/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Jacques Guignot, Stephen Swaney * * ***** END GPL LICENSE BLOCK ***** */ #include "Curve.h" /*This must come first*/ #include "BLI_blenlib.h" #include "BKE_main.h" #include "BKE_displist.h" #include "BKE_global.h" #include "BKE_library.h" #include "BKE_curve.h" #include "BKE_material.h" #include "MEM_guardedalloc.h" /* because we wil be mallocing memory */ #include "CurNurb.h" #include "SurfNurb.h" #include "Material.h" #include "Object.h" #include "Key.h" #include "gen_utils.h" #include "gen_library.h" #include "mydevice.h" /*****************************************************************************/ /* The following string definitions are used for documentation strings. */ /* In Python these will be written to the console when doing a */ /* Blender.Curve.__doc__ */ /*****************************************************************************/ char M_Curve_doc[] = "The Blender Curve module\n\n\ This module provides access to **Curve Data** in Blender.\n\ Functions :\n\ New(opt name) : creates a new curve object with the given name (optional)\n\ Get(name) : retreives a curve with the given name (mandatory)\n\ get(name) : same as Get. Kept for compatibility reasons"; char M_Curve_New_doc[] = ""; char M_Curve_Get_doc[] = "xxx"; /*****************************************************************************/ /* Python API function prototypes for the Curve module. */ /*****************************************************************************/ static PyObject *M_Curve_New( PyObject * self, PyObject * args ); static PyObject *M_Curve_Get( PyObject * self, PyObject * args ); /*****************************************************************************/ /* Python BPy_Curve instance methods declarations: */ /*****************************************************************************/ static PyObject *Curve_getPathLen( BPy_Curve * self ); static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getTotcol( BPy_Curve * self ); static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args ); #if 0 PyObject *Curve_getResolu( BPy_Curve * self ); PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args ); PyObject *Curve_getResolv( BPy_Curve * self ); PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args ); PyObject *Curve_getWidth( BPy_Curve * self ); PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args ); PyObject *Curve_getExt1( BPy_Curve * self ); PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args ); PyObject *Curve_getExt2( BPy_Curve * self ); PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args ); #endif static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args ); static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getLoc( BPy_Curve * self ); static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getRot( BPy_Curve * self ); static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getSize( BPy_Curve * self ); static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getNumCurves( BPy_Curve * self ); static PyObject *Curve_getKey( BPy_Curve * self ); static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args ); static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args); static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args ); static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args ); static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getMaterials( BPy_Curve * self ); static PyObject *Curve_getBevOb( BPy_Curve * self ); static PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args ); static PyObject *Curve_getTaperOb( BPy_Curve * self ); static PyObject *Curve_setTaperOb( BPy_Curve * self, PyObject * args ); static PyObject *Curve_copy( BPy_Curve * self ); static PyObject *Curve_getIter( BPy_Curve * self ); static PyObject *Curve_iterNext( BPy_Curve * self ); PyObject *Curve_getNurb( BPy_Curve * self, int n ); static int Curve_setNurb( BPy_Curve * self, int n, PyObject * value ); static int Curve_length( PyInstanceObject * inst ); struct chartrans *text_to_curve( Object * ob, int mode ); /*****************************************************************************/ /* Python BPy_Curve methods: */ /* gives access to */ /* name, pathlen totcol flag bevresol */ /* resolu resolv width ext1 ext2 */ /* controlpoint loc rot size */ /* numpts */ /*****************************************************************************/ PyObject *Curve_getName( BPy_Curve * self ) { return PyString_FromString( self->curve->id.name + 2 ); } static int Curve_newsetName( BPy_Curve * self, PyObject * args ) { char *name; name = PyString_AsString( args ); if( !name ) return EXPP_ReturnIntError( PyExc_TypeError, "expected string argument" ); rename_id( &self->curve->id, name ); /* proper way in Blender */ Curve_update( self ); return 0; } static PyObject *Curve_getPathLen( BPy_Curve * self ) { return PyInt_FromLong( ( long ) self->curve->pathlen ); } static int Curve_newsetPathLen( BPy_Curve * self, PyObject * args ) { PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected int argument" ); num = PyNumber_Int( args ); self->curve->pathlen = (short)PyInt_AS_LONG( num ); Py_DECREF( num ); return 0; } static PyObject *Curve_getTotcol( BPy_Curve * self ) { return PyInt_FromLong( ( long ) self->curve->totcol ); } PyObject *Curve_getMode( BPy_Curve * self ) { return PyInt_FromLong( ( long ) self->curve->flag ); } static int Curve_newsetMode( BPy_Curve * self, PyObject * args ) { PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected int argument" ); num = PyNumber_Int( args ); self->curve->flag = (short)PyInt_AS_LONG( num ); Py_DECREF( num ); return 0; } PyObject *Curve_getBevresol( BPy_Curve * self ) { return PyInt_FromLong( ( long ) self->curve->bevresol ); } static int Curve_newsetBevresol( BPy_Curve * self, PyObject * args ) { short value; PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected int argument" ); num = PyNumber_Int( args ); value = (short)PyInt_AS_LONG( num ); Py_DECREF( num ); if( value > 10 || value < 0 ) return EXPP_ReturnIntError( PyExc_ValueError, "acceptable values are between 0 and 10" ); self->curve->bevresol = value; return 0; } PyObject *Curve_getResolu( BPy_Curve * self ) { return PyInt_FromLong( ( long ) self->curve->resolu ); } static int Curve_newsetResolu( BPy_Curve * self, PyObject * args ) { short value; Nurb *nu; PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected int argument" ); num = PyNumber_Int( args ); value = (short)PyInt_AS_LONG( num ); Py_DECREF( num ); if( value > 128 || value < 1 ) return EXPP_ReturnIntError( PyExc_ValueError, "acceptable values are between 1 and 128" ); self->curve->resolu = value; /* propagate the change through all the curves */ for( nu = self->curve->nurb.first; nu; nu = nu->next ) nu->resolu = value; return 0; } PyObject *Curve_getResolv( BPy_Curve * self ) { return PyInt_FromLong( ( long ) self->curve->resolv ); } static int Curve_newsetResolv( BPy_Curve * self, PyObject * args ) { short value; PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected int argument" ); num = PyNumber_Int( args ); value = (short)PyInt_AS_LONG( num ); Py_DECREF( num ); if(value > 128 || value < 1) return EXPP_ReturnIntError( PyExc_ValueError, "acceptable values are between 1 and 128" ); self->curve->resolv = value; return 0; } PyObject *Curve_getWidth( BPy_Curve * self ) { return PyFloat_FromDouble( ( double ) self->curve->width ); } static int Curve_newsetWidth( BPy_Curve * self, PyObject * args ) { float value; PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected float argument" ); num = PyNumber_Float( args ); value = (float)PyFloat_AS_DOUBLE( num ); Py_DECREF( num ); if(value > 2.0f || value < 0.0f) return EXPP_ReturnIntError( PyExc_ValueError, "acceptable values are between 2.0 and 0.0" ); self->curve->width = value; return 0; } PyObject *Curve_getExt1( BPy_Curve * self ) { return PyFloat_FromDouble( ( double ) self->curve->ext1 ); } static int Curve_newsetExt1( BPy_Curve * self, PyObject * args ) { float value; PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected float argument" ); num = PyNumber_Float( args ); value = (float)PyFloat_AS_DOUBLE( num ); Py_DECREF( num ); if(value > 100.0f || value < 0.0f) return EXPP_ReturnIntError( PyExc_ValueError, "acceptable values are between 0.0 and 100.0" ); self->curve->ext1 = value; return 0; } PyObject *Curve_getExt2( BPy_Curve * self ) { return PyFloat_FromDouble( ( double ) self->curve->ext2 ); } static int Curve_newsetExt2( BPy_Curve * self, PyObject * args ) { float value; PyObject *num; if( !PyNumber_Check( args ) ) return EXPP_ReturnIntError( PyExc_TypeError, "expected float argument" ); num = PyNumber_Float( args ); value = (float)PyFloat_AS_DOUBLE( num ); Py_DECREF( num ); if(value > 2.0f || value < 0.0f) return EXPP_ReturnIntError( PyExc_ValueError, "acceptable values are between 0.0 and 2.0" ); self->curve->ext2 = value; return 0; } /* * Curve_setControlPoint * this function sets an EXISTING control point. * it does NOT add a new one. */ static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args ) { PyObject *listargs = 0; Nurb *ptrnurb = self->curve->nurb.first; int numcourbe = 0, numpoint = 0, i, j; if( !ptrnurb ) Py_RETURN_NONE; if( ptrnurb->bp ) if( !PyArg_ParseTuple ( args, "iiO", &numcourbe, &numpoint, &listargs ) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected int, int, list arguments" ) ); if( ptrnurb->bezt ) if( !PyArg_ParseTuple ( args, "iiO", &numcourbe, &numpoint, &listargs ) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected int, int, list arguments" ) ); for( i = 0; i < numcourbe; i++ ) ptrnurb = ptrnurb->next; if( ptrnurb->bp ) for( i = 0; i < 4; i++ ) ptrnurb->bp[numpoint].vec[i] = (float)PyFloat_AsDouble( PyList_GetItem ( listargs, i ) ); if( ptrnurb->bezt ) for( i = 0; i < 3; i++ ) for( j = 0; j < 3; j++ ) ptrnurb->bezt[numpoint].vec[i][j] = (float)PyFloat_AsDouble( PyList_GetItem ( listargs, i * 3 + j ) ); Py_RETURN_NONE; } static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args ) { PyObject *liste; PyObject *item; Nurb *ptrnurb; int i, j; /* input args: requested curve and point number on curve */ int numcourbe, numpoint; if( !PyArg_ParseTuple( args, "ii", &numcourbe, &numpoint ) ) return ( EXPP_ReturnPyObjError( PyExc_TypeError, "expected int int arguments" ) ); if( ( numcourbe < 0 ) || ( numpoint < 0 ) ) return ( EXPP_ReturnPyObjError( PyExc_ValueError, "arguments must be non-negative" ) ); /* if no nurbs in this curve obj */ if( !self->curve->nurb.first ) return PyList_New( 0 ); /* walk the list of nurbs to find requested numcourbe */ ptrnurb = self->curve->nurb.first; for( i = 0; i < numcourbe; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_ValueError, "curve index out of range" ) ); } /* check numpoint param against