/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2006, Blender Foundation * All rights reserved. * * Original code is this file * * Contributor(s): Nathan Letwory * * ***** END GPL LICENSE BLOCK ***** */ #include "Node.h" #include "BKE_global.h" #include "BKE_main.h" #include "BKE_node.h" #include "BKE_utildefines.h" #include "DNA_material_types.h" #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "gen_utils.h" #include "vector.h" static PyObject *Node_repr( BPy_Node * self ); static int Node_compare(BPy_Node *a, BPy_Node *b); static PyObject *ShadeInput_repr( BPy_ShadeInput * self ); static int ShadeInput_compare(BPy_ShadeInput *a, BPy_ShadeInput *b); static BPy_ShadeInput *ShadeInput_CreatePyObject(ShadeInput *shi); /* node socket type */ static PyObject *NodeSocket_getName(BPy_NodeSocket *self, void *unused) { return PyString_FromString(self->name); } static int NodeSocket_setName(BPy_NodeSocket *self, PyObject *value, void *unused) { char *name = NULL; if (!PyString_Check(value)) return EXPP_ReturnIntError( PyExc_TypeError, "expected a string" ); name = PyString_AsString(value); if (!name) return EXPP_ReturnIntError(PyExc_RuntimeError, "couldn't convert value to string!"); BLI_strncpy(self->name, name, NODE_MAXSTR); return 0; } static PyObject *NodeSocket_getVal(BPy_NodeSocket *self, void *unused) { PyObject *pyret = NULL; if (self->type == SOCK_VALUE) { pyret = PyFloat_FromDouble(self->val[0]); } else { /* VECTOR or RGBA */ pyret = newVectorObject(self->val, self->type, Py_NEW); if (!pyret) return EXPP_ReturnPyObjError(PyExc_RuntimeError, "couldn't create vector object!"); } return pyret; } static int NodeSocket_setVal(BPy_NodeSocket *self, PyObject *value, void *unused) { int error = 0; if (PySequence_Check(value)) { PyObject *item, *fpyval; int i, len; len = PySequence_Size(value); if (len == 3 || len == 4) { for (i = 0; i < len; i++) { item = PySequence_GetItem(value, i); fpyval = PyNumber_Float(item); if (!fpyval) { Py_DECREF(item); error = 1; break; } self->val[i] = (float)PyFloat_AsDouble(fpyval); Py_DECREF(item); Py_DECREF(fpyval); } if (len == 3) self->type = SOCK_VECTOR; else /* len == 4 */ self->type = SOCK_RGBA; } else error = 1; } else if (VectorObject_Check(value)) { VectorObject *vecOb = (VectorObject *)value; short vlen = vecOb->size; if (vlen == 3 || vlen == 4) { VECCOPY(self->val, vecOb->vec); /* copies 3 values */ if (vlen == 3) self->type = SOCK_VECTOR; else { self->val[3] = vecOb->vec[3]; self->type = SOCK_RGBA; } } else error = 1; } else if (PyNumber_Check(value)) { self->val[0] = (float)PyFloat_AsDouble(value); self->type = SOCK_VALUE; } else error = 1; if (error) return EXPP_ReturnIntError( PyExc_TypeError, "expected a float or a sequence (or vector) of 3 or 4 floats" ); return 0; } static PyObject *NodeSocket_getMin(BPy_NodeSocket *self, void *unused) { return PyFloat_FromDouble(self->min); } static int NodeSocket_setMin(BPy_NodeSocket *self, PyObject *value, void *unused) { PyObject *pyval = PyNumber_Float(value); if (!pyval) return EXPP_ReturnIntError( PyExc_TypeError, "expected a float number" ); self->min = (float)PyFloat_AsDouble(pyval); Py_DECREF(pyval); return 0; } static PyObject *NodeSocket_getMax(BPy_NodeSocket *self, void *unused) { return PyFloat_FromDouble(self->max); } static int NodeSocket_setMax(BPy_NodeSocket *self, PyObject *value, void *unused) { PyObject *pyval = PyNumber_Float(value); if (!pyval) return EXPP_ReturnIntError( PyExc_TypeError, "expected a float number" ); self->max = (float)PyFloat_AsDouble(pyval); Py_DECREF(pyval); return 0; } static PyGetSetDef NodeSocket_getseters[] = { {"name", (getter)NodeSocket_getName, (setter)NodeSocket_setName, "This socket's name", NULL}, {"val", (getter)NodeSocket_getVal, (setter)NodeSocket_setVal, "This socket's data value(s)", NULL}, {"min", (getter)NodeSocket_getMin, (setter)NodeSocket_setMin, "This socket's min possible value (lower range limit)", NULL}, {"max", (getter)NodeSocket_getMax, (setter)NodeSocket_setMax, "This socket's max possible value (upper range limit)", NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; static void NodeSocket_dealloc(BPy_NodeSocket *self) { self->ob_type->tp_free((PyObject *)self); } static PyObject *NodeSocket_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *pysocket = type->tp_alloc(type, 0); if (!pysocket) return EXPP_ReturnPyObjError(PyExc_RuntimeError, "couldn't create socket type!"); return