/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Joseph Gilbert, Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ #include "Geometry.h" /* - Not needed for now though other geometry functions will probably need them #include "BLI_arithb.h" #include "BKE_utildefines.h" */ /* Used for PolyFill */ #include "BKE_displist.h" #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" /* needed for EXPP_ReturnPyObjError and EXPP_check_sequence_consistency */ #include "gen_utils.h" #include "BKE_utildefines.h" #include "BLI_boxpack2d.h" #include "BLI_arithb.h" #define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp #define eul 0.000001 /*-- forward declarations -- */ static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq ); static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args ); static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args ); static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args ); static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args ); /*-------------------------DOC STRINGS ---------------------------*/ static char M_Geometry_doc[] = "The Blender Geometry module\n\n"; static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles"; static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None"; static char M_Geometry_ClosestPointOnLine_doc[] = "(pt, line_p1, line_p2) - takes a point and a line and returns a (Vector, Bool) for the point on the line, and the bool so you can know if the point was between the 2 points"; static char M_Geometry_PointInTriangle2D_doc[] = "(pt, tri_p1, tri_p2, tri_p3) - takes 4 vectors, one is the point and the next 3 define the triabgle, only the x and y are used from the vectors"; static char M_Geometry_BoxPack2D_doc[] = ""; /*-----------------------METHOD DEFINITIONS ----------------------*/ struct PyMethodDef M_Geometry_methods[] = { {"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc}, {"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc}, {"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc}, {"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc}, {"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc}, {NULL, NULL, 0, NULL} }; /*----------------------------MODULE INIT-------------------------*/ PyObject *Geometry_Init(void) { PyObject *submodule; submodule = Py_InitModule3("Blender.Geometry", M_Geometry_methods, M_Geometry_doc); return (submodule); } /*----------------------------------Geometry.PolyFill() -------------------*/ /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */ static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq ) { PyObject *tri_list; /*return this list of tri's */ PyObject *polyLine, *polyVec; int i, len_polylines, len_polypoints; /* display listbase */ ListBase dispbase={NULL, NULL}; DispList *dl; float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */ int index, *dl_face, totpoints=0; dispbase.first= dispbase.last= NULL; if(!PySequence_Check(polyLineSeq)) { return EXPP_ReturnPyObjError( PyExc_TypeError, "expected a sequence of poly lines" ); } len_polylines = PySequence_Size( polyLineSeq ); for( i = 0; i < len_polylines; ++i ) { polyLine= PySequence_GetItem( polyLineSeq, i ); if (!PySequence_Check(polyLine)) { freedisplist(&dispbase); Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/ return EXPP_ReturnPyObjError( PyExc_TypeError, "One or more of the polylines is not a sequence of Mathutils.Vector's" ); } len_polypoints= PySequence_Size( polyLine ); if (len_polypoints>0) { /* dont bother adding edges as polylines */ if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) { freedisplist(&dispbase); Py_DECREF(polyLine); return EXPP_ReturnPyObjError( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" ); } dl= MEM_callocN(sizeof(DispList), "poly