/* * $Id$ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Stephen Swaney * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include "Python.h" #include "DNA_curve_types.h" #include "BKE_curve.h" #include "BDR_editcurve.h" /* for convertspline */ #include "MEM_guardedalloc.h" #include "gen_utils.h" #include "CurNurb.h" #include "BezTriple.h" /* * forward declarations go here */ static PyObject *M_CurNurb_New( PyObject * self, PyObject * args ); PyObject *CurNurb_CreatePyObject( Nurb * blen_nurb ); static PyObject *CurNurb_setMatIndex( BPy_CurNurb * self, PyObject * args ); static PyObject *CurNurb_getMatIndex( BPy_CurNurb * self ); static PyObject *CurNurb_getFlagU( BPy_CurNurb * self ); static PyObject *CurNurb_setFlagU( BPy_CurNurb * self, PyObject * args ); static PyObject *CurNurb_getFlagV( BPy_CurNurb * self ); static PyObject *CurNurb_setFlagV( BPy_CurNurb * self, PyObject * args ); static PyObject *CurNurb_getType( BPy_CurNurb * self ); static PyObject *CurNurb_setType( BPy_CurNurb * self, PyObject * args ); /* static PyObject* CurNurb_setXXX( BPy_CurNurb* self, PyObject* args ); */ PyObject *CurNurb_getPoint( BPy_CurNurb * self, int index ); static int CurNurb_setPoint( BPy_CurNurb * self, int index, PyObject * ob ); static int CurNurb_length( PyInstanceObject * inst ); static PyObject *CurNurb_getIter( BPy_CurNurb * self ); static PyObject *CurNurb_iterNext( BPy_CurNurb * self ); PyObject *CurNurb_append( BPy_CurNurb * self, PyObject * args ); PyObject *CurNurb_pointAtIndex( Nurb * nurb, int index ); static PyObject *CurNurb_isNurb( BPy_CurNurb * self ); static PyObject *CurNurb_isCyclic( BPy_CurNurb * self ); static PyObject *CurNurb_dump( BPy_CurNurb * self ); char M_CurNurb_doc[] = "CurNurb"; /* CurNurb_Type callback function prototypes: */ static void CurNurb_dealloc( BPy_CurNurb * self ); static int CurNurb_compare( BPy_CurNurb * a, BPy_CurNurb * b ); static PyObject *CurNurb_getAttr( BPy_CurNurb * self, char *name ); static int CurNurb_setAttr( BPy_CurNurb * self, char *name, PyObject * v ); static PyObject *CurNurb_repr( BPy_CurNurb * self ); /* table of module methods these are the equivalent of class or static methods. you do not need an object instance to call one. */ static PyMethodDef M_CurNurb_methods[] = { /* name, method, flags, doc_string */ {"New", ( PyCFunction ) M_CurNurb_New, METH_VARARGS | METH_KEYWORDS, " () - doc string"}, /* {"Get", (PyCFunction) M_CurNurb_method, METH_NOARGS, " () - doc string"}, */ /* {"method", (PyCFunction) M_CurNurb_method, METH_NOARGS, " () - doc string"}, */ {NULL, NULL, 0, NULL} }; /* * method table * table of instance methods * these methods are invoked on an instance of the type. */ static PyMethodDef BPy_CurNurb_methods[] = { /* name, method, flags, doc */ /* {"method", (PyCFunction) CurNurb_method, METH_NOARGS, " () - doc string"} */ {"setMatIndex", ( PyCFunction ) CurNurb_setMatIndex, METH_VARARGS, "( index ) - set index into materials list"}, {"getMatIndex", ( PyCFunction ) CurNurb_getMatIndex, METH_NOARGS, "( ) - get current material index"}, {"setFlagU", ( PyCFunction ) CurNurb_setFlagU, METH_VARARGS, "( index ) - set flagU and recalculate the knots (0: uniform, 1: endpoints, 2: bezier)"}, {"getFlagU", ( PyCFunction ) CurNurb_getFlagU, METH_NOARGS, "( ) - get flagU of the