pysocket; } static int NodeSocket_init(BPy_NodeSocket *self, PyObject *args, PyObject *kwargs) { char *name = NULL; float min = 0.0f, max = 1.0f; PyObject *val = NULL; static char *kwlist[] = {"name", "val", "min", "max", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s|Off", kwlist, &name, &val, &min, &max)){ return EXPP_ReturnIntError(PyExc_AttributeError, "expected a string and optionally:\n1) a float or a sequence (or vector) of 3 or 4 floats and\n2) two floats"); } BLI_strncpy(self->name, name, NODE_MAXSTR); self->min = min; self->max = max; if (val) return NodeSocket_setVal(self, val, NULL); /* else */ self->type = SOCK_VALUE; self->val[0] = 0.0f; return 0; } static PyObject *NodeSocket_copy(BPy_NodeSocket *self) { BPy_NodeSocket *copied; copied = (BPy_NodeSocket*)NodeSocket_new(&NodeSocket_Type, NULL, NULL); if (!copied) return NULL; /* error already set in NodeSocket_new */ BLI_strncpy(copied->name, self->name, NODE_MAXSTR); copied->min = self->min; copied->max = self->max; copied->type = self->type; memcpy(copied->val, self->val, 4*sizeof(float)); return (PyObject *)copied; } static PyMethodDef BPy_NodeSocket_methods[] = { {"__copy__", ( PyCFunction ) NodeSocket_copy, METH_NOARGS, "() - Makes a copy of this node socket."}, {"copy", ( PyCFunction ) NodeSocket_copy, METH_NOARGS, "() - Makes a copy of this node socket."}, {NULL, NULL, 0, NULL} }; PyTypeObject NodeSocket_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "Blender.Node.Socket", /* char *tp_name; */ sizeof( BPy_NodeSocket ), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ (destructor)NodeSocket_dealloc,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ NULL, /* getattrfunc tp_getattr; */ NULL, /* setattrfunc tp_setattr; */ NULL, /* cmpfunc tp_compare; */ NULL, /* reprfunc tp_repr; */ /* Method suites for standard classes */ NULL, /* PyNumberMethods *tp_as_number; */ NULL, /* PySequenceMethods *tp_as_sequence; */ NULL, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/input buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_BASETYPE, /* long tp_flags; */ NULL, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ NULL, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ 0, //( getiterfunc) MVertSeq_getIter, /* getiterfunc tp_iter; */ 0, //( iternextfunc ) MVertSeq_nextIter, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ BPy_NodeSocket_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ NodeSocket_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ (initproc)NodeSocket_init, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ NodeSocket_new, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; /** * Take the descriptions from tuple and create sockets for those in socks * socks is a socketstack from a bNodeTypeInfo */ static int pysockets_to_blendersockets(PyObject *tuple, bNodeSocketType **socks, int stage, int limit) { int len = 0, a = 0, pos = 0, retval = 0; short stype; BPy_NodeSocket *pysock; bNodeSocketType *nsocks = NULL; if (BTST2(stage, NODE_DYNAMIC_READY, NODE_DYNAMIC_ADDEXIST)) return 0; /* already has sockets */ len = PyTuple_Size(tuple); nsocks = MEM_callocN(sizeof(bNodeSocketType)*(len+1), "bNodeSocketType in Node.c"); for (pos = 0, a = 0; pos< len; pos++, a++) { pysock = (BPy_NodeSocket *)PyTuple_GetItem(tuple, pos);/*borrowed*/ if (!BPy_NodeSocket_Check(pysock)) { PyErr_SetString(PyExc_AttributeError, "expected a sequence of node sockets"); retval = -1; break; } stype = pysock->type; nsocks[a].type = stype; nsocks[a].limit = limit; nsocks[a].name = BLI_strdupn(pysock->name, NODE_MAXSTR); nsocks[a].min = pysock->min; nsocks[a].max = pysock->max; if (stype > SOCK_VALUE) { float *vec = pysock->val; nsocks[a].val1 = vec[0]; nsocks[a].val2 = vec[1]; nsocks[a].val3 = vec[2]; if (stype == SOCK_RGBA) nsocks[a].val4 = vec[3]; } else /* SOCK_VALUE */ nsocks[a].val1 = pysock->val[0]; } nsocks[a].type = -1; *socks = nsocks; return retval; } static void NodeSocketLists_dealloc(BPy_NodeSocketLists *self) { Py_DECREF(self->input); Py_DECREF(self->output); self->ob_type->tp_free((PyObject *)self); } static PyObject *Map_socketdef_getter(BPy_NodeSocketLists *self, void *closure) { PyObject *sockets = NULL; switch ((int)closure) { case 'I': /* inputs */ Py_INCREF(self->input); sockets = self->input; break; case 'O': /* outputs */ Py_INCREF(self->output); sockets = self->output; break; default: fprintf(stderr, "DEBUG pynodes: wrong option