new(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } } void handle_group_output_node(const bNode &bnode) { lf::DummyNode &group_output_lf_node = lf_graph_->add_dummy(group_output_types_, {}); for (const int btree_index : group_output_indices_.index_range()) { const int lf_index = group_output_indices_[btree_index]; if (lf_index == -1) { continue; } const bNodeSocket &bsocket = bnode.input_socket(btree_index); lf::InputSocket &lf_socket = group_output_lf_node.input(lf_index); input_socket_map_.add(&bsocket, &lf_socket); mapping_->dummy_socket_map.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } } void handle_group_node(const bNode &bnode) { const bNodeTree *group_btree = reinterpret_cast(bnode.id); if (group_btree == nullptr) { return; } const GeometryNodesLazyFunctionGraphInfo *group_lf_graph_info = ensure_geometry_nodes_lazy_function_graph(*group_btree); if (group_lf_graph_info == nullptr) { return; } Vector used_inputs; Vector used_outputs; auto lazy_function = std::make_unique( bnode, *group_lf_graph_info, used_inputs, used_outputs); lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); for (const int i : used_inputs.index_range()) { const bNodeSocket &bsocket = *used_inputs[i]; BLI_assert(!bsocket.is_multi_input()); lf::InputSocket &lf_socket = lf_node.input(i); input_socket_map_.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } for (const int i : used_outputs.index_range()) { const bNodeSocket &bsocket = *used_outputs[i]; lf::OutputSocket &lf_socket = lf_node.output(i); output_socket_map_.add_new(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } mapping_->group_node_map.add(&bnode, &lf_node); lf_graph_info_->num_inline_nodes_approximate += group_lf_graph_info->num_inline_nodes_approximate; } void handle_geometry_node(const bNode &bnode) { Vector used_inputs; Vector used_outputs; auto lazy_function = std::make_unique( bnode, used_inputs, used_outputs); lf::Node &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); for (const int i : used_inputs.index_range()) { const bNodeSocket &bsocket = *used_inputs[i]; lf::InputSocket &lf_socket = lf_node.input(i); if (bsocket.is_multi_input()) { auto multi_input_lazy_function = std::make_unique(bsocket); lf::Node &lf_multi_input_node = lf_graph_->add_function(*multi_input_lazy_function); lf_graph_info_->functions.append(std::move(multi_input_lazy_function)); lf_graph_->add_link(lf_multi_input_node.output(0), lf_socket); multi_input_socket_nodes_.add_new(&bsocket, &lf_multi_input_node); for (lf::InputSocket *lf_multi_input_socket : lf_multi_input_node.inputs()) { mapping_->bsockets_by_lf_socket_map.add(lf_multi_input_socket, &bsocket); } } else { input_socket_map_.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } } for (const int i : used_outputs.index_range()) { const bNodeSocket &bsocket = *used_outputs[i]; lf::OutputSocket &lf_socket = lf_node.output(i); output_socket_map_.add_new(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } } void handle_multi_function_node(const bNode &bnode, const NodeMultiFunctions::Item &fn_item) { Vector used_inputs; Vector used_outputs; auto lazy_function = std::make_unique( bnode, fn_item, used_inputs, used_outputs); lf::Node &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); for (const int i : used_inputs.index_range()) { const bNodeSocket &bsocket = *used_inputs[i]; BLI_assert(!bsocket.is_multi_input()); lf::InputSocket &lf_socket = lf_node.input(i); input_socket_map_.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } for (const int i : used_outputs.index_range()) { const bNodeSocket &bsocket = *used_outputs[i]; lf::OutputSocket &lf_socket = lf_node.output(i); output_socket_map_.