pntsu */ if( numpoint >= ptrnurb->pntsu ) return ( EXPP_ReturnPyObjError( PyExc_ValueError, "point index out of range" ) ); liste = PyList_New( 0 ); if( ptrnurb->bp ) { /* if we are a nurb curve, you get 4 values */ for( i = 0; i < 4; i++ ) { item = PyFloat_FromDouble( ptrnurb->bp[numpoint].vec[i] ); PyList_Append( liste, item ); Py_DECREF(item); } } else if( ptrnurb->bezt ) { /* if we are a bezier, you get 9 values */ for( i = 0; i < 3; i++ ) for( j = 0; j < 3; j++ ) { item = PyFloat_FromDouble( ptrnurb->bezt[numpoint].vec[i][j] ); PyList_Append( liste, item ); Py_DECREF(item); } } return liste; } static PyObject *Curve_getLoc( BPy_Curve * self ) { return Py_BuildValue( "[f,f,f]", self->curve->loc[0], self->curve->loc[1], self->curve->loc[2] ); } static int Curve_newsetLoc( BPy_Curve * self, PyObject * args ) { float loc[3]; int i; if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) || PySequence_Size( args ) != 3 ) { TypeError: return EXPP_ReturnIntError( PyExc_TypeError, "expected a sequence of three floats" ); } for( i = 0; i < 3; i++ ) { PyObject *item = PySequence_GetItem( args, i ); PyObject *num = PyNumber_Float( item ); Py_DECREF( item ); if( !num ) goto TypeError; loc[i] = PyFloat_AS_DOUBLE( num ); Py_DECREF( num ); } memcpy( self->curve->loc, loc, sizeof( loc ) ); return 0; } static PyObject *Curve_getRot( BPy_Curve * self ) { return Py_BuildValue( "[f,f,f]", self->curve->rot[0], self->curve->rot[1], self->curve->rot[2] ); } static int Curve_newsetRot( BPy_Curve * self, PyObject * args ) { float rot[3]; int i; if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) || PySequence_Size( args ) != 3 ) { TypeError: return EXPP_ReturnIntError( PyExc_TypeError, "expected a sequence of three floats" ); } for( i = 0; i < 3; i++ ) { PyObject *item = PySequence_GetItem( args, i ); PyObject *num = PyNumber_Float( item ); Py_DECREF( item ); if( !num ) goto TypeError; rot[i] = PyFloat_AS_DOUBLE( num ); Py_DECREF( num ); } memcpy( self->curve->rot, rot, sizeof( rot ) ); return 0; } static PyObject *Curve_getSize( BPy_Curve * self ) { return Py_BuildValue( "[f,f,f]", self->curve->size[0], self->curve->size[1], self->curve->size[2] ); } static int Curve_newsetSize( BPy_Curve * self, PyObject * args ) { float size[3]; int i; if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) || PySequence_Size( args ) != 3 ) { TypeError: return EXPP_ReturnIntError( PyExc_TypeError, "expected a sequence of three floats" ); } for( i = 0; i < 3; i++ ) { PyObject *item = PySequence_GetItem( args, i ); PyObject *num = PyNumber_Float( item ); Py_DECREF( item ); if( !num ) goto TypeError; size[i] = PyFloat_AS_DOUBLE( num ); Py_DECREF( num ); } memcpy( self->curve->size, size, sizeof( size ) ); return 0; } /* * Count the number of splines in a Curve Object * int getNumCurves() */ static PyObject *Curve_getNumCurves( BPy_Curve * self ) { Nurb *ptrnurb; PyObject *ret_val; int num_curves = 0; /* start with no splines */ /* get curve */ ptrnurb = self->curve->nurb.first; if( ptrnurb ) { /* we have some nurbs in this curve */ for(;;) { ++num_curves; ptrnurb = ptrnurb->next; if( !ptrnurb ) /* no more curves */ break; } } ret_val = PyInt_FromLong( ( long ) num_curves ); if( ret_val ) return ret_val; /* oops! */ return EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get number of curves" ); } /* * get the key object linked to this curve */ static PyObject *Curve_getKey( BPy_Curve * self ) { PyObject *keyObj; if (self->curve->key) keyObj = Key_CreatePyObject(self->curve->key); else keyObj = EXPP_incr_ret(Py_None); return keyObj; } /* * count the number of points in a given spline * int getNumPoints( curve_num=0 ) * */ static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args ) { Nurb *ptrnurb; PyObject *ret_val; int curve_num = 0; /* default spline number */ int i; /* parse input arg */ if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) return ( EXPP_ReturnPyObjError( PyExc_TypeError, "expected int argument" ) ); /* check arg - must be non-negative */ if( curve_num < 0 ) return ( EXPP_ReturnPyObjError( PyExc_ValueError, "argument must be non-negative" ) ); /* walk the list of curves looking for our curve */ ptrnurb = self->curve->nurb.first; if( !ptrnurb ) { /* no splines in this Curve */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "no splines in this Curve" ) ); } for( i = 0; i < curve_num; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_ValueError, "curve index out of range" ) ); } /* pntsu is the number of points in curve */ ret_val = PyInt_FromLong( ( long ) ptrnurb->pntsu ); if( ret_val ) return ret_val; /* oops! */ return EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get number of points for curve" ); } /* * Test whether a given spline of a Curve is a nurb * as opposed to a bezier * int isNurb( curve_num=0 ) */ static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args ) { int curve_num = 0; /* default value */ int is_nurb; Nurb *ptrnurb; PyObject *ret_val; int i; /* parse and check input args */ if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) { return ( EXPP_ReturnPyObjError( PyExc_TypeError, "expected int argument" ) ); } if( curve_num < 0 ) { return ( EXPP_ReturnPyObjError( PyExc_ValueError, "curve number must be non-negative" ) ); } ptrnurb = self->curve->nurb.first; if( !ptrnurb ) /* no splines in this curve */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "no splines in this Curve" ) ); for( i = 0; i < curve_num; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_ValueError, "curve index out of range" ) ); } /* right now, there are only two curve types, nurb and bezier. */ is_nurb = ptrnurb->bp ? 