in Map_socketdef_getter\n"); Py_INCREF(Py_None); sockets = Py_None; break; } return sockets; } static int Map_socketdef(BPy_NodeSocketLists *self, PyObject *args, void *closure) { bNode *node = NULL; PyObject *tuple = NULL; node = self->node; if(!node) { fprintf(stderr,"DEBUG pynodes: No bNode in BPy_Node (Map_socketdef)\n"); return 0; } if(BTST2(node->custom1, NODE_DYNAMIC_READY, NODE_DYNAMIC_ADDEXIST)) return 0; switch((int)closure) { case 'I': if (args) { if(PySequence_Check(args)) { tuple = PySequence_Tuple(args); pysockets_to_blendersockets(tuple, &(node->typeinfo->inputs), node->custom1, 1); Py_DECREF(self->input); self->input = tuple; } else { return(EXPP_ReturnIntError( PyExc_AttributeError, "INPUT must be a List of Lists or Tuples")); } } break; case 'O': if (args) { if(PyList_Check(args)) { tuple = PySequence_Tuple(args); pysockets_to_blendersockets(tuple, &(node->typeinfo->outputs), node->custom1, 0); Py_DECREF(self->output); self->output = tuple; } else { return(EXPP_ReturnIntError( PyExc_AttributeError, "OUTPUT must be a List of Lists or Tuples")); } } break; default: fprintf(stderr,"DEBUG pynodes: got no list in Map_socketdef\n"); break; } return 0; } static PyGetSetDef NodeSocketLists_getseters[] = { {"input", (getter)Map_socketdef_getter, (setter)Map_socketdef, "Set this node's input sockets (list of lists or tuples)", (void *)'I'}, {"i" /*alias*/, (getter)Map_socketdef_getter, (setter)Map_socketdef, "Set this node's input sockets (list of lists or tuples)", (void *)'I'}, {"output", (getter)Map_socketdef_getter, (setter)Map_socketdef, "Set this node's output sockets (list of lists or tuples)", (void *)'O'}, {"o" /*alias*/, (getter)Map_socketdef_getter, (setter)Map_socketdef, "Set this node's output sockets (list of lists or tuples)", (void *)'O'}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; PyTypeObject NodeSocketLists_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "Blender.Node.SocketLists", /* char *tp_name; */ sizeof( BPy_NodeSocketLists ), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ (destructor)NodeSocketLists_dealloc,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ NULL, /* getattrfunc tp_getattr; */ NULL, /* setattrfunc tp_setattr; */ NULL, /* cmpfunc tp_compare; */ NULL, /* reprfunc tp_repr; */ /* Method suites for standard classes */ NULL, /* PyNumberMethods *tp_as_number; */ NULL, /* PySequenceMethods *tp_as_sequence; */ NULL, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/input buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT, /* long tp_flags; */ NULL, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ NULL, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ 0, //( getiterfunc) MVertSeq_getIter, /* getiterfunc tp_iter; */ 0, //( iternextfunc ) MVertSeq_nextIter, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ 0, //BPy_MVertSeq_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ NodeSocketLists_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ NULL, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; BPy_NodeSocketLists *Node_CreateSocketLists(bNode *node) { BPy_NodeSocketLists *socklists = PyObject_NEW(BPy_NodeSocketLists, &NodeSocketLists_Type); socklists->node = node; socklists->input = PyList_New(0); socklists->output = PyList_New(0); return socklists; } /***************************************/ static int Sockinmap_len ( BPy_SockMap * self) { bNode *node = self->node; bNodeType *tinfo; int a = 0; if (!node) return 0; tinfo = node->typeinfo; if (BNTST(node->custom1, NODE_DYNAMIC_READY)) return 0; if (tinfo && tinfo->inputs) { while(self->node->typeinfo->inputs[a].type!=-1) a++; } return a; } static int sockinmap_has_key( BPy_SockMap *self, char *strkey) { bNode *node = self->node; bNodeType *tinfo; int a = 0; if (!node || !strkey) return -1; tinfo = node->typeinfo; if(tinfo && tinfo->inputs){ while(self->node->typeinfo->inputs[a].type!