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } } void handle_viewer_node(const bNode &bnode) { Vector used_inputs; auto lazy_function = std::make_unique(bnode, used_inputs); lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); for (const int i : used_inputs.index_range()) { const bNodeSocket &bsocket = *used_inputs[i]; lf::InputSocket &lf_socket = lf_node.input(i); input_socket_map_.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } mapping_->viewer_node_map.add(&bnode, &lf_node); } void handle_undefined_node(const bNode &bnode) { Vector used_outputs; auto lazy_function = std::make_unique(bnode, used_outputs); lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); for (const int i : used_outputs.index_range()) { const bNodeSocket &bsocket = *used_outputs[i]; lf::OutputSocket &lf_socket = lf_node.output(i); output_socket_map_.add(&bsocket, &lf_socket); mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket); } } void handle_links() { for (const auto item : output_socket_map_.items()) { this->insert_links_from_socket(*item.key, *item.value); } } void insert_links_from_socket(const bNodeSocket &from_bsocket, lf::OutputSocket &from_lf_socket) { if (nodeIsDanglingReroute(&btree_, &from_bsocket.owner_node())) { return; } const Span links_from_bsocket = from_bsocket.directly_linked_links(); struct TypeWithLinks { const CPPType *type; Vector links; }; /* Group available target sockets by type so that they can be handled together. */ Vector types_with_links; for (const bNodeLink *link : links_from_bsocket) { if (link->is_muted()) { continue; } if (!link->is_available()) { continue; } const bNodeSocket &to_bsocket = *link->tosock; const CPPType *to_type = get_socket_cpp_type(to_bsocket); if (to_type == nullptr) { continue; } bool inserted = false; for (TypeWithLinks &types_with_links : types_with_links) { if (types_with_links.type == to_type) { types_with_links.links.append(link); inserted = true; break; } } if (inserted) { continue; } types_with_links.append({to_type, {link}}); } for (const TypeWithLinks &type_with_links : types_with_links) { const CPPType &to_type = *type_with_links.type; const Span links = type_with_links.links; Vector target_bsockets; for (const bNodeLink *link : links) { target_bsockets.append(link->tosock); } lf::OutputSocket *converted_from_lf_socket = this->insert_type_conversion_if_necessary( from_lf_socket, to_type, std::move(target_bsockets)); auto make_input_link_or_set_default = [&](lf::InputSocket &to_lf_socket) { if (converted_from_lf_socket == nullptr) { const void *default_value = to_type.default_value(); to_lf_socket.set_default_value(default_value); } else { lf_graph_->add_link(*converted_from_lf_socket, to_lf_socket); } }; for (const bNodeLink *link : links) { const bNodeSocket &to_bsocket = *link->tosock; if (to_bsocket.is_multi_input()) { /* TODO: Cache this index on the link. */ int link_index = 0; for (const bNodeLink *multi_input_link : to_bsocket.directly_linked_links()) { if (multi_input_link == link) { break; } if (!(multi_input_link->is_muted() || nodeIsDanglingReroute(&btree_, multi_input_link->fromnode))) { link_index++; } } if (to_bsocket.owner_node().is_muted()) { if (link_index == 0) { for (lf::InputSocket *to_lf_socket : input_socket_map_.lookup(&to_bsocket)) { make_input_link_or_set_default(*to_lf_socket); } } } else { lf::Node *multi_input_lf_node = multi_input_socket_nodes_.lookup_default(&to_bsocket, nullptr); if (multi_input_lf_node == nullptr) { continue; } make_input_link_or_set_default(multi_input_lf_node->input(link_index)); } } else { for (lf::InputSocket *to_lf_socket : input_socket_map_.lookup(&to_bsocket)) { make_input_link_or_set_default(*to_lf_socket); } } } } } lf::OutputSocket *insert_type_conversion_if_necessary( lf::OutputSocket &from_socket, const CPPType &to_type, Vector &&target_sockets) { const CPPType &from_type = from_socket.type(); if (from_type == to_type) { return &from_socket; } const auto *from_field_type = dynamic_cast(&from_type); const