1 : 0; ret_val = PyInt_FromLong( ( long ) is_nurb ); if( ret_val ) return ret_val; /* oops */ return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, "couldn't get curve type" ) ); } /* trying to make a check for closedness (cyclic), following on isNurb (above) copy-pasting done by antont@kyperjokki.fi */ static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args ) { int curve_num = 0; /* default value */ /* unused:*/ /* int is_cyclic; * PyObject *ret_val;*/ Nurb *ptrnurb; int i; /* parse and check input args */ if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) { return ( EXPP_ReturnPyObjError( PyExc_TypeError, "expected int argument" ) ); } if( curve_num < 0 ) { return ( EXPP_ReturnPyObjError( PyExc_ValueError, "curve number must be non-negative" ) ); } ptrnurb = self->curve->nurb.first; if( !ptrnurb ) /* no splines in this curve */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "no splines in this Curve" ) ); for( i = 0; i < curve_num; i++ ) { ptrnurb = ptrnurb->next; if( !ptrnurb ) /* if zero, we ran just ran out of curves */ return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "curve index out of range" ) ); } if( ptrnurb->flagu & CU_CYCLIC ){ return EXPP_incr_ret_True(); } else { return EXPP_incr_ret_False(); } } /* * Curve_appendPoint( numcurve, new_point ) * append a new point to indicated spline */ static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args ) { int i; int nurb_num; /* index of curve we append to */ PyObject *coord_args; /* coords for new point */ Nurb *nurb = self->curve->nurb.first; /* first nurb in Curve */ /* fixme - need to malloc new Nurb */ if( !nurb ) return ( EXPP_ReturnPyObjError ( PyExc_AttributeError, "no nurbs in this Curve" ) ); if( !PyArg_ParseTuple( args, "iO", &nurb_num, &coord_args ) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected int, coords as arguments" ) ); /* chase down the list of Nurbs looking for our curve. */ for( i = 0; i < nurb_num; i++ ) { nurb = nurb->next; if( !nurb ) /* we ran off end of list */ return EXPP_ReturnPyObjError( PyExc_ValueError, "curve index out of range" ); } return CurNurb_appendPointToNurb( nurb, coord_args ); } /**** appendNurb( new_point ) create a new nurb in the Curve and add the point param to it. returns a refernce to the newly created nurb. *****/ static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * value ) { Nurb *new_nurb; /* malloc new nurb */ new_nurb = ( Nurb * ) MEM_callocN( sizeof( Nurb ), "appendNurb" ); if( !new_nurb ) return EXPP_ReturnPyObjError ( PyExc_MemoryError, "unable to malloc Nurb" ); if( CurNurb_appendPointToNurb( new_nurb, value ) ) { new_nurb->resolu = self->curve->resolu; new_nurb->resolv = self->curve->resolv; new_nurb->hide = 0; new_nurb->flag = 1; if( new_nurb->bezt ) { /* do setup for bezt */ new_nurb->type = CU_BEZIER; new_nurb->bezt->h1 = HD_ALIGN; new_nurb->bezt->h2 = HD_ALIGN; new_nurb->bezt->f1 = SELECT; new_nurb->bezt->f2 = SELECT; new_nurb->bezt->f3 = SELECT; new_nurb->bezt->hide = 0; /* calchandlesNurb( new_nurb ); */ } else { /* set up bp */ new_nurb->pntsv = 1; new_nurb->type = CU_NURBS; new_nurb->orderu = 4; new_nurb->flagu = 0; new_nurb->flagv = 0; new_nurb->bp->f1 = 0; new_nurb->bp->hide = 0; new_nurb->knotsu = 0; /*makenots( new_nurb, 1, new_nurb->flagu >> 1); */ } BLI_addtail( &self->curve->nurb, new_nurb); } else { freeNurb( new_nurb ); return NULL; /* with PyErr already set */ } return CurNurb_CreatePyObject( new_nurb ); } /* * Curve_update( ) * method to update display list for a Curve. * used. after messing with control points */ PyObject *Curve_update( BPy_Curve * self ) { Nurb *nu = self->curve->nurb.first; /* recalculate handles for each curve: calchandlesNurb() will make * sure curves are bezier first */ while( nu ) { calchandlesNurb ( nu ); nu = nu->next; } Object_updateDag( (void*) self->curve ); Py_RETURN_NONE; } /* * Curve_getMaterials * */ static PyObject *Curve_getMaterials( BPy_Curve * self ) { return EXPP_PyList_fromMaterialList( self->curve->mat, self->curve->totcol, 1 ); } static int Curve_setMaterials( BPy_Curve *self, PyObject * value ) { Material **matlist; int len; if( !PySequence_Check( value ) || !EXPP_check_sequence_consistency( value, &Material_Type ) ) return EXPP_ReturnIntError( PyExc_TypeError, "sequence should only contain materials or None)" ); len = PySequence_Size( value ); if( len > 16 ) return EXPP_ReturnIntError( PyExc_TypeError, "list can't have more than 16 materials" ); /* free old material list (if it exists) and adjust user counts */ if( self->curve->mat ) { Curve *cur = self->curve; int i; for( i = cur->totcol; i-- > 0; ) if( cur->mat[i] ) cur->mat[i]->id.us--; MEM_freeN( cur->mat ); } /* build the new material list, increment user count, store it */ matlist = EXPP_newMaterialList_fromPyList( value ); EXPP_incr_mats_us( matlist, len ); self->curve->mat = matlist; self->curve->totcol = (short)len; /**@ This is another ugly fix due to the weird material handling of blender. * it makes sure that object material lists get updated (by their length) * according to their data material lists, otherwise blender crashes. * It just stupidly runs through all objects...BAD BAD BAD. */ test_object_materials( ( ID * ) self->curve ); return 0; } /*****************************************************************************/ /* Function: Curve_getBevOb */ /* Description: Get the bevel object assign to the curve. */ /*****************************************************************************/ static PyObject *Curve_getBevOb( BPy_Curve * self) { if( self->curve->bevobj ) { return Object_CreatePyObject( self->curve->bevobj ); } return EXPP_incr_ret( Py_None ); } /*****************************************************************************/ /* Function: Curve_newsetBevOb */ /* Description: Assign a bevel object to the curve. */ /*****************************************************************************/ static int Curve_newsetBevOb( BPy_Curve * self, PyObject * args ) { if (BPy_Object_Check( args ) && ((BPy_Object *)args)->object->data == self->curve ) return EXPP_ReturnIntError( PyExc_ValueError, "Can't bevel an object to itself" ); return GenericLib_assignData(args, (void **) &self->curve->bevobj, 0, 0, ID_OB, OB_CURVE); } /*****************************************************************************/ /* Function: Curve_getTaperOb */ /* Description: Get the taper object assign to the curve. */ /*****************************************************************************/ static PyObject *Curve_getTaperOb( BPy_Curve * self) { if( self->curve->taperobj ) return Object_CreatePyObject( self->curve->taperobj ); Py_RETURN_NONE; } /*****************************************************************************/ /* Function: Curve_newsetTaperOb */ /* Description: Assign a taper object to the curve. */ /*****************************************************************************/ static int Curve_newsetTaperOb( BPy_Curve * self, PyObject * args ) { if (BPy_Object_Check( args ) && ((BPy_Object *)args)->object->data == self->curve ) return EXPP_ReturnIntError( PyExc_ValueError, "Can't taper an object to itself" ); return GenericLib_assignData(args, (void **) &self->curve->taperobj, 0, 0, ID_OB, OB_CURVE); } /*****************************************************************************/ /* Function: Curve_copy */ /* Description: Return a copy of this curve data. */ /*****************************************************************************/ PyObject *Curve_copy( BPy_Curve * self ) { BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */ Curve *blcurve = 0; /* for actual Curve Data we create in Blender */ /* copies the data */ blcurve = copy_curve( self->curve ); /* first create the Curve Data in Blender */ if( blcurve == NULL ) /* bail out if add_curve() failed */ return ( EXPP_ReturnPyObjError ( PyExc_RuntimeError, "couldn't create Curve Data in Blender" ) ); /* return user count to zero because add_curve() inc'd it */ blcurve->id.us = 0; /* create python wrapper obj */ pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); if( pycurve == NULL ) return ( EXPP_ReturnPyObjError ( PyExc_MemoryError, "couldn't create Curve Data object" ) ); pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */ return ( PyObject * ) pycurve; } /* * Curve_getIter * * create an iterator for our Curve. * this iterator returns the Nurbs for this Curve. * the iter_pointer always points to the next available item or null */ static PyObject *Curve_getIter( BPy_Curve * self ) { self->iter_pointer = self->curve->nurb.first; Py_INCREF( self ); return ( PyObject * ) self; } /* * Curve_iterNext * get the next item. * iter_pointer always points to the next available element * or NULL if at the end of the list. */ static PyObject *Curve_iterNext( BPy_Curve * self ) { Nurb *pnurb; if( self->iter_pointer ) { pnurb = self->iter_pointer; self->iter_pointer = pnurb->next; /* advance iterator */ if( (pnurb->type & 7) == CU_BEZIER || pnurb->pntsv <= 1 ) return CurNurb_CreatePyObject( pnurb ); /* make a bpy_curnurb */ else return SurfNurb_CreatePyObject( pnurb ); /* make a bpy_surfnurb */ } /* if iter_pointer was null, we are at end */ return EXPP_ReturnPyObjError( PyExc_StopIteration, "iterator at end" ); } /* tp_sequence methods */ /* * Curve_length * returns the number of curves in a Curve * this is a tp_as_sequence method, not a regular instance method. */ static int Curve_length( PyInstanceObject * inst ) { if( BPy_Curve_Check( ( PyObject * ) inst ) ) return ( ( int ) PyInt_AsLong ( Curve_getNumCurves( ( BPy_Curve * ) inst ) ) ); return EXPP_ReturnIntError( PyExc_RuntimeError, "arg is not a BPy_Curve" ); } /* * Curve_getNurb * returns the Nth nurb in a Curve. * this is one of the tp_as_sequence methods, hence the int N argument. * it is called via the [] operator, not as a usual instance method. */ PyObject *Curve_getNurb( BPy_Curve * self, int n ) { Nurb *pNurb; int i; /* bail if index < 0 */ if( n < 0 ) return ( EXPP_ReturnPyObjError( PyExc_IndexError, "index less than 0" ) ); /* bail if no Nurbs in Curve */ if( self->curve->nurb.first == 0 ) return ( EXPP_ReturnPyObjError( PyExc_IndexError, "no Nurbs in this Curve" ) ); /* set pointer to nth Nurb */ for( pNurb = self->curve->nurb.first, i = 0; pNurb != 0 && i < n; pNurb = pNurb->next, ++i ) /**/; if( !pNurb ) /* we came to the end of the list */ return ( EXPP_ReturnPyObjError( PyExc_IndexError, "index out of range" ) ); /* until there is a Surface BPyType, distinquish between a curve and a * surface based on whether it's a Bezier and the v size */ if( (pNurb->type & 7) == CU_BEZIER || pNurb->pntsv <= 1 ) return CurNurb_CreatePyObject( pNurb ); /* make a bpy_curnurb */ else return SurfNurb_CreatePyObject( pNurb ); /* make a bpy_surfnurb */ } /* * Curve_setNurb * In this case only remove the item, we could allow adding later. */ static int Curve_setNurb( BPy_Curve * self, int n, PyObject * value ) { Nurb *pNurb; int i; /* bail if index < 0 */ if( n < 0 ) return ( EXPP_ReturnIntError( PyExc_IndexError, "index less than 0" ) ); /* bail if no Nurbs in Curve */ if( self->curve->nurb.first == 0 ) return ( EXPP_ReturnIntError( PyExc_IndexError, "no Nurbs in this Curve" ) ); /* set pointer to nth Nurb */ for( pNurb = self->curve->nurb.first, i = 0; pNurb != 0 && i < n; pNurb = pNurb->next, ++i ) /**/; if( !pNurb ) /* we came to the end of the list */ return ( EXPP_ReturnIntError( PyExc_IndexError, "index out of range" ) ); if (value) { return ( EXPP_ReturnIntError( PyExc_RuntimeError, "assigning curves is not yet supported" ) ); } else { BLI_remlink(&self->curve->nurb, pNurb); freeNurb(pNurb); } return 0; } /*****************************************************************************/ /* Function: Curve_compare */ /* Description: This compares 2 curve python types, == or != only. */ /*****************************************************************************/ static int Curve_compare( BPy_Curve * a, BPy_Curve * b ) { return ( a->curve == b->curve ) ? 0 : -1; } /*****************************************************************************/ /* Function: Curve_repr */ /* Description: This is a callback function for the BPy_Curve type. It */ /* builds a meaninful string to represent curve objects. */ /*****************************************************************************/ static PyObject *Curve_repr( BPy_Curve * self ) { /* used by 'repr' */ return PyString_FromFormat( "[Curve \"%s\"]", self->curve->id.name + 2 ); } /* attributes for curves */ static PyGetSetDef Curve_getseters[] = { GENERIC_LIB_GETSETATTR, {"pathlen", (getter)Curve_getPathLen, (setter)Curve_newsetPathLen, "The path length, used to set the number of frames for an animation (not the physical length)", NULL}, {"totcol", (getter)Curve_getTotcol, (setter)NULL, "The maximum number of linked materials", NULL}, {"flag", (getter)Curve_getMode, (setter)Curve_newsetMode, "The flag bitmask", NULL}, {"bevresol", (getter)Curve_getBevresol, (setter)Curve_newsetBevresol, "The bevel resolution", NULL}, {"resolu", (getter)Curve_getResolu, (setter)Curve_newsetResolu, "The resolution in U direction", NULL}, {"resolv", (getter)Curve_getResolv, (setter)Curve_newsetResolv, "The resolution in V direction", NULL}, {"width", (getter)Curve_getWidth, (setter)Curve_newsetWidth, "The curve width", NULL}, {"ext1", (getter)Curve_getExt1, (setter)Curve_newsetExt1, "The extent1 value (for bevels)", NULL}, {"ext2", (getter)Curve_getExt2, (setter)Curve_newsetExt2, "The extent2 value (for bevels)", NULL}, {"loc", (getter)Curve_getLoc, (setter)Curve_newsetLoc, "The data location (from the center)", NULL}, {"rot", (getter)Curve_getRot, (setter)Curve_newsetRot, "The data rotation (from the center)", NULL}, {"size", (getter)Curve_getSize, (setter)Curve_newsetSize, "The data size (from the center)", NULL}, {"bevob", (getter)Curve_getBevOb, (setter)Curve_newsetBevOb, "The bevel object", NULL}, {"taperob", (getter)Curve_getTaperOb, (setter)Curve_newsetTaperOb, "The taper object", NULL}, {"key", (getter)Curve_getKey, (setter)NULL, "The shape key for the curve (if any)", NULL}, {"materials", (getter)Curve_getMaterials, (setter)Curve_setMaterials, "The materials associated with the curve", NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; /*****************************************************************************/ /* Function: M_Curve_New */ /* Python equivalent: Blender.Curve.New */ /*****************************************************************************/ static PyObject *M_Curve_New( PyObject * self, PyObject * args ) { char *name = "Curve"; BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */ Curve *blcurve = 0; /* for actual Curve Data we create in Blender */ if( !PyArg_ParseTuple( args, "|s", &name ) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected string argument or no argument" ) ); blcurve = add_curve( name, OB_CURVE ); /* first create the Curve Data in Blender */ if( blcurve == NULL ) /* bail out if add_curve() failed */ return ( EXPP_ReturnPyObjError ( PyExc_RuntimeError, "couldn't create Curve Data in Blender" ) ); /* return user count to zero because add_curve() inc'd it */ blcurve->id.us = 0; /* create python wrapper obj */ pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); if( pycurve == NULL ) return ( EXPP_ReturnPyObjError ( PyExc_MemoryError, "couldn't create Curve Data object" ) ); pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */ return ( PyObject * ) pycurve; } /*****************************************************************************/ /* Function: M_Curve_Get */ /* Python equivalent: Blender.Curve.Get */ /*****************************************************************************/ static PyObject *M_Curve_Get( PyObject * self, PyObject * args ) { char *name = NULL; Curve *curv_iter; BPy_Curve *wanted_curv; if( !PyArg_ParseTuple( args, "|s", &name ) ) /* expects nothing or a string */ return ( EXPP_ReturnPyObjError( PyExc_TypeError, "expected string argument" ) ); if( name ) { /*a name has been given */ /* Use the name