/* * $Id$ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Jacques Guignot, Stephen Swaney * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include "Curve.h" #include #include #include #include #include #include #include #include #include #include #include /* because we wil be mallocing memory */ #include "CurNurb.h" #include "Material.h" #include "Object.h" #include "gen_utils.h" /*****************************************************************************/ /* The following string definitions are used for documentation strings. */ /* In Python these will be written to the console when doing a */ /* Blender.Curve.__doc__ */ /*****************************************************************************/ char M_Curve_doc[] = "The Blender Curve module\n\n\ This module provides access to **Curve Data** in Blender.\n\ Functions :\n\ New(opt name) : creates a new curve object with the given name (optional)\n\ Get(name) : retreives a curve with the given name (mandatory)\n\ get(name) : same as Get. Kept for compatibility reasons"; char M_Curve_New_doc[] = ""; char M_Curve_Get_doc[] = "xxx"; /*****************************************************************************/ /* Python API function prototypes for the Curve module. */ /*****************************************************************************/ static PyObject *M_Curve_New( PyObject * self, PyObject * args ); static PyObject *M_Curve_Get( PyObject * self, PyObject * args ); /*****************************************************************************/ /* Python BPy_Curve instance methods declarations: */ /*****************************************************************************/ PyObject *Curve_getName( BPy_Curve * self ); PyObject *Curve_setName( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getPathLen( BPy_Curve * self ); static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getTotcol( BPy_Curve * self ); static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args ); PyObject *Curve_getMode( BPy_Curve * self ); PyObject *Curve_setMode( BPy_Curve * self, PyObject * args ); PyObject *Curve_getBevresol( BPy_Curve * self ); PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args ); PyObject *Curve_getResolu( BPy_Curve * self ); PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args ); PyObject *Curve_getResolv( BPy_Curve * self ); PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args ); PyObject *Curve_getWidth( BPy_Curve * self ); PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args ); PyObject *Curve_getExt1( BPy_Curve * self ); PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args ); PyObject *Curve_getExt2( BPy_Curve * self ); PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args ); static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getLoc( BPy_Curve * self ); static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getRot( BPy_Curve * self ); static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getSize( BPy_Curve * self ); static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getNumCurves( BPy_Curve * self ); static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args ); static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args); static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args ); static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args ); static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getMaterials( BPy_Curve * self ); static PyObject *Curve_getBevOb( BPy_Curve * self ); static PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getIter( BPy_Curve * self ); static PyObject *Curve_iterNext( BPy_Curve * self ); PyObject *Curve_getNurb( BPy_Curve * self, int n ); static int Curve_length( PyInstanceObject * inst ); void update_displists( void *data ); void makeDispList( Object * ob ); struct chartrans *text_to_curve( Object * ob, int mode ); /*****************************************************************************/ /* Python method definitions for Blender.Curve module: */ /*****************************************************************************/ struct PyMethodDef M_Curve_methods[] = { {"New", ( PyCFunction ) M_Curve_New, METH_VARARGS, M_Curve_New_doc}, {"Get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc}, {"get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc}, {NULL, NULL, 0, NULL} }; /*****************************************************************************/ /* Python BPy_Curve instance methods table: */ /*****************************************************************************/ static PyMethodDef BPy_Curve_methods[] = { {"getName", ( PyCFunction ) Curve_getName, METH_NOARGS, "() - Return Curve Data name"}, {"setName", ( PyCFunction ) Curve_setName, METH_VARARGS, "() - Sets Curve Data name"}, {"getPathLen", ( PyCFunction ) Curve_getPathLen, METH_NOARGS, "() - Return Curve path length"}, {"setPathLen", ( PyCFunction ) Curve_setPathLen, METH_VARARGS, "(int) - Sets Curve path length"}, {"getTotcol", ( PyCFunction ) Curve_getTotcol, METH_NOARGS, "() - Return the number of materials of the curve"}, {"setTotcol", ( PyCFunction ) Curve_setTotcol, METH_VARARGS, "(int) - Sets the number of materials of the curve"}, {"getFlag", ( PyCFunction ) Curve_getMode, METH_NOARGS, "() - Return flag (see the doc for semantic)"}, {"setFlag", ( PyCFunction ) Curve_setMode, METH_VARARGS, "(int) - Sets flag (see the doc for semantic)"}, {"getBevresol", ( PyCFunction ) Curve_getBevresol, METH_NOARGS, "() - Return bevel resolution"}, {"setBevresol", ( PyCFunction ) Curve_setBevresol, METH_VARARGS, "(int) - Sets bevel resolution"}, {"getResolu", ( PyCFunction ) Curve_getResolu, METH_NOARGS, "() - Return U resolution"}, {"setResolu", ( PyCFunction ) Curve_setResolu, METH_VARARGS, "(int) - Sets U resolution"}, {"getResolv", ( PyCFunction ) Curve_getResolv, METH_NOARGS, "() - Return V resolution"}, {"setResolv", ( PyCFunction ) Curve_setResolv, METH_VARARGS, "(int) - Sets V resolution"}, {"getWidth", ( PyCFunction ) Curve_getWidth, METH_NOARGS, "() - Return curve width"}, {"setWidth", ( PyCFunction ) Curve_setWidth, METH_VARARGS, "(int) - Sets curve width"}, {"getExt1", ( PyCFunction ) Curve_getExt1, METH_NOARGS, "() - Returns extent 1 of the bevel"}, {"setExt1", ( PyCFunction ) Curve_setExt1, METH_VARARGS, "(int) - Sets extent 1 of the bevel"}, {"getExt2", ( PyCFunction ) Curve_getExt2, METH_NOARGS, "() - Return extent 2 of the bevel "}, {"setExt2", ( PyCFunction ) Curve_setExt2, METH_VARARGS, "(int) - Sets extent 2 of the bevel "}, {"getControlPoint", ( PyCFunction ) Curve_getControlPoint, METH_VARARGS, "(int numcurve,int numpoint) -\ Gets a control point.Depending upon the curve type, returne a list of 4 or 9 floats"}, {"setControlPoint", ( PyCFunction ) Curve_setControlPoint, METH_VARARGS, "(int numcurve,int numpoint,float x,float y,float z,\ float w)(nurbs) or (int numcurve,int numpoint,float x1,...,x9(bezier)\ Sets a control point "}, {"getLoc", ( PyCFunction ) Curve_getLoc, METH_NOARGS, "() - Gets Location of the curve (a 3-tuple) "}, {"setLoc", ( PyCFunction ) Curve_setLoc, METH_VARARGS, "(3-tuple) - Sets Location "}, {"getRot", ( PyCFunction ) Curve_getRot, METH_NOARGS, "() - Gets curve rotation"}, {"setRot", ( PyCFunction ) Curve_setRot, METH_VARARGS, "(3-tuple) - Sets curve rotation"}, {"getSize", ( PyCFunction ) Curve_getSize, METH_NOARGS, "() - Gets curve size"}, {"setSize", ( PyCFunction ) Curve_setSize, METH_VARARGS, "(3-tuple) - Sets curve size"}, {"getNumCurves", ( PyCFunction ) Curve_getNumCurves, METH_NOARGS, "() - Gets number of curves in Curve"}, {"isNurb", ( PyCFunction ) Curve_isNurb, METH_VARARGS, "(nothing or integer) - returns 1 if curve is type Nurb, O otherwise."}, {"isCyclic", ( PyCFunction ) Curve_isCyclic, METH_VARARGS, "( nothing or integer ) - returns true if curve is cyclic (closed), false otherwise."}, {"getNumPoints", ( PyCFunction ) Curve_getNumPoints, METH_VARARGS, "(nothing or integer) - returns the number of points of the specified curve"}, {"appendPoint", ( PyCFunction ) Curve_appendPoint, METH_VARARGS, "( int numcurve, list of coordinates) - adds a new point to end of curve"}, {"appendNurb", ( PyCFunction ) Curve_appendNurb, METH_VARARGS, "( new_nurb ) - adds a new nurb to the Curve"}, {"update", ( PyCFunction ) Curve_update, METH_NOARGS, "( ) - updates display lists after changes to Curve"}, {"getMaterials", ( PyCFunction ) Curve_getMaterials, METH_NOARGS, "() - returns list of materials assigned to this Curve"}, {"getBevOb", ( PyCFunction ) Curve_getBevOb, METH_NOARGS, "() - returns Bevel Object assigned to this Curve"}, {"setBevOb", ( PyCFunction ) Curve_setBevOb, METH_VARARGS, "() - assign a Bevel Object to this Curve"}, {NULL, NULL, 0, NULL} }; /*****************************************************************************/ /* Python Curve_Type callback function prototypes: */ /*****************************************************************************/ static void CurveDeAlloc( BPy_Curve * msh ); /* static int CurvePrint (BPy_Curve *msh, FILE *fp, int flags); */ static int CurveSetAttr( BPy_Curve * msh, char *name, PyObject * v ); static PyObject *CurveGetAttr( BPy_Curve * msh, char *name ); static PyObject *CurveRepr( BPy_Curve * msh ); PyObject *Curve_CreatePyObject( struct Curve *curve ); int Curve_CheckPyObject( PyObject * py_obj ); struct Curve *Curve_FromPyObject( PyObject * py_obj ); static PySequenceMethods Curve_as_sequence = { ( inquiry ) Curve_length, /* sq_length */ ( binaryfunc ) 0, /* sq_concat */ ( intargfunc ) 0, /* sq_repeat */ ( intargfunc ) Curve_getNurb, /* sq_item */ ( intintargfunc ) 0, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ ( objobjproc ) 0, /* sq_contains */ 0, 0 }; /*****************************************************************************/ /* Python Curve_Type structure definition: */ /*****************************************************************************/ PyTypeObject Curve_Type = { PyObject_HEAD_INIT( NULL ) /* required macro */ 0, /* ob_size */ "Curve", /* tp_name - for printing */ sizeof( BPy_Curve ), /* tp_basicsize - for allocation */ 0, /* tp_itemsize - for allocation */ /* methods for standard operations */ ( destructor ) CurveDeAlloc, /* tp_dealloc */ 0, /* tp_print */ ( getattrfunc ) CurveGetAttr, /* tp_getattr */ ( setattrfunc ) CurveSetAttr, /* tp_setattr */ 0, /* tp_compare */ ( reprfunc ) CurveRepr, /* tp_repr */ /* methods for standard classes */ 0, /* tp_as_number */ &Curve_as_sequence, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_as_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ /* Flags to define presence of optional/expaned features */ Py_TPFLAGS_HAVE_ITER, /* tp_flags */ 0, /* tp_doc - documentation string */ 0, /* tp_traverse */ /* delete references to contained objects */ 0, /* tp_clear */ 0, /* tp_richcompare - rich comparisions */ 0, /* tp_weaklistoffset - weak reference enabler */ /* new release 2.2 stuff - Iterators */ ( getiterfunc ) Curve_getIter, /* tp_iter */ ( iternextfunc ) Curve_iterNext, /* tp_iternext */ /* Attribute descriptor and subclassing stuff */ BPy_Curve_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset; */ 0, /* tp_base; */ 0, /* tp_dict; */ 0, /* tp_descr_get; */ 0, /* tp_descr_set; */ 0, /* tp_dictoffset; */ 0, /* tp_init; */ 0, /* tp_alloc; */ 0, /* tp_new; */ 0, /* tp_free; Low-level free-memory routine */ 0, /* tp_is_gc */ 0, /* tp_bases; */ 0, /* tp_mro; method resolution order */ 0, /* tp_defined; */ 0, /* tp_weakllst */ 0, 0 }; /*****************************************************************************/ /* Function: M_Curve_New */ /* Python equivalent: Blender.Curve.New */ /*****************************************************************************/ static PyObject *M_Curve_New( PyObject * self, PyObject * args ) { char buf[24]; char *name = NULL; BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */ Curve *blcurve = 0; /* for actual Curve Data we create in Blender */ if( !PyArg_ParseTuple( args, "|s", &name ) ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "expected string argument or no argument" ) ); blcurve = add_curve( OB_CURVE ); /* first create the Curve Data in Blender */ if( blcurve == NULL ) /* bail out if add_curve() failed */ return ( EXPP_ReturnPyObjError ( PyExc_RuntimeError, "couldn't create Curve Data in Blender" ) ); /* return user count to zero because add_curve() inc'd it */ blcurve->id.us = 0; /* create python wrapper obj */ pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); if( pycurve == NULL ) return ( EXPP_ReturnPyObjError ( PyExc_MemoryError, "couldn't create Curve Data object" ) ); pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */ if( name ) { PyOS_snprintf( buf, sizeof( buf ), "%s", name ); rename_id( &blcurve->id, buf ); } return ( PyObject * ) pycurve; } /*****************************************************************************/ /* Function: M_Curve_Get */ /* Python equivalent: Blender.Curve.Get */ /*****************************************************************************/ static PyObject *M_Curve_Get( PyObject * self, PyObject * args ) { char *name = NULL; Curve *curv_iter; BPy_Curve *wanted_curv; if( !PyArg_ParseTuple( args, "|s", &name ) ) /* expects nothing or a string */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected string argument" ) ); if( name ) { /*a name has been given */ /* Use the name to search for the curve requested */ wanted_curv = NULL; curv_iter = G.main->curve.first; while( ( curv_iter ) && ( wanted_curv == NULL ) ) { if( strcmp( name, curv_iter->id.name + 2 ) == 0 ) { wanted_curv = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); if( wanted_curv ) wanted_curv->curve = curv_iter; } curv_iter = curv_iter->id.next; } if( wanted_curv == NULL ) { /* Requested curve doesn't exist */ char error_msg[64]; PyOS_snprintf( error_msg, sizeof( error_msg ), "Curve \"%s\" not found", name ); return ( EXPP_ReturnPyObjError ( PyExc_NameError, error_msg ) ); } return ( PyObject * ) wanted_curv; } /* end of if(name) */ else { /* no name has been given; return a list of all curves by name. */ PyObject *curvlist; curv_iter = G.main->curve.first; curvlist = PyList_New( 0 ); if( curvlist == NULL ) return ( EXPP_ReturnPyObjError( PyExc_MemoryError, "couldn't create PyList" ) ); while( curv_iter ) { BPy_Curve *found_cur = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); found_cur->curve = curv_iter; PyList_Append( curvlist, ( PyObject * ) found_cur ); curv_iter = curv_iter->id.next; } return ( curvlist ); } /* end of else */ } /*****************************************************************************/ /* Function: Curve_Init */ /*****************************************************************************/ PyObject *Curve_Init( void ) { PyObject *submodule; Curve_Type.ob_type = &PyType_Type; submodule = Py_InitModule3( "Blender.Curve", M_Curve_methods, M_Curve_doc ); return ( submodule ); } /*****************************************************************************/ /* Python BPy_Curve methods: */ /* gives access to */ /* name, pathlen totcol flag bevresol */ /* resolu resolv width ext1 ext2 */ /* controlpoint loc rot size */ /* numpts */ /*****************************************************************************/ PyObject *Curve_getName( BPy_Curve * self ) { PyObject *attr = PyString_FromString( self->curve->id.name + 2 ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.name attribute" ) ); } PyObject *Curve_setName( BPy_Curve * self, PyObject * args ) { char *name; char buf[50]; if( !PyArg_ParseTuple( args, "s", &( name ) ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected string argument" ) ); PyOS_snprintf( buf, sizeof( buf ), "%s", name ); rename_id( &self->curve->id, buf ); /* proper way in Blender */ Curve_update( self ); Py_INCREF( Py_None ); return Py_None; } static PyObject *Curve_getPathLen( BPy_Curve * self ) { PyObject *attr = PyInt_FromLong( ( long ) self->curve->pathlen ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.pathlen