knots"}, {"setFlagV", ( PyCFunction ) CurNurb_setFlagV, METH_VARARGS, "( index ) - set flagV and recalculate the knots (0: uniform, 1: endpoints, 2: bezier)"}, {"getFlagV", ( PyCFunction ) CurNurb_getFlagV, METH_NOARGS, "( ) - get flagV of the knots"}, {"setType", ( PyCFunction ) CurNurb_setType, METH_VARARGS, "( type ) - change the type of the curve (Poly: 0, Bezier: 1, NURBS: 4)"}, {"getType", ( PyCFunction ) CurNurb_getType, METH_NOARGS, "( ) - get the type of the curve (Poly: 0, Bezier: 1, NURBS: 4)"}, {"append", ( PyCFunction ) CurNurb_append, METH_VARARGS, "( point ) - add a new point. arg is BezTriple or list of x,y,z,w floats"}, {"isNurb", ( PyCFunction ) CurNurb_isNurb, METH_NOARGS, "( ) - boolean function tests if this spline is type nurb or bezier"}, {"isCyclic", ( PyCFunction ) CurNurb_isCyclic, METH_NOARGS, "( ) - boolean function tests if this spline is cyclic (closed) or not (open)"}, {"dump", ( PyCFunction ) CurNurb_dump, METH_NOARGS, "( ) - dumps Nurb data)"}, {NULL, NULL, 0, NULL} }; /* * methods for CurNurb as sequece */ static PySequenceMethods CurNurb_as_sequence = { ( inquiry ) CurNurb_length, /* sq_length */ ( binaryfunc ) 0, /* sq_concat */ ( intargfunc ) 0, /* sq_repeat */ ( intargfunc ) CurNurb_getPoint, /* sq_item */ ( intintargfunc ) 0, /* sq_slice */ ( intobjargproc ) CurNurb_setPoint, /* sq_ass_item */ 0, /* sq_ass_slice */ ( objobjproc ) 0, /* sq_contains */ 0, 0 }; /* Object Type definition full blown 2.3 struct if you are having trouble building with an earlier version of python, this is why. */ PyTypeObject CurNurb_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "CurNurb", /* char *tp_name; */ sizeof( CurNurb_Type ), /* int tp_basicsize, */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ ( destructor ) CurNurb_dealloc, /* destructor tp_dealloc; */ 0, /* printfunc tp_print; */ ( getattrfunc ) CurNurb_getAttr, /* getattrfunc tp_getattr; */ ( setattrfunc ) CurNurb_setAttr, /* setattrfunc tp_setattr; */ ( cmpfunc ) CurNurb_compare, /* cmpfunc tp_compare; */ ( reprfunc ) CurNurb_repr, /* reprfunc tp_repr; */ /* Method suites for standard classes */ 0, /* PyNumberMethods *tp_as_number; */ &CurNurb_as_sequence, /* PySequenceMethods *tp_as_sequence; */ 0, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ 0, /* hashfunc tp_hash; */ 0, /* ternaryfunc tp_call; */ 0, /* reprfunc tp_str; */ 0, /* getattrofunc tp_getattro; */ 0, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ 0, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT, /* long tp_flags; */ 0, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ 0, /* traverseproc tp_traverse; */ /* delete references to contained objects */ 0, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ 0, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ ( getiterfunc ) CurNurb_getIter, /* getiterfunc tp_iter; */ ( iternextfunc ) CurNurb_iterNext, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ BPy_CurNurb_methods, /* struct PyMethodDef *tp_methods; */ 0, /* struct PyMemberDef *tp_members; */ 0, /* struct PyGetSetDef *tp_getset; */ 0, /* struct _typeobject *tp_base; */ 0, /* PyObject *tp_dict; */ 0, /* descrgetfunc tp_descr_get; */ 0, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ 0, /* initproc tp_init; */ 0, /* allocfunc tp_alloc; */ 0, /* newfunc tp_new; */ /* Low-level free-memory