to search for the curve requested */ wanted_curv = NULL; curv_iter = G.main->curve.first; while( ( curv_iter ) && ( wanted_curv == NULL ) ) { if( strcmp( name, curv_iter->id.name + 2 ) == 0 ) { wanted_curv = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); if( wanted_curv ) wanted_curv->curve = curv_iter; } curv_iter = curv_iter->id.next; } if( wanted_curv == NULL ) { /* Requested curve doesn't exist */ char error_msg[64]; PyOS_snprintf( error_msg, sizeof( error_msg ), "Curve \"%s\" not found", name ); return ( EXPP_ReturnPyObjError ( PyExc_NameError, error_msg ) ); } return ( PyObject * ) wanted_curv; } /* end of if(name) */ else { /* no name has been given; return a list of all curves by name. */ PyObject *curvlist; curv_iter = G.main->curve.first; curvlist = PyList_New( 0 ); if( curvlist == NULL ) return ( EXPP_ReturnPyObjError( PyExc_MemoryError, "couldn't create PyList" ) ); while( curv_iter ) { BPy_Curve *found_cur = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); found_cur->curve = curv_iter; PyList_Append( curvlist, ( PyObject * ) found_cur ); Py_DECREF(found_cur); curv_iter = curv_iter->id.next; } return ( curvlist ); } /* end of else */ } /*****************************************************************************/ /* Python method definitions for Blender.Curve module: */ /*****************************************************************************/ struct PyMethodDef M_Curve_methods[] = { {"New", ( PyCFunction ) M_Curve_New, METH_VARARGS, M_Curve_New_doc}, {"Get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc}, {"get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc}, {NULL, NULL, 0, NULL} }; /*****************************************************************************/ /* Python BPy_Curve instance methods table: */ /*****************************************************************************/ static PyMethodDef BPy_Curve_methods[] = { {"getName", ( PyCFunction ) Curve_getName, METH_NOARGS, "() - Return Curve Data name"}, {"setName", ( PyCFunction ) Curve_setName, METH_VARARGS, "() - Sets Curve Data name"}, {"getPathLen", ( PyCFunction ) Curve_getPathLen, METH_NOARGS, "() - Return Curve path length"}, {"setPathLen", ( PyCFunction ) Curve_setPathLen, METH_VARARGS, "(int) - Sets Curve path length"}, {"getTotcol", ( PyCFunction ) Curve_getTotcol, METH_NOARGS, "() - Return the number of materials of the curve"}, {"setTotcol", ( PyCFunction ) Curve_setTotcol, METH_VARARGS, "(int) - Sets the number of materials of the curve"}, {"getFlag", ( PyCFunction ) Curve_getMode, METH_NOARGS, "() - Return flag (see the doc for semantic)"}, {"setFlag", ( PyCFunction ) Curve_setMode, METH_VARARGS, "(int) - Sets flag (see the doc for semantic)"}, {"getBevresol", ( PyCFunction ) Curve_getBevresol, METH_NOARGS, "() - Return bevel resolution"}, {"setBevresol", ( PyCFunction ) Curve_setBevresol, METH_VARARGS, "(int) - Sets bevel resolution"}, {"getResolu", ( PyCFunction ) Curve_getResolu, METH_NOARGS, "() - Return U resolution"}, {"setResolu", ( PyCFunction ) Curve_setResolu, METH_VARARGS, "(int) - Sets U resolution"}, {"getResolv", ( PyCFunction ) Curve_getResolv, METH_NOARGS, "() - Return V resolution"}, {"setResolv", ( PyCFunction ) Curve_setResolv, METH_VARARGS, "(int) - Sets V resolution"}, {"getWidth", ( PyCFunction ) Curve_getWidth, METH_NOARGS, "() - Return curve width"}, {"setWidth", ( PyCFunction ) Curve_setWidth, METH_VARARGS, "(int) - Sets curve width"}, {"getExt1", ( PyCFunction ) Curve_getExt1, METH_NOARGS, "() - Returns extent 1 of the bevel"}, {"setExt1", ( PyCFunction ) Curve_setExt1, METH_VARARGS, "(int) - Sets extent 1 of the bevel"}, {"getExt2", ( PyCFunction ) Curve_getExt2, METH_NOARGS, "() - Return extent 2 of the bevel "}, {"setExt2", ( PyCFunction ) Curve_setExt2, METH_VARARGS, "(int) - Sets extent 2 of the bevel "}, {"getControlPoint", ( PyCFunction ) Curve_getControlPoint, METH_VARARGS, "(int numcurve,int numpoint) -\ Gets a control point.Depending upon the curve type, returne a list of 4 or 9 floats"}, {"setControlPoint", ( PyCFunction ) Curve_setControlPoint, METH_VARARGS, "(int numcurve,int numpoint,float x,float y,float z,\ float w)(nurbs) or (int numcurve,int numpoint,float x1,...,x9(bezier)\ Sets a control point "}, {"getLoc", ( PyCFunction ) Curve_getLoc, METH_NOARGS, "() - Gets Location of the curve (a 3-tuple) "}, {"setLoc", ( PyCFunction ) Curve_setLoc, METH_VARARGS, "(3-tuple) - Sets Location "}, {"getRot", ( PyCFunction ) Curve_getRot, METH_NOARGS, "() - Gets curve rotation"}, {"setRot", ( PyCFunction ) Curve_setRot, METH_VARARGS, "(3-tuple) - Sets curve rotation"}, {"getSize", ( PyCFunction ) Curve_getSize, METH_NOARGS, "() - Gets curve size"}, {"setSize", ( PyCFunction ) Curve_setSize, METH_VARARGS, "(3-tuple) - Sets curve size"}, {"getNumCurves", ( PyCFunction ) Curve_getNumCurves, METH_NOARGS, "() - Gets number of curves in Curve"}, {"getKey", ( PyCFunction ) Curve_getKey, METH_NOARGS, "() - Gets curve key"}, {"isNurb", ( PyCFunction ) Curve_isNurb, METH_VARARGS, "(nothing or integer) - returns 1 if curve is type Nurb, O otherwise."}, {"isCyclic", ( PyCFunction ) Curve_isCyclic, METH_VARARGS, "( nothing or integer ) - returns true if curve is cyclic (closed), false otherwise."