=-1) { if(BLI_strcaseeq(self->node->typeinfo->inputs[a].name, strkey)) { return a; } a++; } } return -1; } PyObject *Sockinmap_subscript(BPy_SockMap *self, PyObject *pyidx) { int idx; if (!self->node) return EXPP_ReturnPyObjError(PyExc_RuntimeError, "no access to Blender node data!"); if (PyString_Check(pyidx)) { idx = sockinmap_has_key(self, PyString_AsString(pyidx)); } else if(PyInt_Check(pyidx)) { int len = Sockinmap_len(self); idx = (int)PyInt_AsLong(pyidx); if (idx < 0 || idx >= len) return EXPP_ReturnPyObjError(PyExc_IndexError, "index out of range"); } else if (PySlice_Check(pyidx)) { return EXPP_ReturnPyObjError(PyExc_ValueError, "slices not implemented"); } else { return EXPP_ReturnPyObjError(PyExc_IndexError, "index must be an int or a string"); } if(idx<0) { /* we're not as nice as Python */ return EXPP_ReturnPyObjError(PyExc_IndexError, "invalid socket index"); } switch(self->node->typeinfo->inputs[idx].type) { case SOCK_VALUE: return Py_BuildValue("f", self->stack[idx]->vec[0]); break; case SOCK_VECTOR: return Py_BuildValue("(fff)", self->stack[idx]->vec[0], self->stack[idx]->vec[1], self->stack[idx]->vec[2]); break; case SOCK_RGBA: /* otherwise RGBA tuple */ return Py_BuildValue("(ffff)", self->stack[idx]->vec[0], self->stack[idx]->vec[1], self->stack[idx]->vec[2], self->stack[idx]->vec[3]); break; default: break; } Py_RETURN_NONE; } static PyObject *Sockinmap_getAttr(BPy_SockMap *self, char *attr) { PyObject *pyob = NULL; int idx; idx = sockinmap_has_key(self, attr); if (idx < 0) return EXPP_ReturnPyObjError(PyExc_AttributeError, "unknown input socket name"); switch(self->node->typeinfo->inputs[idx].type) { case SOCK_VALUE: pyob = Py_BuildValue("f", self->stack[idx]->vec[0]); break; case SOCK_VECTOR: pyob = Py_BuildValue("(fff)", self->stack[idx]->vec[0], self->stack[idx]->vec[1], self->stack[idx]->vec[2]); break; case SOCK_RGBA: pyob = Py_BuildValue("(ffff)", self->stack[idx]->vec[0], self->stack[idx]->vec[1], self->stack[idx]->vec[2], self->stack[idx]->vec[3]); break; default: break; } return pyob; } /* read only */ static PyMappingMethods Sockinmap_as_mapping = { ( inquiry ) Sockinmap_len, /* mp_length */ ( binaryfunc ) Sockinmap_subscript, /* mp_subscript */ ( objobjargproc ) 0 /* mp_ass_subscript */ }; PyTypeObject SockInMap_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "Blender.Node.InputSockets", /* char *tp_name; */ sizeof( BPy_SockMap ), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ NULL,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ (getattrfunc) Sockinmap_getAttr,/* getattrfunc tp_getattr; */ NULL, /* setattrfunc tp_setattr; */ NULL, /* cmpfunc tp_compare; */ NULL, /* reprfunc tp_repr; */ /* Method suites for standard classes */ NULL, /* PyNumberMethods *tp_as_number; */ NULL, /* PySequenceMethods *tp_as_sequence; */ &Sockinmap_as_mapping, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT, /* long tp_flags; */ NULL, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ NULL, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ 0, //( getiterfunc) MVertSeq_getIter, /* getiterfunc tp_iter; */ 0, //( iternextfunc ) MVertSeq_nextIter, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ 0, //BPy_MVertSeq_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ NULL, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ NULL, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; static int Sockoutmap_len ( BPy_SockMap * self) { bNode *node = self->node; bNodeType *tinfo; int a = 0; if (!node) return 0; tinfo = node->typeinfo; if (tinfo && tinfo->outputs) { while(self->node->typeinfo->outputs[a].type!=-1) a++; } return a; } static int sockoutmap_has_key(BPy_SockMap *self, char *strkey) { bNode *node = self->node; bNodeType *tinfo; int a = 0; if (!node) return -1; tinfo = node->typeinfo; if(tinfo && tinfo->outputs){ while(self->node->typeinfo->outputs[a].type!=-1) { if(BLI_strcaseeq(self->node->typeinfo->outputs[a].name, strkey)) { return a; } a++; } } return -1; } static int Sockoutmap_assign_subscript(BPy_SockMap *self, PyObject *pyidx, PyObject *value) { int i, idx, len, type, wanted_len = 0; PyObject *val; PyObject *items[4]; if (!self->node) return EXPP_ReturnIntError(PyExc_RuntimeError, "no access to Blender node data!"); if (PyInt_Check(pyidx)) { idx = (int)PyInt_AsLong(pyidx); if (idx < 0 || idx >= Sockinmap_len(self)) return EXPP_ReturnIntError(PyExc_IndexError, "index out of range"); } else if (PyString_Check(pyidx)) { idx = sockoutmap_has_key(self, PyString_AsString(pyidx)); } else if (PySlice_Check(pyidx)) { return EXPP_ReturnIntError(PyExc_ValueError, "slices not yet implemented"); } else { return EXPP_ReturnIntError(PyExc_IndexError, "index must be a positive int or a string"); } if (idx < 0) return EXPP_ReturnIntError(PyExc_IndexError, "index must be a positive int or a string"); type = self->node->typeinfo->outputs[idx].type; if (type == SOCK_VALUE) { val = PyNumber_Float(value); if (!val) return