disp"); BLI_addtail(&dispbase, dl); dl->type= DL_INDEX3; dl->nr= len_polypoints; dl->type= DL_POLY; dl->parts= 1; /* no faces, 1 edge loop */ dl->col= 0; /* no material */ dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts"); dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index"); for( index = 0; indexvec[0]; fp[1] = ((VectorObject *)polyVec)->vec[1]; if( ((VectorObject *)polyVec)->size > 2 ) fp[2] = ((VectorObject *)polyVec)->vec[2]; else fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */ totpoints++; Py_DECREF(polyVec); } } Py_DECREF(polyLine); } if (totpoints) { /* now make the list to return */ filldisplist(&dispbase, &dispbase); /* The faces are stored in a new DisplayList thats added to the head of the listbase */ dl= dispbase.first; tri_list= PyList_New(dl->parts); if( !tri_list ) { freedisplist(&dispbase); return EXPP_ReturnPyObjError( PyExc_RuntimeError, "Geometry.PolyFill failed to make a new list" ); } index= 0; dl_face= dl->index; while(index < dl->parts) { PyList_SetItem(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) ); dl_face+= 3; index++; } freedisplist(&dispbase); } else { /* no points, do this so scripts dont barf */ tri_list= PyList_New(0); } return tri_list; } static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args ) { VectorObject *line_a1, *line_a2, *line_b1, *line_b2; float a1x, a1y, a2x, a2y, b1x, b1y, b2x, b2y, xi, yi, a1,a2,b1,b2, newvec[2]; if( !PyArg_ParseTuple ( args, "O!O!O!O!", &vector_Type, &line_a1, &vector_Type, &line_a2, &vector_Type, &line_b1, &vector_Type, &line_b2) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected 4 vector types\n" ) ); a1x= line_a1->vec[0]; a1y= line_a1->vec[1]; a2x= line_a2->vec[0]; a2y= line_a2->vec[1]; b1x= line_b1->vec[0]; b1y= line_b1->vec[1]; b2x= line_b2->vec[0]; b2y= line_b2->vec[1]; if((MIN2(a1x, a2x) > MAX2(b1x, b2x)) || (MAX2(a1x, a2x) < MIN2(b1x, b2x)) || (MIN2(a1y, a2y) > MAX2(b1y, b2y)) || (MAX2(a1y, a2y) < MIN2(b1y, b2y)) ) { Py_RETURN_NONE; } /* Make sure the hoz/vert line comes first. */ if (fabs(b1x - b2x) < eul || fabs(b1y - b2y) < eul) { SWAP_FLOAT(a1x, b1x, xi); /*abuse xi*/ SWAP_FLOAT(a1y, b1y, xi); SWAP_FLOAT(a2x, b2x, xi); SWAP_FLOAT(a2y, b2y, xi); } if (fabs(a1x-a2x) < eul) { /* verticle line */ if (fabs(b1x-b2x) < eul){ /*verticle second line */ Py_RETURN_NONE; /* 2 verticle lines dont intersect. */ } else if (fabs(b1y-b2y) < eul) { /*X of vert, Y of hoz. no calculation needed */ newvec[0]= a1x; newvec[1]= b1y; return newVectorObject(newvec, 2, Py_NEW); } yi = (float)(((b1y / fabs(b1x - b2x)) * fabs(b2x - a1x)) + ((b2y / fabs(b1x - b2x)) * fabs(b1x - a1x))); if (yi > MAX2(a1y, a2y)) {/* New point above seg1's vert line */ Py_RETURN_NONE; } else if (yi < MIN2(a1y, a2y)) { /* New point below seg1's vert line */ Py_RETURN_NONE; } newvec[0]= a1x; newvec[1]= yi; return newVectorObject(newvec, 2, Py_NEW); } else if (fabs(a2y-a1y) < eul) { /* hoz line1 */ if (fabs(b2y-b1y) < eul) { /*hoz line2*/ Py_RETURN_NONE; /*2 hoz lines dont intersect*/ } /* Can skip vert line check for seg 2 since its covered above. */ xi = (float)(((b1x / fabs(b1y - b2y)) * fabs(b2y - a1y)) + ((b2x / fabs(b1y - b2y)) * fabs(b1y - a1y))); if (xi > MAX2(a1x, a2x)) { /* New point right of hoz line1's */ Py_RETURN_NONE; } else if (xi < MIN2(a1x, a2x)) { /*New point left of seg1's hoz line */ Py_RETURN_NONE; } newvec[0]= xi; newvec[1]= a1y; return newVectorObject(newvec, 2, Py_NEW); } b1 = (a2y-a1y)/(a2x-a1x); b2 = (b2y-b1y)/(b2x-b1x); a1 = a1y-b1*a1x; a2 = b1y-b2*b1x; if (b1 - b2 == 0.0) { Py_RETURN_NONE; } xi = - (a1-a2)/(b1-b2); yi = a1+b1*xi; if ((a1x-xi)*(xi-a2x) >= 0 && (b1x-xi)*(xi-b2x) >= 0 && (a1y-yi)*(yi-a2y) >= 0 && (b1y-yi)*(yi-b2y)>=0) { newvec[0]= xi; newvec[1]= yi; return newVectorObject(newvec, 2, Py_NEW); } Py_RETURN_NONE; } static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args ) { VectorObject *pt, *line_1, *line_2; float pt_in[3], pt_out[3], l1[3], l2[3]; float lambda; PyObject *ret; if( !PyArg_ParseTuple ( args, "O!O!O!", &vector_Type, &pt, &vector_Type, &line_1, &vector_Type, &line_2) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected 3 vector types\n" ) ); /* accept 2d verts */ if (pt->size==3) { VECCOPY(pt_in, pt->vec);} else { pt_in[2]=0.0; VECCOPY2D(pt_in, pt->vec) } if (line_1->size==3) { VECCOPY(l1, line_1->vec);} else { l1[2]=0.0; VECCOPY2D(l1, line_1->vec) } if (line_2->size==3) { VECCOPY(l2, line_2->vec);} else { l2[2]=0.0; VECCOPY2D(l2, line_2->vec) } /* do the calculation */ lambda = lambda_cp_line_ex(pt_in, l1, l2, pt_out); ret = PyTuple_New(2); PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW) ); PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) ); return ret; } #define SIDE_OF_LINE(pa,pb,pp) ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1])) #define POINT_IN_TRI(p0,p1,p2,p3) ((SIDE_OF_LINE(p1,p2,p0)>=0) && (SIDE_OF_LINE(p2,p3,p0)>=0) && (SIDE_OF_LINE(p3,p1,p0)>=0)) static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args ) { VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3; if( !PyArg_ParseTuple ( args, "O!O!O!O!", &vector_Type, &pt_vec, &vector_Type, &tri_p1, &vector_Type, &tri_p2, &vector_Type, &tri_p3) ) return ( EXPP_ReturnPyObjError ( PyExc_TypeError, "expected 4 vector types\n" ) ); if POINT_IN_TRI(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec) Py_RETURN_TRUE; else Py_RETURN_FALSE; } int boxPack_FromPyObject(PyObject * value, boxPack **boxarray ) { int len, i; PyObject *list_item, *item_1, *item_2; boxPack *box; /* Error checking must alredy be done */ if( !PyList_Check( value ) ) return EXPP_ReturnIntError( PyExc_TypeError, "can only back a list of [x,y,x,w]" ); len = PyList_Size( value ); (*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box"); for( i = 0; i < len; i++ ) { list_item = PyList_GET_ITEM( value, i ); if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) { MEM_freeN(*boxarray); return EXPP_ReturnIntError( PyExc_TypeError, "can only back a list of [x,y,x,w]" ); } box = (*boxarray)+i; item_1 = PyList_GET_ITEM(list_item, 2); item_2 = PyList_GET_ITEM(list_item, 3); if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) { MEM_freeN(*boxarray); return EXPP_ReturnIntError( PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" ); } box->w = (float)PyFloat_AsDouble( item_1 ); box->h = (float)PyFloat_AsDouble( item_2 ); box->index = i; /* verts will be added later */ } return 0; } void boxPack_ToPyObject(PyObject * value, boxPack **boxarray) { int len, i; PyObject *list_item; boxPack *box; len = PyList_Size( value ); for( i = 0; i < len; i++ ) { box = (*boxarray)+i; list_item = PyList_GET_ITEM( value, box->index ); PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x )); PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y )); } MEM_freeN(*boxarray); } static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * boxlist ) { boxPack *boxarray; float tot_width, tot_height; int len; int error; if(!PyList_Check(boxlist)) return EXPP_ReturnPyObjError( PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" ); len = PyList_Size( boxlist ); if (!len) return Py_BuildValue( "ff", 0.0, 0.0); error = boxPack_FromPyObject(boxlist, &boxarray); if (error!=0) return NULL; /* Non Python function */ boxPack2D(boxarray, len, &tot_width, &tot_height); boxPack_ToPyObject(boxlist, &boxarray); return Py_BuildValue( "ff", tot_width, tot_height); }