/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BLI_arithb.h" #include "BKE_utildefines.h" #include "BLI_blenlib.h" #include "gen_utils.h" //-------------------------DOC STRINGS --------------------------- char Euler_Zero_doc[] = "() - set all values in the euler to 0"; char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock"; char Euler_ToMatrix_doc[] = "() - returns a rotation matrix representing the euler rotation"; char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation"; char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation"; char Euler_copy_doc[] = "() - returns a copy of the euler."; //-----------------------METHOD DEFINITIONS ---------------------- struct PyMethodDef Euler_methods[] = { {"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc}, {"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc}, {"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc}, {"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc}, {"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc}, {"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc}, {"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc}, {NULL, NULL, 0, NULL} }; //-----------------------------METHODS---------------------------- //----------------------------Euler.toQuat()---------------------- //return a quaternion representation of the euler PyObject *Euler_ToQuat(EulerObject * self) { float eul[3], quat[4]; int x; for(x = 0; x < 3; x++) { eul[x] = self->eul[x] * ((float)Py_PI / 180); } EulToQuat(eul, quat); return newQuaternionObject(quat, Py_NEW); } //----------------------------Euler.toMatrix()--------------------- //return a matrix representation of the euler PyObject *Euler_ToMatrix(EulerObject * self) { float eul[3]; float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}; int x; for(x = 0; x < 3; x++) { eul[x] = self->eul[x] * ((float)Py_PI / 180); } EulToMat3(eul, (float (*)[3]) mat); return newMatrixObject(mat, 3, 3 , Py_NEW); } //----------------------------Euler.unique()----------------------- //sets the x,y,z values to a unique euler rotation PyObject *Euler_Unique(EulerObject * self) { double heading, pitch, bank; double pi2 = Py_PI * 2.0f; double piO2 = Py_PI / 2.0f; double Opi2 = 1.0f / pi2; //radians heading = self->eul[0] * (float)Py_PI / 180; pitch = self->eul[1] * (float)Py_PI / 180; bank = self->eul[2] * (float)Py_PI / 180; //wrap heading in +180 / -180 pitch += Py_PI; pitch -= floor(pitch * Opi2) * pi2; pitch -= Py_PI; if(pitch < -piO2) { pitch = -Py_PI - pitch; heading += Py_PI; bank += Py_PI; } else if(pitch > piO2) { pitch = Py_PI - pitch; heading += Py_PI; bank += Py_PI; } //gimbal lock test if(fabs(pitch) > piO2 - 1e-4) { heading += bank; bank = 0.0f; } else { bank += Py_PI; bank -= (floor(bank * Opi2)) * pi2; bank -= Py_PI; } heading += Py_PI; heading -= (floor(heading * Opi2)) * pi2; heading -= Py_PI; //back to degrees self->eul[0] = (float)(heading * 180 / (float)Py_PI); self->eul[1] = (float)(pitch * 180 / (float)Py_PI); self->eul[2] = (float)(bank * 180 / (float)Py_PI); return EXPP_incr_ret((PyObject*)self); } //----------------------------Euler.zero()------------------------- //sets the euler to 0,0,0 PyObject *Euler_Zero(EulerObject * self) { self->eul[0] = 0.0; self->eul[1] = 0.0; self->eul[2] = 0.0; return EXPP_incr_ret((PyObject*)self); } //----------------------------Euler.rotate()----------------------- //rotates a euler a certain amount and returns the result //should return a unique euler rotation (i.e. no 720 degree pitches :) PyObject *Euler_Rotate(EulerObject * self, PyObject *args) { float angle = 0.0f; char *axis; int x; if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){ return EXPP_ReturnPyObjError(PyExc_TypeError, "euler.rotate():expected angle (float) and axis (x,y,z)"); } if(!STREQ3(axis,"x","y","z")){ return EXPP_ReturnPyObjError(PyExc_TypeError, "euler.rotate(): expected axis to be 'x', 'y' or 'z'"); } //covert to radians angle *= ((float)Py_PI / 180); for(x = 0; x < 3; x++) { self->eul[x] *= ((float)Py_PI / 180); } euler_rot(self->eul, angle, *axis); //convert back from radians for(x = 0; x < 3; x++) { self->eul[x] *= (180 / (float)Py_PI); } return EXPP_incr_ret((PyObject*)self); } //----------------------------Euler.rotate()----------------------- // return a copy of the euler PyObject *Euler_copy(EulerObject * self, PyObject *args) { return newEulerObject(self->eul, Py_NEW); } //----------------------------dealloc()(internal) ------------------ //free the py_object static void Euler_dealloc(EulerObject * self) { //only free py_data if(self->data.py_data){ PyMem_Free(self->data.py_data); } PyObject_DEL(self); } //----------------------------getattr()(internal) ------------------ //object.attribute access (get) static PyObject *Euler_getattr(EulerObject * self, char *name) { if(STREQ(name,"x")){ return PyFloat_FromDouble(self->eul[0]); }else if(STREQ(name, "y")){ return PyFloat_FromDouble(self->eul[1]); }else if(STREQ(name, "z")){ return PyFloat_FromDouble(self->eul[2]); } if(STREQ(name, "wrapped")){ if(self->wrapped == Py_WRAP) return EXPP_incr_ret((PyObject *)Py_True); else return EXPP_incr_ret((PyObject *)Py_False); } return Py_FindMethod(Euler_methods, (PyObject *) self, name); } //----------------------------setattr()(internal) ------------------ //object.attribute access (set) static int Euler_setattr(EulerObject * self, char *name, PyObject * e) { PyObject *f = NULL; f = PyNumber_Float(e); if(f == NULL) { // parsed item not a number return EXPP_ReturnIntError(PyExc_TypeError, "euler.attribute = x: argument not a number\n"); } if(STREQ(name,"x")){ self->eul[0] = (float)PyFloat_AS_DOUBLE(f); }else if(STREQ(name, "y")){ self->eul[1] = (float)PyFloat_AS_DOUBLE(f); }else if(STREQ(name, "z")){ self->eul[2] = (float)PyFloat_AS_DOUBLE(f); }else{ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_AttributeError, "euler.attribute = x: unknown attribute\n"); } Py_DECREF(f); return 0; } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Euler_repr(EulerObject * self) { int i; char buffer[48], str[1024]; BLI_strncpy(str,"[",1024); for(i = 0; i < 3; i++){ if(i < (2)){ sprintf(buffer, "%.6f, ", self->eul[i]); strcat(str,buffer); }else{ sprintf(buffer, "%.6f", self->eul[i]); strcat(str,buffer); } } strcat(str, "](euler)"); return PyString_FromString(str); } //------------------------tp_richcmpr //returns -1 execption, 0 false, 1 true static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { EulerObject *eulA = NULL, *eulB = NULL; int result = 0; if (!EulerObject_Check(objectA) || !EulerObject_Check(objectB)){ if (comparison_type == Py_NE){ return EXPP_incr_ret(Py_True); }else{ return EXPP_incr_ret(Py_False); } } eulA = (EulerObject*)objectA; eulB = (EulerObject*)objectB; switch (comparison_type){ case Py_EQ: result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1); break; case Py_NE: result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1); if (result == 0){ result = 1; }else{ result = 0; } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ return EXPP_incr_ret(Py_True); }else{ return EXPP_incr_ret(Py_False); } } //------------------------tp_doc static char EulerObject_doc[] = "This is a wrapper for euler objects."; //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Euler_len(EulerObject * self) { return 3; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Euler_item(EulerObject * self, int i) { if(i < 0 || i >= 3) return EXPP_ReturnPyObjError(PyExc_IndexError, "euler[attribute]: array index out of range\n"); return PyFloat_FromDouble(self->eul[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Euler_ass_item(EulerObject * self, int i, PyObject * ob) { PyObject *f = NULL; f = PyNumber_Float(ob); if(f == NULL) { // parsed item not a number return EXPP_ReturnIntError(PyExc_TypeError, "euler[attribute] = x: argument not a number\n"); } if(i < 0 || i >= 3){ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n"); } self->eul[i] = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(f); return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Euler_slice(EulerObject * self, int begin, int end) { PyObject *list = NULL; int count; CLAMP(begin, 0, 3); if (end<0) end= 4+end; CLAMP(end, 0, 3); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->eul[count])); } return list; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Euler_ass_slice(EulerObject * self, int begin, int end, PyObject * seq) { int i, y, size = 0; float eul[3]; PyObject *e, *f; CLAMP(begin, 0, 3); if (end<0) end= 4+end; CLAMP(end, 0, 3); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ return EXPP_ReturnIntError(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment\n"); } for (i = 0; i < size; i++) { e = PySequence_GetItem(seq, i); if (e == NULL) { // Failed to read sequence return EXPP_ReturnIntError(PyExc_RuntimeError, "euler[begin:end] = []: unable to read sequence\n"); } f = PyNumber_Float(e); if(f == NULL) { // parsed item not a number Py_DECREF(e); return EXPP_ReturnIntError(PyExc_TypeError, "euler[begin:end] = []: sequence argument not a number\n"); } eul[i] = (float)PyFloat_AS_DOUBLE(f); EXPP_decr2(f,e); } //parsed well - now set in vector for(y = 0; y < 3; y++){ self->eul[begin + y] = eul[y]; } return 0; } //-----------------PROTCOL DECLARATIONS-------------------------- static PySequenceMethods Euler_SeqMethods = { (inquiry) Euler_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (intargfunc) 0, /* sq_repeat */ (intargfunc) Euler_item, /* sq_item */ (intintargfunc) Euler_slice, /* sq_slice */ (intobjargproc) Euler_ass_item, /* sq_ass_item */ (intintobjargproc) Euler_ass_slice, /* sq_ass_slice */ }; //------------------PY_OBECT DEFINITION-------------------------- PyTypeObject euler_Type = { PyObject_HEAD_INIT(NULL) //tp_head 0, //tp_internal "euler", //tp_name sizeof(EulerObject), //tp_basicsize 0, //tp_itemsize (destructor)Euler_dealloc, //tp_dealloc 0, //tp_print (getattrfunc)Euler_getattr, //tp_getattr (setattrfunc) Euler_setattr, //tp_setattr 0, //tp_compare (reprfunc) Euler_repr, //tp_repr 0, //tp_as_number &Euler_SeqMethods, //tp_as_sequence 0, //tp_as_mapping 0, //tp_hash 0, //tp_call 0, //tp_str 0, //tp_getattro 0, //tp_setattro 0, //tp_as_buffer Py_TPFLAGS_DEFAULT, //tp_flags EulerObject_doc, //tp_doc 0, //tp_traverse 0, //tp_clear (richcmpfunc)Euler_richcmpr, //tp_richcompare 0, //tp_weaklistoffset 0, //tp_iter 0, //tp_iternext 0, //tp_methods 0, //tp_members 0, //tp_getset 0, //tp_base 0, //tp_dict 0, //tp_descr_get 0, //tp_descr_set 0, //tp_dictoffset 0, //tp_init 0, //tp_alloc 0, //tp_new 0, //tp_free 0, //tp_is_gc 0, //tp_bases 0, //tp_mro 0, //tp_cache 0, //tp_subclasses 0, //tp_weaklist 0 //tp_del }; //------------------------newEulerObject (internal)------------- //creates a new euler object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newEulerObject(float *eul, int type) { EulerObject *self; int x; self = PyObject_NEW(EulerObject, &euler_Type); self->data.blend_data = NULL; self->data.py_data = NULL; if(type == Py_WRAP){ self->data.blend_data = eul; self->eul = self->data.blend_data; self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->data.py_data = PyMem_Malloc(3 * sizeof(float)); self->eul = self->data.py_data; if(!eul) { //new empty for(x = 0; x < 3; x++) { self->eul[x] = 0.0f; } }else{ for(x = 0; x < 3; x++){ self->eul[x] = eul[x]; } } self->wrapped = Py_NEW; }else{ //bad type return NULL; } return (PyObject *) self; }