EXPP_ReturnIntError(PyExc_AttributeError, "expected a float value"); self->stack[idx]->vec[0] = (float)PyFloat_AsDouble(val); Py_DECREF(val); } else { val = PySequence_Fast(value, "expected a numeric tuple or list"); if (!val) return -1; len = PySequence_Fast_GET_SIZE(val); if (type == SOCK_VECTOR) { wanted_len = 3; } else { /* SOCK_RGBA */ wanted_len = 4; } if (len != wanted_len) { Py_DECREF(val); PyErr_SetString(PyExc_AttributeError, "wrong number of items in list or tuple"); fprintf(stderr, "\nExpected %d numeric values, got %d.", wanted_len, len); return -1; } for (i = 0; i < len; i++) { items[i] = PySequence_Fast_GET_ITEM(val, i); /* borrowed */ if (!PyNumber_Check(items[i])) { Py_DECREF(val); return EXPP_ReturnIntError(PyExc_AttributeError, "expected a *numeric* tuple or list"); } } self->stack[idx]->vec[0] = (float)PyFloat_AsDouble(items[0]); self->stack[idx]->vec[1] = (float)PyFloat_AsDouble(items[1]); self->stack[idx]->vec[2] = (float)PyFloat_AsDouble(items[2]); if (type == SOCK_RGBA) self->stack[idx]->vec[3] = (float)PyFloat_AsDouble(items[3]); Py_DECREF(val); } return 0; } static int sockoutmap_set_attr(bNodeStack **stack, short type, short idx, PyObject *value) { PyObject *val; PyObject *items[4]; int i; short len, wanted_len; if (type == SOCK_VALUE) { val = PyNumber_Float(value); if (!val) return EXPP_ReturnIntError(PyExc_AttributeError, "expected a float value"); stack[idx]->vec[0] = (float)PyFloat_AsDouble(val); Py_DECREF(val); } else { val = PySequence_Fast(value, "expected a numeric tuple or list"); if (!val) return -1; len = PySequence_Fast_GET_SIZE(val); if (type == SOCK_VECTOR) { wanted_len = 3; } else { /* SOCK_RGBA */ wanted_len = 4; } if (len != wanted_len) { Py_DECREF(val); PyErr_SetString(PyExc_AttributeError, "wrong number of items in list or tuple"); fprintf(stderr, "\nExpected %d numeric values, got %d.", wanted_len, len); return -1; } for (i = 0; i < len; i++) { items[i] = PySequence_Fast_GET_ITEM(val, i); /* borrowed */ if (!PyNumber_Check(items[i])) { Py_DECREF(val); return EXPP_ReturnIntError(PyExc_AttributeError, "expected a *numeric* tuple or list"); } } stack[idx]->vec[0] = (float)PyFloat_AsDouble(items[0]); stack[idx]->vec[1] = (float)PyFloat_AsDouble(items[1]); stack[idx]->vec[2] = (float)PyFloat_AsDouble(items[2]); if (type == SOCK_RGBA) stack[idx]->vec[3] = (float)PyFloat_AsDouble(items[3]); Py_DECREF(val); } return 0; } static int Sockoutmap_setAttr(BPy_SockMap *self, char *name, PyObject *value) { short idx, type; if (!self->node) return EXPP_ReturnIntError(PyExc_RuntimeError, "no access to Blender node data!"); idx = sockoutmap_has_key(self, name); if (idx < 0) return EXPP_ReturnIntError(PyExc_AttributeError, "unknown output socket name"); type = self->node->typeinfo->outputs[idx].type; return sockoutmap_set_attr(self->stack, type, idx, value); } /* write only */ static PyMappingMethods Sockoutmap_as_mapping = { ( inquiry ) Sockoutmap_len, /* mp_length */ ( binaryfunc ) 0, /* mp_subscript */ ( objobjargproc ) Sockoutmap_assign_subscript /* mp_ass_subscript */ }; PyTypeObject SockOutMap_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "Blender.Node.OutputSockets", /* char *tp_name; */ sizeof( BPy_SockMap ), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ NULL,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ NULL, /* getattrfunc tp_getattr; */ (setattrfunc) Sockoutmap_setAttr,/* setattrfunc tp_setattr; */ NULL, /* cmpfunc tp_compare; */ NULL, /* reprfunc tp_repr; */ /* Method suites for standard classes */ NULL, /* PyNumberMethods *tp_as_number; */ NULL, /* PySequenceMethods *tp_as_sequence; */ &Sockoutmap_as_mapping, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT, /* long tp_flags; */ NULL, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ NULL, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ 0, //( getiterfunc) MVertSeq_getIter, /* getiterfunc tp_iter; */ 0, //( iternextfunc ) MVertSeq_nextIter, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ 0, //BPy_MVertSeq_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ NULL, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ NULL, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; static BPy_SockMap *Node_CreateInputMap(bNode *node, bNodeStack **stack) { BPy_SockMap *map = PyObject_NEW(BPy_SockMap, &SockInMap_Type); map->node = node; map->stack = stack; return map; } static PyObject *Node_GetInputMap(BPy_Node *self) { BPy_SockMap *inmap = Node_CreateInputMap(self->node, self->in); return (PyObject *)(inmap); } #define SURFACEVIEWVECTOR 0 #define VIEWNORMAL 1 #define SURFACENORMAL 2 #define GLOBALTEXTURE 3 #define TEXTURE 4 #define PIXEL 5 #define COLOR 6 #define SPECULAR_COLOR 7 #define MIRROR_COLOR 8 #define AMBIENT_COLOR 9 #define AMBIENT 10 #define EMIT 11 #define DISPLACE 12 #define STRAND 13 #define STRESS 14 #define TANGENT 15 #define SURFACE_D 30 #define TEXTURE_D 31 #define GLOBALTEXTURE_D 32 #define REFLECTION_D 33 #define NORMAL_D 34 #define STICKY_D 35 #define REFRACT_D 36 #define STRAND_D 37 static PyObject *ShadeInput_getAttribute(BPy_ShadeInput *self, void *type) { PyObject *obj = NULL; if(self->shi) { switch((int)type) { case SURFACEVIEWVECTOR: obj = Py_BuildValue("(fff)", self->shi->view[0], self->shi->view[1], self->shi->view[2]); break; case VIEWNORMAL: obj = Py_BuildValue("(fff)", self->shi->vn[0], self->shi->vn[1], self->shi->vn[2]); break; case SURFACENORMAL: obj = Py_BuildValue("(fff)", self->shi->facenor[0], self->shi->facenor[1], self->shi->facenor[2]); break; case GLOBALTEXTURE: obj = Py_BuildValue("(fff)", self->shi->gl[0], self->shi->gl[1], self->shi->gl[2]); break; case TEXTURE: obj = Py_BuildValue("(fff)", self->shi->lo[0], self->shi->lo[1], self->shi->lo[2]); break; case PIXEL: obj = Py_BuildValue("(ii)", self->shi->xs, self->shi->ys); break; case COLOR: obj = Py_BuildValue("(fff)", self->shi->r, self->shi->g, self->shi->b); break; case SPECULAR_COLOR: obj = Py_BuildValue("(fff)", self->shi->specr, self->shi->specg, self->shi->specb); break; case MIRROR_COLOR: obj = Py_BuildValue("(fff)", self->shi->mirr, self->shi->mirg, self->shi->mirb); break; case AMBIENT_COLOR: obj = Py_BuildValue("(fff)", self->shi->ambr, self->shi->ambg, self->shi->ambb); break; case AMBIENT: obj = PyFloat_FromDouble((double)(self->shi->amb)); break; case EMIT: obj = PyFloat_FromDouble((double)(self->shi->emit)); break; case DISPLACE: obj = Py_BuildValue("(fff)", self->shi->displace[0], self->shi->displace[1], self->shi->displace[2]); break; case STRAND: obj = PyFloat_FromDouble((double)(self->shi->strandco)); break; case STRESS: obj = PyFloat_FromDouble((double)(self->shi->stress)); break; case TANGENT: obj = Py_BuildValue("(fff)", self->shi->tang[0], self->shi->tang[1], self->shi->tang[2]); break; case SURFACE_D: obj = Py_BuildValue("(fff)(fff)", self->shi->dxco[0], self->shi->dxco[1], self->shi->dxco[2], self->shi->dyco[0], self->shi->dyco[1], self->shi->dyco[2]); break; case TEXTURE_D: obj = Py_BuildValue("(fff)(fff)", self->shi->dxlo[0], self->shi->dxlo[1], self->shi->dxlo[2], self->shi->dylo[0], self->shi->dylo[1], self->shi->dylo[2]); break; case GLOBALTEXTURE_D: obj = Py_BuildValue("(fff)(fff)", self->shi->dxgl[0], self->shi->dxgl[1], self->shi->dxgl[2], self->shi->dygl[0], self->shi->dygl[1], self->shi->dygl[2]); break; case REFLECTION_D: obj = Py_BuildValue("(fff)(fff)", self->shi->dxref[0], self->shi->dxref[1], self->shi->dxref[2], self->shi->dyref[0], self->shi->dyref[1], self->shi->dyref[2]); break; case NORMAL_D: obj = Py_BuildValue("(fff)(fff)", self->shi->dxno[0], self->shi->dxno[1], self->shi->dxno[2], self->shi->dyno[0], self->shi->dyno[1], self->shi->dyno[2]); break; case STICKY_D: obj = Py_BuildValue("(fff)(fff)", self->shi->dxsticky[0], self->shi->dxsticky[1], self->shi->dxsticky[2], self->shi->dysticky[0], self->shi->dysticky[1], self->shi->dysticky[2]); break; case REFRACT_D: obj = Py_BuildValue("(fff)(fff)", self->shi->dxrefract[0], self->shi->dxrefract[1], self->shi->dxrefract[2], self->shi->dyrefract[0], self->shi->dyrefract[1], self->shi->dyrefract[2]); break; case STRAND_D: obj = Py_BuildValue("(ff)", self->shi->dxstrand, self->shi->dystrand); break; default: break; } } if(!obj) { Py_RETURN_NONE; } return obj; } static BPy_SockMap *Node_CreateOutputMap(bNode *node, bNodeStack **stack) { BPy_SockMap *map = PyObject_NEW(BPy_SockMap, &SockOutMap_Type); map->node = node; map->stack = stack; return map; } static PyObject *Node_GetOutputMap(BPy_Node *self) { BPy_SockMap *outmap = Node_CreateOutputMap(self->node, self->out); return (PyObject *)outmap; } static PyObject *Node_GetShi(BPy_Node *self) { BPy_ShadeInput *shi = ShadeInput_CreatePyObject(self->shi); return (PyObject *)shi; } static PyObject *node_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *self; self = type->tp_alloc(type, 1); return self; } static int