auto *to_field_type = dynamic_cast(&to_type); if (from_field_type != nullptr && to_field_type != nullptr) { const CPPType &from_base_type = from_field_type->base_type(); const CPPType &to_base_type = to_field_type->base_type(); if (conversions_->is_convertible(from_base_type, to_base_type)) { const MultiFunction &multi_fn = *conversions_->get_conversion_multi_function( MFDataType::ForSingle(from_base_type), MFDataType::ForSingle(to_base_type)); auto fn = std::make_unique( multi_fn, *from_field_type, *to_field_type, std::move(target_sockets)); lf::Node &conversion_node = lf_graph_->add_function(*fn); lf_graph_info_->functions.append(std::move(fn)); lf_graph_->add_link(from_socket, conversion_node.input(0)); return &conversion_node.output(0); } } return nullptr; } void add_default_inputs() { for (auto item : input_socket_map_.items()) { const bNodeSocket &bsocket = *item.key; const Span lf_sockets = item.value; for (lf::InputSocket *lf_socket : lf_sockets) { if (lf_socket->origin() != nullptr) { /* Is linked already. */ continue; } this->add_default_input(bsocket, *lf_socket); } } } void add_default_input(const bNodeSocket &input_bsocket, lf::InputSocket &input_lf_socket) { if (this->try_add_implicit_input(input_bsocket, input_lf_socket)) { return; } GMutablePointer value = get_socket_default_value(lf_graph_info_->allocator, input_bsocket); if (value.get() == nullptr) { /* Not possible to add a default value. */ return; } input_lf_socket.set_default_value(value.get()); if (!value.type()->is_trivially_destructible()) { lf_graph_info_->values_to_destruct.append(value); } } bool try_add_implicit_input(const bNodeSocket &input_bsocket, lf::InputSocket &input_lf_socket) { const bNode &bnode = input_bsocket.owner_node(); const SocketDeclaration *socket_decl = input_bsocket.runtime->declaration; if (socket_decl == nullptr) { return false; } if (socket_decl->input_field_type() != InputSocketFieldType::Implicit) { return false; } const ImplicitInputValueFn *implicit_input_fn = socket_decl->implicit_input_fn(); if (implicit_input_fn == nullptr) { return false; } std::function init_fn = [&bnode, implicit_input_fn](void *r_value) { (*implicit_input_fn)(bnode, r_value); }; const CPPType &type = input_lf_socket.type(); auto lazy_function = std::make_unique(type, std::move(init_fn)); lf::Node &lf_node = lf_graph_->add_function(*lazy_function); lf_graph_info_->functions.append(std::move(lazy_function)); lf_graph_->add_link(lf_node.output(0), input_lf_socket); return true; } }; const GeometryNodesLazyFunctionGraphInfo *ensure_geometry_nodes_lazy_function_graph( const bNodeTree &btree) { btree.ensure_topology_cache(); if (btree.has_available_link_cycle()) { return nullptr; } if (const ID *id_orig = DEG_get_original_id(const_cast(&btree.id))) { if (id_orig->tag & LIB_TAG_MISSING) { return nullptr; } } std::unique_ptr &lf_graph_info_ptr = btree.runtime->geometry_nodes_lazy_function_graph_info; if (lf_graph_info_ptr) { return lf_graph_info_ptr.get(); } std::lock_guard lock{btree.runtime->geometry_nodes_lazy_function_graph_info_mutex}; if (lf_graph_info_ptr) { return lf_graph_info_ptr.get(); } auto lf_graph_info = std::make_unique(); GeometryNodesLazyFunctionGraphBuilder builder{btree, *lf_graph_info}; builder.build(); lf_graph_info_ptr = std::move(lf_graph_info); return lf_graph_info_ptr.get(); } GeometryNodesLazyFunctionLogger::GeometryNodesLazyFunctionLogger( const GeometryNodesLazyFunctionGraphInfo &lf_graph_info) : lf_graph_info_(lf_graph_info) { } void GeometryNodesLazyFunctionLogger::log_socket_value( const fn::lazy_function::Socket &lf_socket, const GPointer value, const fn::lazy_function::Context &context) const { const Span bsockets = lf_graph_info_.mapping.bsockets_by_lf_socket_map.lookup(&lf_socket); if (bsockets.is_empty()) { return; } GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); if (user_data->modifier_data->eval_log == nullptr) { return; } geo_eval_log::GeoTreeLogger &tree_logger = user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context); for (const bNodeSocket *bsocket : bsockets) { /* Avoid logging to some sockets when the same value will also be logged to a linked socket. * This reduces the number of logged values without losing information. */ if (bsocket->is_input() && bsocket->is_directly_linked()) { continue; } const bNode &bnode = bsocket->owner_node(); if (bnode.is_reroute()) { continue; } tree_logger.log_value(bsocket->owner_node(), *bsocket, value); } } static std::mutex dump_error_context_mutex; void GeometryNodesLazyFunctionLogger::dump_when_outputs_are_missing( const lf::FunctionNode &node, Span missing_sockets, const lf::Context &context) const { std::lock_guard lock{dump_error_context_mutex}; GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); user_data->compute_context->print_stack(std::cout, node.name()); std::cout << "Missing outputs:\n"; for (const lf::OutputSocket *socket : missing_sockets) { std::cout << " " << socket->name() << "\n"; } } void GeometryNodesLazyFunctionLogger::dump_when_input_is_set_twice( const lf::InputSocket &target_socket, const lf::OutputSocket &from_socket, const lf::Context &context) const { std::lock_guard lock{dump_error_context_mutex}; std::stringstream ss; ss << from_socket.node().name() << ":" << from_socket.name() << " -> " << target_socket.node().name() << ":" << target_socket.name(); GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); user_data->compute_context->print_stack(std::cout, ss.str()); } Vector GeometryNodesLazyFunctionSideEffectProvider:: get_nodes_with_side_effects(const lf::Context &context) const { GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); const ComputeContextHash &context_hash = user_data->compute_context->hash(); const GeoNodesModifierData &modifier_data = *user_data->modifier_data; return modifier_data.side_effect_nodes->lookup(context_hash); } GeometryNodesLazyFunctionGraphInfo::GeometryNodesLazyFunctionGraphInfo() = default; GeometryNodesLazyFunctionGraphInfo::~GeometryNodesLazyFunctionGraphInfo() { for (GMutablePointer &p : this->values_to_destruct) { p.destruct(); } } [[maybe_unused]] static void add_thread_id_debug_message( const GeometryNodesLazyFunctionGraphInfo &lf_graph_info, const lf::FunctionNode &node, const lf::Context &context) { static std::atomic thread_id_source = 0; static thread_local const int thread_id = thread_id_source.fetch_add(1); static thread_local const std::string thread_id_str = "Thread: " + std::to_string(thread_id); GeoNodesLFUserData *user_data = dynamic_cast(context.user_data); BLI_assert(user_data != nullptr); if (user_data->modifier_data->eval_log == nullptr) { return; } geo_eval_log::GeoTreeLogger &tree_logger = user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context); /* Find corresponding node based on the socket mapping. */ auto check_sockets = [&](const Span lf_sockets) { for (const lf::Socket *lf_socket : lf_sockets) { const Span bsockets = lf_graph_info.mapping.bsockets_by_lf_socket_map.lookup(lf_socket); if (!bsockets.is_empty()) { const bNodeSocket &bsocket = *bsockets[0]; const bNode &bnode = bsocket.owner_node(); tree_logger.debug_messages.append( {tree_logger.allocator->copy_string(bnode.name), thread_id_str}); return true; } } return false; }; if (check_sockets(node.inputs().cast())) { return; } check_sockets(node.outputs().cast()); } void GeometryNodesLazyFunctionLogger::log_before_node_execute(const lf::FunctionNode &node, const lf::Params & /*params*/, const lf::Context &context) const { /* Enable this to see the threads that invoked a node. */ if constexpr (false) { add_thread_id_debug_message(lf_graph_info_, node, context); } } } // namespace blender::nodes