attribute" ) ); } static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args ) { if( !PyArg_ParseTuple( args, "i", &( self->curve->pathlen ) ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected int argument" ) ); Py_INCREF( Py_None ); return Py_None; } static PyObject *Curve_getTotcol( BPy_Curve * self ) { PyObject *attr = PyInt_FromLong( ( long ) self->curve->totcol ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.totcol attribute" ) ); } static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args ) { if( !PyArg_ParseTuple( args, "i", &( self->curve->totcol ) ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected int argument" ) ); Py_INCREF( Py_None ); return Py_None; } PyObject *Curve_getMode( BPy_Curve * self ) { PyObject *attr = PyInt_FromLong( ( long ) self->curve->flag ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.flag attribute" ) ); } PyObject *Curve_setMode( BPy_Curve * self, PyObject * args ) { if( !PyArg_ParseTuple( args, "i", &( self->curve->flag ) ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected int argument" ) ); Py_INCREF( Py_None ); return Py_None; } PyObject *Curve_getBevresol( BPy_Curve * self ) { PyObject *attr = PyInt_FromLong( ( long ) self->curve->bevresol ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.bevresol attribute" ) ); } PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args ) { short value; if( !PyArg_ParseTuple( args, "h", &value ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected integer argument" ) ); if(value > 10 || value < 0) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "acceptable values are between 10 and 0" ) ); self->curve->bevresol = value; return EXPP_incr_ret( Py_None ); } PyObject *Curve_getResolu( BPy_Curve * self ) { PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolu ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.resolu attribute" ) ); } PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args ) { short value; if( !PyArg_ParseTuple( args, "h", &value ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected integer argument" ) ); if(value > 128 || value < 1) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "acceptable values are between 128 and 1" ) ); self->curve->resolu = value; return EXPP_incr_ret( Py_None ); } PyObject *Curve_getResolv( BPy_Curve * self ) { PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolv ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.resolv attribute" ) ); } PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args ) { short value; if( !PyArg_ParseTuple( args, "h", &value ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected integer argument" ) ); if(value > 128 || value < 1) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "acceptable values are between 128 and 1" ) ); self->curve->resolv = value; return EXPP_incr_ret( Py_None ); } PyObject *Curve_getWidth( BPy_Curve * self ) { PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->width ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.width attribute" ) ); } PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args ) { float value; if( !PyArg_ParseTuple( args, "f", &value ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected float argument" ) ); if(value > 2.0f || value < 0.0f) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "acceptable values are between 2.0 and 0.0" ) ); self->curve->width = value; return EXPP_incr_ret( Py_None ); } PyObject *Curve_getExt1( BPy_Curve * self ) { PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext1 ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.ext1 attribute" ) ); } PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args ) { float value; if( !PyArg_ParseTuple( args, "f", &value ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected float argument" ) ); if(value > 5.0f || value < 0.0f) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "acceptable values are between 5.0 and 0.0" ) ); self->curve->ext1 = value; return EXPP_incr_ret( Py_None ); } PyObject *Curve_getExt2( BPy_Curve * self ) { PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext2 ); if( attr ) return attr; return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get Curve.ext2 attribute" ) ); } PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args ) { float value; if( !PyArg_ParseTuple( args, "f", &value ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected float argument" ) ); if(value > 2.0f || value < 0.0f) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "acceptable values are between 2.0 and 0.0" ) ); self->curve->ext2 = value; return EXPP_incr_ret( Py_None ); } /* static PyObject *Curve_setControlPoint(BPy_Curve *self, PyObject *args) { Nurb*ptrnurb = self->curve->nurb.first; int numcourbe,numpoint,i,j; float x,y,z,w; float bez[9]; if (!ptrnurb){ Py_INCREF(Py_None);return Py_None;} if (ptrnurb->bp) if (!PyArg_ParseTuple(args, "iiffff", &numcourbe,&numpoint,&x,&y,&z,&w)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int int float float float float arguments")); if (ptrnurb->bezt) if (!PyArg_ParseTuple(args, "iifffffffff", &numcourbe,&numpoint, bez,bez+1,bez+2,bez+3,bez+4,bez+5,bez+6,bez+7,bez+8)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int int float float float float float float " "float float float arguments")); for(i = 0;i< numcourbe;i++) ptrnurb=ptrnurb->next; if (ptrnurb->bp) { ptrnurb->bp[numpoint].vec[0] = x; ptrnurb->bp[numpoint].vec[1] = y; ptrnurb->bp[numpoint].vec[2] = z; ptrnurb->bp[numpoint].vec[3] = w; } if (ptrnurb->bezt) { for(i = 0;i<3;i++) for(j = 0;j<3;j++) ptrnurb->bezt[numpoint].vec[i][j] = bez[i*3+j]; } Py_INCREF(Py_None); return Py_None; } */ /* * Curve_setControlPoint * this function sets an EXISTING control point. * it does NOT add a new one. */ static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args ) { PyObject *listargs = 0; Nurb *ptrnurb = self->curve->nurb.first; int numcourbe, numpoint, i, j; if( !ptrnurb ) { Py_INCREF( Py_None ); return Py_None; } if( ptrnurb->bp ) if( !PyArg_ParseTuple ( args, "iiO", &numcourbe, &numpoint, &listargs ) ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "expected int int list arguments" ) ); if( ptrnurb->bezt ) if( !PyArg_ParseTuple ( args, "iiO", &numcourbe, &numpoint, &listargs ) ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "expected int int list arguments" ) ); for( i = 0; i < numcourbe; i++ ) ptrnurb = ptrnurb->next; if( ptrnurb->bp ) for( i = 0; i < 4; i++ ) ptrnurb->bp[numpoint].vec[i] = PyFloat_AsDouble( PyList_GetItem ( listargs, i ) ); if( ptrnurb->bezt ) for( i = 0; i < 3; i++ ) for( j = 0; j < 3; j++ ) ptrnurb->bezt[numpoint].vec[i][j] = PyFloat_AsDouble( PyList_GetItem ( listargs, i * 3 + j ) ); Py_INCREF( Py_None ); return Py_None; } static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args ) { PyObject *liste = PyList_New( 0 ); /* return values */ Nurb *ptrnurb; int i, j; /* input args: requested curve and point number on curve */ int numcourbe, numpoint; if( !PyArg_ParseTuple( args, "ii", &numcourbe, &numpoint ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected int int arguments" ) ); if( ( numcourbe < 0 ) || ( numpoint < 0 ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, " arguments must be non-negative" ) ); /* if no nurbs in this curve obj */ if( !self->curve->nurb.first ) return liste; /* walk the list of nurbs to find requested numcourbe */ ptrnurb = self->curve->nurb.first; for( i = 0; i < numcourbe; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "curve index out of range" ) ); } /* check numpoint param against pntsu */ if( numpoint >= ptrnurb->pntsu ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "point index out of range" ) ); if( ptrnurb->bp ) { /* if we are a nurb curve, you get 4 values */ for( i = 0; i < 4; i++ ) PyList_Append( liste, PyFloat_FromDouble( ptrnurb-> bp[numpoint]. vec[i] ) ); } if( ptrnurb->bezt ) { /* if we are a bezier, you get 9 values */ for( i = 0; i < 3; i++ ) for( j = 0; j < 3; j++ ) PyList_Append( liste, PyFloat_FromDouble( ptrnurb-> bezt [numpoint]. vec[i] [j] ) ); } return liste; } static PyObject *Curve_getLoc( BPy_Curve * self ) { int i; PyObject *liste = PyList_New( 3 ); for( i = 0; i < 3; i++ ) PyList_SetItem( liste, i, PyFloat_FromDouble( self->curve->loc[i] ) ); return liste; } static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args ) { PyObject *listargs = 0; int i; if( !PyArg_ParseTuple( args, "O", &listargs ) ) return EXPP_ReturnPyObjError( PyExc_AttributeError, "expected list argument" ); if( !PyList_Check( listargs ) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected a list" ) ); for( i = 0; i < 3; i++ ) { PyObject *xx = PyList_GetItem( listargs, i ); self->curve->loc[i] = PyFloat_AsDouble( xx ); } Py_INCREF( Py_None ); return Py_None; } static PyObject *Curve_getRot( BPy_Curve * self ) { int i; PyObject *liste = PyList_New( 3 ); for( i = 0; i < 3; i++ ) PyList_SetItem( liste, i, PyFloat_FromDouble( self->curve->rot[i] ) ); return liste; } static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args ) { PyObject *listargs = 0; int i; if( !PyArg_ParseTuple( args, "O", &listargs ) ) return EXPP_ReturnPyObjError( PyExc_AttributeError, "expected list argument" ); if( !PyList_Check( listargs ) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected a list" ) ); for( i = 0; i < 3; i++ ) { PyObject *xx = PyList_GetItem( listargs, i ); self->curve->rot[i] = PyFloat_AsDouble( xx ); } Py_INCREF( Py_None ); return Py_None; } static PyObject *Curve_getSize( BPy_Curve * self ) { int i; PyObject *liste = PyList_New( 3 ); for( i = 0; i < 3; i++ ) PyList_SetItem( liste, i, PyFloat_FromDouble( self->curve->size[i] ) ); return liste; } static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args ) { PyObject *listargs = 0; int i; if( !PyArg_ParseTuple( args, "O", &listargs ) ) return EXPP_ReturnPyObjError( PyExc_AttributeError, "expected list argument" ); if( !PyList_Check( listargs ) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected a list" ) ); for( i = 0; i < 3; i++ ) { PyObject *xx = PyList_GetItem( listargs, i ); self->curve->size[i] = PyFloat_AsDouble( xx ); } Py_INCREF( Py_None ); return Py_None; } /* * Count the number of splines in a Curve Object * int getNumCurves() */ static PyObject *Curve_getNumCurves( BPy_Curve * self ) { Nurb *ptrnurb; PyObject *ret_val; int num_curves = 0; /* start with no splines */ /* get curve */ ptrnurb = self->curve->nurb.first; if( ptrnurb ) { /* we have some nurbs in this curve */ while( 1 ) { ++num_curves; ptrnurb = ptrnurb->next; if( !ptrnurb ) /* no more curves */ break; } } ret_val = PyInt_FromLong( ( long ) num_curves ); if( ret_val ) return ret_val; /* oops! */ return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get number of curves" ) ); } /* * count the number of points in a given spline * int getNumPoints( curve_num=0 ) * */ static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args ) { Nurb *ptrnurb; PyObject *ret_val; int curve_num = 0; /* default spline number */ int i; /* parse input arg */ if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected int argument" ) ); /* check arg - must be non-negative */ if( curve_num < 0 ) return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "argument must be non-negative" ) ); /* walk the list of curves looking for our curve */ ptrnurb = self->curve->nurb.first; if( !ptrnurb ) { /* no splines in this Curve */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "no splines in this Curve" ) ); } for( i = 0; i < curve_num; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "curve index out of range" ) ); } /* pntsu is the number of points in curve */ ret_val = PyInt_FromLong( ( long ) ptrnurb->pntsu ); if( ret_val ) return ret_val; /* oops! */ return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get number of points for curve" ) ); } /* * Test whether a given spline of a Curve is a nurb * as opposed to a bezier * int isNurb( curve_num=0 ) */ static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args ) { int curve_num = 0; /* default value */ int is_nurb; Nurb *ptrnurb; PyObject *ret_val; int i; /* parse and check input args */ if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) { return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected int argument" ) ); } if( curve_num < 0 ) { return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "curve number must be non-negative" ) ); } ptrnurb = self->curve->nurb.first; if( !ptrnurb ) /* no splines in this curve */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "no splines in this Curve" ) ); for( i = 0; i < curve_num; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "curve index out of range" ) ); } /* right now, there are only two curve types, nurb and bezier. */ is_nurb = ptrnurb->bp ? 1 : 0; ret_val = PyInt_FromLong( ( long ) is_nurb ); if( ret_val ) return ret_val; /* oops */ return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get curve type" ) ); } /* trying to make a check for closedness (cyclic), following on isNurb (above) copy-pasting done by antont@kyperjokki.fi */ static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args ) { int curve_num = 0; /* default value */ /* unused:*/ /* int is_cyclic; * PyObject *ret_val;*/ Nurb *ptrnurb; int i; /* parse and check input args */ if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) { return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected int argument" ) ); } if( curve_num < 0 ) { return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "curve number must be non-negative" ) ); } ptrnurb = self->curve->nurb.first; if( !ptrnurb ) /* no splines in this curve */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "no splines in this Curve" ) ); for( i = 0; i < curve_num; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "curve index out of range" ) ); } if( ptrnurb->flagu & CU_CYCLIC ){ return EXPP_incr_ret_True(); } else { return EXPP_incr_ret_False(); } } /* * Curve_appendPoint( numcurve, new_point ) * append a new point to indicated spline */ static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args ) { int i; int nurb_num; /* index of curve we append to */ PyObject *coord_args; /* coords for new point */ PyObject *retval = NULL; PyObject *valtuple; Nurb *nurb = self->curve->nurb.first; /* first nurb in Curve */ /* fixme - need to malloc new Nurb */ if( !nurb ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "no nurbs in this Curve" ) ); if( !PyArg_ParseTuple( args, "iO", &nurb_num, &coord_args ) ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "expected int, coords as arguments" ) ); /* chase down the list of Nurbs looking for our curve. */ for( i = 0; i < nurb_num; i++ ) { nurb = nurb->next; if( !nurb ) /* we ran off end of list */ return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "curve index out of range" ) ); } /* rebuild our arg tuple for appendPointToNurb() */ valtuple = Py_BuildValue( "(O)", coord_args ); retval = CurNurb_appendPointToNurb( nurb, valtuple ); Py_DECREF( valtuple ); return retval; } /**** appendNurb( new_point ) create a new nurb in the Curve and add the point param to it. returns a refernce to the newly created nurb. *****/ static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args ) { Nurb *nurb_ptr = self->curve->nurb.first; Nurb **pptr = ( Nurb ** ) & ( self->curve->nurb.first ); Nurb *new_nurb; /* walk to end of nurblist */ if( nurb_ptr ) { while( nurb_ptr->next ) { nurb_ptr = nurb_ptr->next; } pptr = &nurb_ptr->next; } /* malloc new nurb */ new_nurb = ( Nurb * ) MEM_callocN( sizeof( Nurb ), "appendNurb" ); if( !new_nurb ) return EXPP_ReturnPyObjError ( PyExc_MemoryError, "unable to malloc Nurb" ); if( CurNurb_appendPointToNurb( new_nurb, args ) ) { *pptr = new_nurb; new_nurb->resolu = self->curve->resolu; new_nurb->resolv = self->curve->resolv; new_nurb->hide = 0; new_nurb->flag = 1; if( new_nurb->bezt ) { /* do setup for bezt */ new_nurb->type = CU_BEZIER; new_nurb->bezt->h1 = HD_ALIGN; new_nurb->bezt->h2 = HD_ALIGN; new_nurb->bezt->f1 = 1; new_nurb->bezt->f2 = 1; new_nurb->bezt->f3 = 1; new_nurb->bezt->hide = 0; /* calchandlesNurb( new_nurb ); */ } else { /* set up bp */ new_nurb->pntsv = 1; new_nurb->type = CU_NURBS; new_nurb->orderu = 4; new_nurb->flagu = 0; new_nurb->flagv = 0; new_nurb->bp->f1 = 0; new_nurb->bp->hide = 0; new_nurb->knotsu = 0; /*makenots( new_nurb, 1, new_nurb->flagu >> 1); */ } } else { freeNurb( new_nurb ); return NULL; /* with PyErr already set */ } return CurNurb_CreatePyObject( new_nurb ); } /* * Curve_update( ) * method to update display list for a Curve. * used. after messing with control points */ PyObject *Curve_update( BPy_Curve * self ) { /* update_displists( ( void * ) self->curve ); */ freedisplist( &self->curve->disp ); Py_INCREF( Py_None ); return Py_None; } /* * Curve_getMaterials * */ static PyObject *Curve_getMaterials( BPy_Curve * self ) { return ( EXPP_PyList_fromMaterialList( self->curve->mat, self->curve->totcol, 1 ) ); } /*****************************************************************************/ /* Function: Curve_getBevOb */ /* Description: Get the bevel object assign to the curve. */ /*****************************************************************************/ static PyObject *Curve_getBevOb( BPy_Curve * self) { if( self->curve->bevobj ) { return Object_CreatePyObject( self->curve->bevobj ); } return EXPP_incr_ret( Py_None ); } /*****************************************************************************/ /* Function: Curve_setBevOb */ /* Description: Assign a bevel object to the curve. */ /*****************************************************************************/ PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args ) { BPy_Object *pybevobj; /* Parse and check input args */ if( !PyArg_ParseTuple( args, "O", &pybevobj) ) { return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected object or None argument" ) ); } /* Accept None */ if( (PyObject *)pybevobj == Py_None ) { self->curve->bevobj = (Object *)NULL; } else { /* Accept Object with type 'Curve' */ if( Object_CheckPyObject( ( PyObject * ) pybevobj ) && pybevobj->object->type == OB_CURVE) { self->curve->bevobj = Object_FromPyObject( ( PyObject * ) pybevobj ); } else { return ( EXPP_ReturnPyObjError( PyExc_TypeError, "expected Curve object type or None argument" ) ); } } return EXPP_incr_ret( Py_None ); } /* * Curve_getIter * * create an iterator for our Curve. * this iterator returns the Nurbs for this Curve. * the iter_pointer always points to the next available item or null */ static PyObject *Curve_getIter( BPy_Curve * self ) { self->iter_pointer = self->curve->nurb.first; Py_INCREF( self ); return ( PyObject * ) self; } /* * Curve_iterNext * get the next item. * iter_pointer always points to the next available element * or NULL if at the end of the list. */ static PyObject *Curve_iterNext( BPy_Curve * self ) { PyObject *po; /* return value */ Nurb *pnurb; if( self->iter_pointer ) { pnurb = self->iter_pointer; self->iter_pointer = pnurb->next; /* advance iterator */ po = CurNurb_CreatePyObject( pnurb ); /* make a bpy_nurb */ return ( PyObject * ) po; } /* if iter_pointer was null, we are at end */ return ( EXPP_ReturnPyObjError ( PyExc_StopIteration, "iterator at end" ) ); } /* tp_sequence methods */ /* * Curve_length * returns the number of curves in a Curve * this is a tp_as_sequence method, not a regular instance method. */ static int Curve_length( PyInstanceObject * inst ) { if( Curve_CheckPyObject( ( PyObject * ) inst ) ) return ( ( int ) PyInt_AsLong ( Curve_getNumCurves( ( BPy_Curve * ) inst ) ) ); return EXPP_ReturnIntError( PyExc_RuntimeError, "arg is not a BPy_Curve" ); } /* * Curve_getNurb * returns the Nth nurb in a Curve. * this is one of the tp_as_sequence methods, hence the int N argument. * it is called via the [] operator, not as a usual instance method. */ PyObject *Curve_getNurb( BPy_Curve * self, int n ) { PyObject *pyo; Nurb *pNurb; int i; /* bail if index < 0 */ if( n < 0 ) return ( EXPP_ReturnPyObjError( PyExc_IndexError, "index less than 0" ) ); /* bail if no Nurbs in Curve */ if( self->curve->nurb.first == 0 ) return ( EXPP_ReturnPyObjError( PyExc_IndexError, "no Nurbs in this Curve" ) ); /* set pointer to nth Nurb */ for( pNurb = self->curve->nurb.first, i = 0; pNurb != 0 && i < n; pNurb = pNurb->next, ++i ) /**/; if( !pNurb ) /* we came to the end of the list */ return ( EXPP_ReturnPyObjError( PyExc_IndexError, "index out of range" ) ); pyo = CurNurb_CreatePyObject( pNurb ); /* make a bpy_curnurb */ return ( PyObject * ) pyo; } /*****************************************************************************/ /* Function: CurveDeAlloc */ /* Description: This is a callback function for the BPy_Curve type. It is */ /* the destructor function. */ /*****************************************************************************/ static void CurveDeAlloc( BPy_Curve * self ) { PyObject_DEL( self ); } /*****************************************************************************/ /* Function: CurveGetAttr */ /* Description: This is a callback function for the BPy_Curve type. It is */ /* the function that accesses BPy_Curve "member variables" and */ /* methods. */ /*****************************************************************************/ static PyObject *CurveGetAttr( BPy_Curve * self, char *name ) { /* getattr */ PyObject *attr = Py_None; if( strcmp( name, "name" ) == 0 ) attr = PyString_FromString( self->curve->id.name + 2 ); if( strcmp( name, "pathlen" ) == 0 ) attr = PyInt_FromLong( self->curve->pathlen ); if( strcmp( name, "totcol" ) == 0 ) attr = PyInt_FromLong( self->curve->totcol ); if( strcmp( name, "flag" ) == 0 ) attr = PyInt_FromLong( self->curve->flag ); if( strcmp( name, "bevresol" ) == 0 ) attr = PyInt_FromLong( self->curve->bevresol ); if( strcmp( name, "resolu" ) == 0 ) attr = PyInt_FromLong( self->curve->resolu ); if( strcmp( name, "resolv" ) == 0 ) attr = PyInt_FromLong( self->curve->resolv ); if( strcmp( name, "width" ) == 0 ) attr = PyFloat_FromDouble( self->curve->width ); if( strcmp( name, "ext1" ) == 0 ) attr = PyFloat_FromDouble( self->curve->ext1 ); if( strcmp( name, "ext2" ) == 0 ) attr = PyFloat_FromDouble( self->curve->ext2 ); if( strcmp( name, "loc" ) == 0 ) return Curve_getLoc( self ); if( strcmp( name, "rot" ) == 0 ) return Curve_getRot( self ); if( strcmp( name, "size" ) == 0 ) return Curve_getSize( self ); if( strcmp( name, "bevob" ) == 0 ) return Curve_getBevOb( self ); #if 0 if( strcmp( name, "numpts" ) == 0 ) return Curve_getNumPoints( self ); #endif if( !attr ) return ( EXPP_ReturnPyObjError( PyExc_MemoryError, "couldn't create PyObject" ) ); if( attr != Py_None ) return attr; /* member attribute found, return it */ /* not an attribute, search the methods table */ return Py_FindMethod( BPy_Curve_methods, ( PyObject * ) self, name ); } /*****************************************************************************/ /* Function: CurveSetAttr */ /* Description: This is a callback function for the BPy_Curve type. It */ /* sets Curve Data attributes (member variables). */ /*****************************************************************************/ static int CurveSetAttr( BPy_Curve * self, char *name, PyObject * value ) { PyObject *valtuple; PyObject *error = NULL; valtuple = Py_BuildValue( "(O)", value ); /* resolu resolv width ext1 ext2 */ if( !valtuple ) return EXPP_ReturnIntError( PyExc_MemoryError, "CurveSetAttr: couldn't create PyTuple" ); if( strcmp( name, "name" ) == 0 ) error = Curve_setName( self, valtuple ); else if( strcmp( name, "pathlen" ) == 0 ) error = Curve_setPathLen( self, valtuple ); else if( strcmp( name, "resolu" ) == 0 ) error = Curve_setResolu( self, valtuple ); else if( strcmp( name, "resolv" ) == 0 ) error = Curve_setResolv( self, valtuple ); else if( strcmp( name, "width" ) == 0 ) error = Curve_setWidth( self, valtuple ); else if( strcmp( name, "ext1" ) == 0 ) error = Curve_setExt1( self, valtuple ); else if( strcmp( name, "ext2" ) == 0 ) error = Curve_setExt2( self, valtuple ); else if( strcmp( name, "loc" ) == 0 ) error = Curve_setLoc( self, valtuple ); else if( strcmp( name, "rot" ) == 0 ) error = Curve_setRot( self, valtuple ); else if( strcmp( name, "size" ) == 0 ) error = Curve_setSize( self, valtuple ); else if( strcmp( name, "bevob" ) == 0 ) error = Curve_setBevOb( self, valtuple ); else { /* Error */ Py_DECREF( valtuple ); if( ( strcmp( name, "Types" ) == 0 ) || ( strcmp( name, "Modes" ) == 0 ) ) return ( EXPP_ReturnIntError ( PyExc_AttributeError, "constant dictionary -- cannot be changed" ) ); else return ( EXPP_ReturnIntError ( PyExc_KeyError, "attribute not found" ) ); } Py_DECREF( valtuple ); if( error != Py_None ) return -1; Py_DECREF( Py_None ); return 0; } /*****************************************************************************/ /* Function: CurveRepr */ /* Description: This is a callback function for the BPy_Curve type. It */ /* builds a meaninful string to represent curve objects. */ /*****************************************************************************/ static PyObject *CurveRepr( BPy_Curve * self ) { /* used by 'repr' */ return PyString_FromFormat( "[Curve \"%s\"]", self->curve->id.name + 2 ); } /* * Curve_CreatePyObject * constructor to build a py object from blender data */ PyObject *Curve_CreatePyObject( struct Curve * curve ) { BPy_Curve *blen_object; blen_object = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); if( blen_object == NULL ) { return ( NULL ); } blen_object->curve = curve; return ( ( PyObject * ) blen_object ); } int Curve_CheckPyObject( PyObject * py_obj ) { return ( py_obj->ob_type == &Curve_Type ); } struct Curve *Curve_FromPyObject( PyObject * py_obj ) { BPy_Curve *blen_obj; blen_obj = ( BPy_Curve * ) py_obj; return ( blen_obj->curve ); } /* * NOTE: this func has been replaced by freedisplist() in the recent * display list refactoring. * * walk across all objects looking for curves * so we can update their ob's disp list */ void update_displists( void *data ) { #if 0 Base *base; Object *ob; unsigned int layer; /* background */ layer = G.scene->lay; base = G.scene->base.first; while( base ) { if( base->lay & layer ) { ob = base->object; if( ELEM( ob->type, OB_CURVE, OB_SURF ) ) { if( ob != G.obedit ) { if( ob->data == data ) { makeDispList( ob ); } } } else if( ob->type == OB_FONT ) { Curve *cu = ob->data; if( cu->textoncurve ) { if( ( ( Curve * ) cu->textoncurve-> data )->key ) { text_to_curve( ob, 0 ); makeDispList( ob ); } } } } if( base->next == 0 && G.scene->set && base == G.scene->base.last ) base = G.scene->set->base.first; else base = base->next; } #endif }