node_init(BPy_Node *self, PyObject *args, PyObject *kwds) { return 0; } static PyGetSetDef BPy_Node_getseters[] = { {"input", (getter)Node_GetInputMap, (setter)NULL, "Get the input sockets mapping (dictionary)", NULL}, {"i", /* alias */ (getter)Node_GetInputMap, (setter)NULL, "Get the input sockets mapping (dictionary)", NULL}, {"output", (getter)Node_GetOutputMap, (setter)NULL, "Get the output sockets mapping (dictionary)", NULL}, {"o", /* alias */ (getter)Node_GetOutputMap, (setter)NULL, "Get the output sockets mapping (dictionary)", NULL}, {"shi", (getter)Node_GetShi, (setter)NULL, "Get the Shade Input data (ShadeInput)", NULL}, {"s", /* alias */ (getter)Node_GetShi, (setter)NULL, "Get the Shade Input data (ShadeInput)", NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; static PyGetSetDef BPy_ShadeInput_getseters[] = { {"texture", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the current texture coordinate (tuple)", (void*)TEXTURE}, {"textureGlobal", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the current global texture coordinate (tuple)", (void*)GLOBALTEXTURE}, {"surfaceNormal", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the current surface normal (tuple)", (void*)SURFACENORMAL}, {"viewNormal", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the current view normal (tuple)", (void*)VIEWNORMAL}, {"surfaceViewVector", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the vector pointing to the viewpoint from the point being shaded (tuple)", (void*)SURFACEVIEWVECTOR}, {"pixel", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the x,y-coordinate for the pixel rendered (tuple)", (void*)PIXEL}, {"color", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the color for the point being shaded (tuple)", (void*)COLOR}, {"specularColor", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the specular color for the point being shaded (tuple)", (void*)SPECULAR_COLOR}, {"mirrorColor", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the mirror color for the point being shaded (tuple)", (void*)MIRROR_COLOR}, {"ambientColor", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the ambient color for the point being shaded (tuple)", (void*)AMBIENT_COLOR}, {"ambient", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the ambient factor for the point being shaded (float)", (void*)AMBIENT}, {"emit", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the emit factor for the point being shaded (float)", (void*)EMIT}, {"displace", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the displace vector for the point being shaded (tuple)", (void*)DISPLACE}, {"strand", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the strand factor(float)", (void*)STRAND}, {"stress", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the stress factor(float)", (void*)STRESS}, {"tangent", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the tangent vector (tuple)", (void*)TANGENT}, {"surfaceD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the surface d (tuple of tuples)", (void*)SURFACE_D}, {"textureD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the texture d (tuple of tuples)", (void*)TEXTURE_D}, {"textureGlobalD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the global texture d (tuple of tuples)", (void*)GLOBALTEXTURE_D}, {"reflectionD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the reflection d (tuple of tuples)", (void*)REFLECTION_D}, {"normalD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the normal d (tuple of tuples)", (void*)NORMAL_D}, {"stickyD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the sticky d (tuple of tuples)", (void*)STICKY_D}, {"refractD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the refract d (tuple of tuples)", (void*)REFRACT_D}, {"strandD", (getter)ShadeInput_getAttribute, (setter)NULL, "Get the strand d (tuple)", (void*)STRAND_D}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; PyTypeObject Node_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "Blender.Node.node", /* char *tp_name; */ sizeof( BPy_Node ), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ NULL,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ NULL /*( getattrfunc ) PyObject_GenericGetAttr*/, /* getattrfunc tp_getattr; */ NULL /*( setattrfunc ) PyObject_GenericSetAttr*/, /* setattrfunc tp_setattr; */ ( cmpfunc ) Node_compare, /* cmpfunc tp_compare; */ ( reprfunc ) Node_repr, /* reprfunc