routine */ 0, /* freefunc tp_free; */ /* For PyObject_IS_GC */ 0, /* inquiry tp_is_gc; */ 0, /* PyObject *tp_bases; */ /* method resolution order */ 0, /* PyObject *tp_mro; */ 0, /* PyObject *tp_cache; */ 0, /* PyObject *tp_subclasses; */ 0, /* PyObject *tp_weaklist; */ 0 }; void CurNurb_dealloc( BPy_CurNurb * self ) { PyObject_DEL( self ); } static PyObject *CurNurb_getAttr( BPy_CurNurb * self, char *name ) { PyObject *attr = Py_None; if( strcmp( name, "mat_index" ) == 0 ) attr = PyInt_FromLong( self->nurb->mat_nr ); else if( strcmp( name, "points" ) == 0 ) attr = PyInt_FromLong( self->nurb->pntsu ); else if( strcmp( name, "flagU" ) == 0 ) attr = CurNurb_getFlagU( self ); else if( strcmp( name, "flagV" ) == 0 ) attr = CurNurb_getFlagV( self ); else if( strcmp( name, "type" ) == 0 ) attr = CurNurb_getType( self ); else if( strcmp( name, "__members__" ) == 0 ) attr = Py_BuildValue( "[s,s,s,s,s]", "mat_index", "points", "flagU", "flagV", "type" ); if( !attr ) return EXPP_ReturnPyObjError( PyExc_MemoryError, "couldn't create PyObject" ); /* member attribute found, return it */ if( attr != Py_None ) return attr; /* not an attribute, search the methods table */ return Py_FindMethod( BPy_CurNurb_methods, ( PyObject * ) self, name ); } /* setattr */ static int CurNurb_setAttr( BPy_CurNurb * self, char *name, PyObject * value ) { PyObject *valtuple; PyObject *error = NULL; /* make a tuple to pass to our type methods */ valtuple = Py_BuildValue( "(O)", value ); if( !valtuple ) return EXPP_ReturnIntError( PyExc_MemoryError, "CurNurb.setAttr: cannot create pytuple" ); if( strcmp( name, "mat_index" ) == 0 ) error = CurNurb_setMatIndex( self, valtuple ); else if( strcmp( name, "flagU" ) == 0 ) error = CurNurb_setFlagU( self, valtuple ); else if( strcmp( name, "flagV" ) == 0 ) error = CurNurb_setFlagV( self, valtuple ); else if( strcmp( name, "type" ) == 0 ) error = CurNurb_setType( self, valtuple ); else { /* error - no match for name */ Py_DECREF( valtuple ); if( ( strcmp( name, "ZZZZ" ) == 0 ) || /* user tried to change a */ ( strcmp( name, "ZZZZ" ) == 0 ) ) /* constant dict type ... */ return EXPP_ReturnIntError( PyExc_AttributeError, "constant dictionary -- cannot be changed" ); else return EXPP_ReturnIntError( PyExc_KeyError, "attribute not found" ); } Py_DECREF( valtuple ); /* since it is not being returned */ if( error != Py_None ) return -1; Py_DECREF( Py_None ); return 0; /* normal exit */ } /* compare in this case, we consider two CurNurbs equal, if they point to the same blender data. */ static int CurNurb_compare( BPy_CurNurb * a, BPy_CurNurb * b ) { Nurb *pa = a->nurb; Nurb *pb = b->nurb; return ( pa == pb ) ? 0 : -1; } /* factory method to create a BPy_CurNurb from a Blender Nurb */ PyObject *CurNurb_CreatePyObject( Nurb * blen_nurb ) { BPy_CurNurb *pyNurb; pyNurb = ( BPy_CurNurb * ) PyObject_NEW( BPy_CurNurb, &CurNurb_Type ); if( !pyNurb ) return EXPP_ReturnPyObjError( PyExc_MemoryError, "could not create BPy_CurNurb PyObject" ); pyNurb->nurb = blen_nurb; return ( PyObject * ) pyNurb; } /* * CurNurb_repr */ static PyObject *CurNurb_repr( BPy_CurNurb * self ) { /* used by 'repr' */ return PyString_FromFormat( "[CurNurb \"%d\"]", self->nurb->type ); } /* XXX Can't this be simply removed? */ static PyObject *M_CurNurb_New( PyObject * self, PyObject * args ) { return ( PyObject * ) 0; } /* * Curve.getType */ static PyObject *CurNurb_getType( BPy_CurNurb * self ) { /* type is on 3 first bits only */ return PyInt_FromLong( self->nurb->type & 7 ); } /* * Curve.setType * * Convert the curve using Blender's convertspline fonction */ static PyObject *CurNurb_setType( BPy_CurNurb * self, PyObject * args ) { Nurb *nurb = self->nurb; int type; /* parameter type checking */ if( !PyArg_ParseTuple( args, "i", &type ) ) return EXPP_ReturnPyObjError ( PyExc_TypeError, "expected integer argument" ); /* parameter value checking */ if (type != CU_POLY && type != CU_BEZIER && type != CU_NURBS) return EXPP_ReturnPyObjError ( PyExc_ValueError, "expected integer argument" ); /* convert and raise error if impossible */ if (convertspline(type, nurb)) return EXPP_ReturnPyObjError ( PyExc_ValueError, "Conversion Impossible" ); return EXPP_incr_ret( Py_None ); } /* * CurNurb_append( point ) * append a new point to a nurb curve. * arg is BezTriple or list of xyzw floats */ PyObject *CurNurb_append( BPy_CurNurb * self, PyObject * args ) { Nurb *nurb = self->nurb; return CurNurb_appendPointToNurb( nurb, args ); } /* * CurNurb_appendPointToNurb * this is a non-bpy utility func to add a point to a given nurb. * notice the first arg is Nurb*. */ PyObject *CurNurb_appendPointToNurb( Nurb * nurb, PyObject * args ) { int i; int size; PyObject *pyOb; int npoints = nurb->pntsu; /* do we have a list of four floats or a BezTriple? */ if( !PyArg_ParseTuple( args, "O", &pyOb )) return EXPP_ReturnPyObjError ( PyExc_RuntimeError, "Internal error parsing arguments" ); /* if curve is empty, adjust type depending on input type */ if (nurb->bezt==NULL && nurb->bp==NULL) { if (BezTriple_CheckPyObject( pyOb )) nurb->type |= CU_BEZIER; else if (PySequence_Check( pyOb )) nurb->type |= CU_NURBS; else return( EXPP_ReturnPyObjError( PyExc_TypeError, "Expected a BezTriple or a Sequence of 4 (or 5) floats" ) ); } if ((nurb->type & 7)==CU_BEZIER) { BezTriple *tmp; if( !BezTriple_CheckPyObject( pyOb ) ) return( EXPP_ReturnPyObjError( PyExc_TypeError, "Expected a BezTriple\n" ) ); /* printf("\ndbg: got a BezTriple\n"); */ tmp = nurb->bezt; /* save old points */ nurb->bezt = ( BezTriple * ) MEM_mallocN( sizeof( BezTriple ) * ( npoints + 1 ), "CurNurb_append2" ); if( !nurb->bezt ) return ( EXPP_ReturnPyObjError ( PyExc_MemoryError, "allocation failed" ) ); /* copy old points to new */ memmove( nurb->bezt, tmp, sizeof( BezTriple ) * npoints ); if( tmp ) MEM_freeN( tmp ); nurb->pntsu++; /* add new point to end of list */ memcpy( nurb->bezt + npoints, BezTriple_FromPyObject( pyOb ), sizeof( BezTriple ) ); } else if( PySequence_Check( pyOb ) ) { size = PySequence_Size( pyOb ); /* printf("\ndbg: got a sequence of size %d\n", size ); */ if( size == 4 || size == 5 ) { BPoint *tmp; tmp = nurb->bp; /* save old pts */ nurb->bp = ( BPoint * ) MEM_mallocN( sizeof( BPoint ) * ( npoints + 1 ), "CurNurb_append1" ); if( !nurb->bp ) return ( EXPP_ReturnPyObjError ( PyExc_MemoryError, "allocation failed" ) ); memmove( nurb->bp, tmp, sizeof( BPoint ) * npoints ); if( tmp ) MEM_freeN( tmp ); ++nurb->pntsu; /* initialize new BPoint from old */ memcpy( nurb->bp + npoints, nurb->bp, sizeof( BPoint ) ); for( i = 0; i < 4; ++i ) { float tmpx = ( float ) PyFloat_AsDouble ( PySequence_GetItem( pyOb, i ) ); nurb->bp[npoints].vec[i] = tmpx; } if (size == 5) { nurb->bp[npoints].alfa = (float)PyFloat_AsDouble( PySequence_GetItem( pyOb, 4 ) ); } else { nurb->bp[npoints].alfa = 0.0f; } makeknots( nurb, 1, nurb->flagu >> 1 ); } else if( size == 3 ) { /* 3 xyz coords */ printf( "\nNot Yet Implemented!