}, {"getNumPoints", ( PyCFunction ) Curve_getNumPoints, METH_VARARGS, "(nothing or integer) - returns the number of points of the specified curve"}, {"appendPoint", ( PyCFunction ) Curve_appendPoint, METH_VARARGS, "( int numcurve, list of coordinates) - adds a new point to end of curve"}, {"appendNurb", ( PyCFunction ) Curve_appendNurb, METH_O, "( new_nurb ) - adds a new nurb to the Curve"}, {"update", ( PyCFunction ) Curve_update, METH_NOARGS, "( ) - updates display lists after changes to Curve"}, {"getMaterials", ( PyCFunction ) Curve_getMaterials, METH_NOARGS, "() - returns list of materials assigned to this Curve"}, {"getBevOb", ( PyCFunction ) Curve_getBevOb, METH_NOARGS, "() - returns Bevel Object assigned to this Curve"}, {"setBevOb", ( PyCFunction ) Curve_setBevOb, METH_VARARGS, "() - assign a Bevel Object to this Curve"}, {"getTaperOb", ( PyCFunction ) Curve_getTaperOb, METH_NOARGS, "() - returns Taper Object assigned to this Curve"}, {"setTaperOb", ( PyCFunction ) Curve_setTaperOb, METH_VARARGS, "() - assign a Taper Object to this Curve"}, {"__copy__", ( PyCFunction ) Curve_copy, METH_NOARGS, "() - make a copy of this curve data"}, {"copy", ( PyCFunction ) Curve_copy, METH_NOARGS, "() - make a copy of this curve data"}, {NULL, NULL, 0, NULL} }; /*****************************************************************************/ /* Python Curve_Type callback function prototypes: */ /*****************************************************************************/ static int Curve_compare( BPy_Curve * a, BPy_Curve * b ); static PyObject *Curve_repr( BPy_Curve * msh ); static PySequenceMethods Curve_as_sequence = { ( inquiry ) Curve_length, /* sq_length */ ( binaryfunc ) 0, /* sq_concat */ ( intargfunc ) 0, /* sq_repeat */ ( intargfunc ) Curve_getNurb, /* sq_item */ ( intintargfunc ) 0, /* sq_slice */ ( intobjargproc ) Curve_setNurb, /* sq_ass_item - only so you can do del curve[i] */ 0, /* sq_ass_slice */ ( objobjproc ) 0, /* sq_contains */ 0, 0 }; /*****************************************************************************/ /* Python Curve_Type structure definition: */ /*****************************************************************************/ PyTypeObject Curve_Type = { PyObject_HEAD_INIT( NULL ) /* required macro */ 0, /* ob_size */ "Curve", /* tp_name */ sizeof( BPy_Curve ), /* tp_basicsize */ 0, /* tp_itemsize */ /* methods */ NULL, /* tp_dealloc */ 0, /* tp_print */ ( getattrfunc ) NULL, /* tp_getattr */ ( setattrfunc ) NULL, /* tp_setattr */ ( cmpfunc ) Curve_compare, /* tp_compare */ ( reprfunc ) Curve_repr, /* tp_repr */ /* Method suites for standard classes */ NULL, /* PyNumberMethods *tp_as_number; */ &Curve_as_sequence, /* PySequenceMethods *tp_as_sequence; */ NULL, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ ( hashfunc ) GenericLib_hash, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT, /* long tp_flags; */ NULL, /* char *tp_doc; */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ NULL, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ ( getiterfunc ) Curve_getIter, /* getiterfunc tp_iter; */ ( iternextfunc ) Curve_iterNext, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ BPy_Curve_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ Curve_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ NULL, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; /*****************************************************************************/ /* Function: Curve_Init */ /*****************************************************************************/ PyObject *Curve_Init( void ) { PyObject *submodule; if( PyType_Ready( &Curve_Type) < 0) /* set exception. -1 is failure */ return NULL; submodule = Py_InitModule3( "Blender.Curve", M_Curve_methods, M_Curve_doc ); return ( submodule ); } /* * Curve_CreatePyObject * constructor to build a py object from blender data */ PyObject *Curve_CreatePyObject( struct Curve * curve ) { BPy_Curve *blen_object; blen_object = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type ); if( blen_object == NULL ) { return ( NULL ); } blen_object->curve = curve; return ( ( PyObject * ) blen_object ); } struct Curve *Curve_FromPyObject( PyObject * py_obj ) { BPy_Curve *blen_obj; blen_obj = ( BPy_Curve * ) py_obj; return ( blen_obj->curve ); } /* #####DEPRECATED###### */ PyObject *Curve_setName( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetName ); } static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetPathLen ); } static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args ) { if( !PyArg_ParseTuple( args, "i", &( self->curve->totcol ) ) ) return EXPP_ReturnPyObjError( PyExc_TypeError, "expected int argument" ); Py_RETURN_NONE; } PyObject *Curve_setMode( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetMode ); } PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetBevresol); } PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetResolu ); } PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetResolv ); } PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetWidth ); } PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetExt1 ); } PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetExt2 ); } static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetLoc ); } static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetRot ); } static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetSize ); } PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetBevOb ); } PyObject *Curve_setTaperOb( BPy_Curve * self, PyObject * args ) { return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetTaperOb ); }