tp_repr; */ /* Method suites for standard classes */ NULL, /* PyNumberMethods *tp_as_number; */ NULL, /* PySequenceMethods *tp_as_sequence; */ NULL, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_BASETYPE, /* long tp_flags; */ NULL, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ NULL, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ NULL, /* getiterfunc tp_iter; */ NULL, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ NULL, /*BPy_Node_methods,*/ /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ BPy_Node_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ (initproc)node_init, /* initproc tp_init; */ /*PyType_GenericAlloc*/NULL, /* allocfunc tp_alloc; */ node_new, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; PyTypeObject ShadeInput_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "Blender.Node.ShadeInput", /* char *tp_name; */ sizeof( BPy_ShadeInput ), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ NULL,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ NULL, /* getattrfunc tp_getattr; */ NULL, /* setattrfunc tp_setattr; */ ( cmpfunc ) ShadeInput_compare, /* cmpfunc tp_compare; */ ( reprfunc ) ShadeInput_repr, /* reprfunc tp_repr; */ /* Method suites for standard classes */ NULL, /* PyNumberMethods *tp_as_number; */ NULL, /* PySequenceMethods *tp_as_sequence; */ NULL, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT, /* long tp_flags; */ NULL, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ NULL, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ NULL, /* getiterfunc tp_iter; */ NULL, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ NULL, /*BPy_Node_methods,*/ /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ BPy_ShadeInput_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ NULL, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; /* Initialise Node module */ PyObject *Node_Init(void) { PyObject *submodule; if( PyType_Ready( &Node_Type ) < 0 ) return NULL; if( PyType_Ready( &ShadeInput_Type ) < 0 ) return NULL; if( PyType_Ready( &NodeSocket_Type ) < 0 ) return NULL; if( PyType_Ready( &NodeSocketLists_Type ) < 0 ) return NULL; if( PyType_Ready( &SockInMap_Type ) < 0 ) return NULL; if( PyType_Ready( &SockOutMap_Type ) < 0 ) return NULL; submodule = Py_InitModule3( "Blender.Node", NULL, ""); PyModule_AddIntConstant(submodule, "VALUE", SOCK_VALUE); PyModule_AddIntConstant(submodule, "RGBA", SOCK_RGBA); PyModule_AddIntConstant(submodule, "VECTOR", SOCK_VECTOR); Py_INCREF(&NodeSocket_Type); PyModule_AddObject(submodule, "Socket", (PyObject *)&NodeSocket_Type); Py_INCREF(&Node_Type); PyModule_AddObject(submodule, "Scripted", (PyObject *)&Node_Type); return submodule; } static int Node_compare(BPy_Node *a, BPy_Node *b) { bNode *pa = a->node, *pb = b->node; return (pa == pb) ? 0 : -1; } static PyObject *Node_repr(BPy_Node *self) { return PyString_FromFormat( "[Node \"%s\"]", self->node ? self->node->id->name+2 : "empty node"); } BPy_Node *Node_CreatePyObject(bNode *node) { BPy_Node *pynode; pynode = (BPy_Node *)PyObject_NEW(BPy_Node, &Node_Type); if(!pynode) { fprintf(stderr,"Couldn't create BPy_Node object\n"); return (BPy_Node *)(EXPP_ReturnPyObjError(PyExc_MemoryError, "couldn't create BPy_Node object")); } pynode->node = node; return pynode; } int pytype_is_pynode(PyObject *pyob) { return PyObject_TypeCheck(pyob, &Node_Type); } void InitNode(BPy_Node *self, bNode *node) { self->node = node; } bNode *Node_FromPyObject(PyObject *pyobj) { return ((BPy_Node *)pyobj)->node; } void Node_SetStack(BPy_Node *self, bNodeStack **stack, int type) { if(type == NODE_INPUTSTACK) { self->in = stack; } else if(type == NODE_OUTPUTSTACK) { self->out = stack; } } void Node_SetShi(BPy_Node *self, ShadeInput *shi) { self->shi = shi; } /*********************/ static int ShadeInput_compare(BPy_ShadeInput *a, BPy_ShadeInput *b) { ShadeInput *pa = a->shi, *pb = b->shi; return (pa == pb) ? 0 : -1; } static PyObject *ShadeInput_repr(BPy_ShadeInput *self) { return PyString_FromFormat( "[ShadeInput at \"%p\"]", self); } BPy_ShadeInput *ShadeInput_CreatePyObject(ShadeInput *shi) { BPy_ShadeInput *pyshi; pyshi = (BPy_ShadeInput *)PyObject_NEW(BPy_ShadeInput, &ShadeInput_Type); if(!pyshi) { fprintf(stderr,"Couldn't create BPy_ShadeInput object\n"); return (BPy_ShadeInput *)(EXPP_ReturnPyObjError(PyExc_MemoryError, "couldn't create BPy_ShadeInput object")); } pyshi->shi = shi; return pyshi; }