\n" ); } } else { /* bail with error */ return EXPP_ReturnPyObjError( PyExc_TypeError, "expected a sequence of 4 (or optionaly 5) floats\n" ); } return ( EXPP_incr_ret( Py_None ) ); } /* * CurNurb_setMatIndex * * set index into material list */ static PyObject *CurNurb_setMatIndex( BPy_CurNurb * self, PyObject * args ) { int index; if( !PyArg_ParseTuple( args, "i", &( index ) ) ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "expected integer argument" ) ); /* fixme: some range checking would be nice! */ self->nurb->mat_nr = index; Py_INCREF( Py_None ); return Py_None; } /* * CurNurb_getMatIndex * * returns index into material list */ static PyObject *CurNurb_getMatIndex( BPy_CurNurb * self ) { PyObject *index = PyInt_FromLong( ( long ) self->nurb->mat_nr ); if( index ) return index; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "could not get material index" ) ); } /* * CurNurb_getFlagU * * returns curve's flagu */ static PyObject *CurNurb_getFlagU( BPy_CurNurb * self ) { PyObject *flagu = PyInt_FromLong( ( long ) self->nurb->flagu ); if( flagu ) return flagu; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "could not get CurNurb.flagu index" ) ); } /* * CurNurb_setFlagU * * set curve's flagu and recalculate the knots * * Possible values: 0 - uniform, 1 - endpoints, 2 - bezier */ static PyObject *CurNurb_setFlagU( BPy_CurNurb * self, PyObject * args ) { int flagu; if( !PyArg_ParseTuple( args, "i", &( flagu ) ) ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "expected integer argument" ) ); if( self->nurb->flagu != flagu ) { self->nurb->flagu = flagu; makeknots( self->nurb, 1, self->nurb->flagu >> 1 ); } Py_INCREF( Py_None ); return Py_None; } /* * CurNurb_getFlagV * * returns curve's flagu */ static PyObject *CurNurb_getFlagV( BPy_CurNurb * self ) { PyObject *flagv = PyInt_FromLong( ( long ) self->nurb->flagv ); if( flagv ) return flagv; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "could not get CurNurb.flagv" ) ); } /* * CurNurb_setFlagV * * set curve's flagu and recalculate the knots * * Possible values: 0 - uniform, 1 - endpoints, 2 - bezier */ static PyObject *CurNurb_setFlagV( BPy_CurNurb * self, PyObject * args ) { int flagv; if( !PyArg_ParseTuple( args, "i", &( flagv ) ) ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "expected integer argument" ) ); if( self->nurb->flagv != flagv ) { self->nurb->flagv = flagv; makeknots( self->nurb, 2, self->nurb->flagv >> 1 ); } Py_INCREF( Py_None ); return Py_None; } /* * CurNurb_getIter * * create an iterator for our CurNurb. * this iterator returns the points for this CurNurb. */ static PyObject *CurNurb_getIter( BPy_CurNurb * self ) { self->bp = self->nurb->bp; self->bezt = self->nurb->bezt; self->atEnd = 0; self->nextPoint = 0; /* set exhausted flag if both bp and bezt are zero */ if( ( !self->bp ) && ( !self->bezt ) ) self->atEnd = 1; Py_INCREF( self ); return ( PyObject * ) self; } static PyObject *CurNurb_iterNext( BPy_CurNurb * self ) { PyObject *po; /* return value */ Nurb *pnurb = self->nurb; int npoints = pnurb->pntsu; /* are we at end already? */ if( self->atEnd ) return ( EXPP_ReturnPyObjError( PyExc_StopIteration, "iterator at end" ) ); if( self->nextPoint < npoints ) { po = CurNurb_pointAtIndex( self->nurb, self->nextPoint ); self->nextPoint++; return po; } else { self->atEnd = 1; /* set flag true */ } return ( EXPP_ReturnPyObjError( PyExc_StopIteration, "iterator at end" ) ); } /* * CurNurb_isNurb() * test whether spline nurb or bezier */ static PyObject *CurNurb_isNurb( BPy_CurNurb * self ) { /* NOTE: a Nurb has bp and bezt pointers * depending on type. * It is possible both are NULL if no points exist. * in that case, we return False */ if( self->nurb->bp ) { return EXPP_incr_ret_True(); } else { return EXPP_incr_ret_False(); } } /* * CurNurb_isCyclic() * test whether spline cyclic (closed) or not (open) */ static PyObject *CurNurb_isCyclic( BPy_CurNurb * self ) { /* supposing that the flagu is always set */ if( self->nurb->flagu & CU_CYCLIC ) { return EXPP_incr_ret_True(); } else { return EXPP_incr_ret_False(); } } /* * CurNurb_length * returns the number of points in a Nurb * this is a tp_as_sequence method, not a regular instance method. */ static int CurNurb_length( PyInstanceObject * inst ) { Nurb *nurb; int len; if( CurNurb_CheckPyObject( ( PyObject * ) inst ) ) { nurb = ( ( BPy_CurNurb * ) inst )->nurb; len = nurb->pntsu; return len; } return EXPP_ReturnIntError( PyExc_RuntimeError, "arg is not a BPy_CurNurb" ); } /* * CurNurb_getPoint * returns the Nth point in a Nurb * this is one of the tp_as_sequence methods, hence the int N argument. * it is called via the [] operator, not as a usual instance method. */ PyObject *CurNurb_getPoint( BPy_CurNurb * self, int index ) { Nurb *myNurb; int npoints; /* for convenince */ myNurb = self->nurb; npoints = myNurb->pntsu; /* DELETED: bail if index < 0 */ /* actually, this check is not needed since python treats */ /* negative indices as starting from the right end of a sequence */ /* THAT IS WRONG, when passing a negative index, python adjusts it to be positive BUT it can still overflow in the negatives if the index is too small. For example, list[-6] when list contains 5 items means index = -1 in here. (theeth) */ /* bail if no Nurbs in Curve */ if( npoints == 0 ) return ( EXPP_ReturnPyObjError( PyExc_IndexError, "no points in this CurNurb" ) ); /* check index limits */ if( index >= npoints || index < 0 ) return ( EXPP_ReturnPyObjError( PyExc_IndexError, "index out of range" ) ); return CurNurb_pointAtIndex( myNurb, index ); } /* * CurNurb_setPoint * modifies the Nth point in a Nurb * this is one of the tp_as_sequence methods, hence the int N argument. * it is called via the [] = operator, not as a usual instance method. */ static int CurNurb_setPoint( BPy_CurNurb * self, int index, PyObject * pyOb ) { Nurb *nurb = self->nurb; int size; /* check index limits */ if( index < 0 || index >= nurb->pntsu ) return EXPP_ReturnIntError( PyExc_IndexError, "array assignment index out of range\n" ); /* branch by curve type */ if ((nurb->type & 7)==CU_BEZIER) { /* BEZIER */ /* check parameter type */ if( !BezTriple_CheckPyObject( pyOb ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected a BezTriple\n" ); /* copy bezier in array */ memcpy( nurb->bezt + index, BezTriple_FromPyObject( pyOb ), sizeof( BezTriple ) ); return 0; /* finished correctly */ } else { /* NURBS or POLY */ int i; /* check parameter type */ if (!PySequence_Check( pyOb )) return EXPP_ReturnIntError( PyExc_TypeError, "expected a list of 4 (or optionaly 5 if the curve is 3D) floats\n" ); size = PySequence_Size( pyOb ); /* check sequence size */ if( size != 4 && size != 5 ) return EXPP_ReturnIntError( PyExc_TypeError, "expected a list of 4 (or optionaly 5 if the curve is 3D) floats\n" ); /* copy x, y, z, w */ for( i = 0; i < 4; ++i ) { float tmpx = ( float ) PyFloat_AsDouble ( PySequence_GetItem( pyOb, i ) ); nurb->bp[index].vec[i] = tmpx; } if (size == 5) { /* set tilt, if present */ nurb->bp[index].alfa = (float)PyFloat_AsDouble( PySequence_GetItem( pyOb, 4 ) ); } else { /* if not, set default */ nurb->bp[index].alfa = 0.0f; } return 0; /* finished correctly */ } } /* * this is an internal routine. not callable directly from python */ PyObject *CurNurb_pointAtIndex( Nurb * nurb, int index ) { PyObject *pyo; if( nurb->bp ) { /* we have a nurb curve */ int i; /* add Tilt only if curve is 3D */ if (nurb->flag & CU_3D) pyo = PyList_New( 5 ); else pyo = PyList_New( 4 ); for( i = 0; i < 4; i++ ) { PyList_SetItem( pyo, i, PyFloat_FromDouble( nurb->bp[index]. vec[i] ) ); } /* add Tilt only if curve is 3D */ if (nurb->flag & CU_3D) PyList_SetItem( pyo, 4, PyFloat_FromDouble( nurb->bp[index].alfa ) ); } else if( nurb->bezt ) { /* we have a bezier */ /* if an error occurs, we just pass it on */ pyo = BezTriple_CreatePyObject( &( nurb->bezt[index] ) ); } else /* something is horribly wrong */ /* neither bp or bezt is set && pntsu != 0 */ return ( EXPP_ReturnPyObjError( PyExc_SystemError, "inconsistant structure found" ) ); return ( pyo ); } int CurNurb_CheckPyObject( PyObject * py_obj ) { return ( py_obj->ob_type == &CurNurb_Type ); } PyObject *CurNurb_Init( void ) { PyObject *submodule; CurNurb_Type.ob_type = &PyType_Type; submodule = Py_InitModule3( "Blender.CurNurb", M_CurNurb_methods, M_CurNurb_doc ); return ( submodule ); } /* dump nurb */ PyObject *CurNurb_dump( BPy_CurNurb * self ) { BPoint *bp = NULL; BezTriple *bezt = NULL; Nurb *nurb = self->nurb; int npoints = 0; if( ! self->nurb ){ /* bail on error */ printf("\n no Nurb in this CurNurb"); Py_RETURN_NONE; } printf(" type: %d, mat_nr: %d hide: %d flag: %d", nurb->type, nurb->mat_nr, nurb->hide, nurb->flag); printf("\n pntsu: %d, pntsv: %d, resolu: %d resolv: %d", nurb->pntsu, nurb->pntsv, nurb->resolu, nurb->resolv ); printf("\n orderu: %d orderv: %d", nurb->orderu, nurb->orderv ); printf("\n flagu: %d flagv: %d", nurb->flagu, nurb->flagv ); npoints = nurb->pntsu; if( nurb->bp ) { /* we have a BPoint */ int n; for( n = 0, bp = nurb->bp; n < npoints; n++, bp++ ) { /* vec[4] */ printf( "\ncoords[%d]: ", n); { int i; for( i = 0; i < 4; i++){ printf("%10.3f ", bp->vec[i] ); } } /* alfa, s[2] */ printf("\n alpha: %5.2f s: %d %d ", bp->alfa, bp->s[0], bp->s[1] ); /* f1, hide */ printf(" f1 %d hide %d", bp->f1, bp->hide ); printf("\n"); } } else { /* we have a BezTriple */ int n; for( n = 0, bezt = nurb->bezt; n < npoints; n++, bezt++ ) { int i, j; printf("\npoint %d: ", n); for( i = 0; i < 3; i++ ) { printf("\nvec[%i] ",i ); for( j = 0; j < 3; j++ ) { printf(" %5.2f ", bezt->vec[i][j] ); } } } printf("\n"); } Py_RETURN_NONE; }