/* * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Michel Selten & Joseph Gilbert * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BKE_utildefines.h" #include "BLI_arithb.h" #include "BLI_blenlib.h" #include "gen_utils.h" //-------------------------DOC STRINGS --------------------------- char Matrix_Zero_doc[] = "() - set all values in the matrix to 0"; char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix"; char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose"; char Matrix_Determinant_doc[] = "() - return the determinant of the matrix"; char Matrix_Invert_doc[] = "() - set the matrix to it's inverse if an inverse is possible"; char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix"; char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix"; char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix"; char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation"; char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation"; //-----------------------METHOD DEFINITIONS ---------------------- struct PyMethodDef Matrix_methods[] = { {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc}, {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc}, {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc}, {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc}, {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc}, {"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc}, {"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc}, {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc}, {"toEuler", (PyCFunction) Matrix_toEuler, METH_NOARGS, Matrix_toEuler_doc}, {"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc}, {NULL, NULL, 0, NULL} }; //-----------------------------METHODS---------------------------- //---------------------------Matrix.toQuat() --------------------- PyObject *Matrix_toQuat(MatrixObject * self) { float quat[4]; //must be 3-4 cols, 3-4 rows, square matrix if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) { return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n"); } if(self->colSize == 3){ Mat3ToQuat((float (*)[3])*self->matrix, quat); }else{ Mat4ToQuat((float (*)[4])*self->matrix, quat); } return newQuaternionObject(quat, Py_NEW); } //---------------------------Matrix.toEuler() -------------------- PyObject *Matrix_toEuler(MatrixObject * self) { float eul[3]; int x; //must be 3-4 cols, 3-4 rows, square matrix if(self->colSize !=3 || self->rowSize != 3) { return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.toQuat(): inappropriate matrix size - expects 3x3 matrix\n"); } Mat3ToEul((float (*)[3])*self->matrix, eul); //have to convert to degrees for(x = 0; x < 3; x++) { eul[x] *= (float) (180 / Py_PI); } return newEulerObject(eul, Py_NEW); } //---------------------------Matrix.resize4x4() ------------------ PyObject *Matrix_Resize4x4(MatrixObject * self) { int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows; if(self->data.blend_data){ return EXPP_ReturnPyObjError(PyExc_TypeError, "cannot resize wrapped data - only python matrices\n"); } self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16)); if(self->data.py_data == NULL) { return EXPP_ReturnPyObjError(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space\n\n"); } self->contigPtr = self->data.py_data; //force self->matrix = PyMem_Realloc(self->matrix, (sizeof(float) * 4)); if(self->matrix == NULL) { return EXPP_ReturnPyObjError(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space\n\n"); } //set row pointers for(x = 0; x < 4; x++) { self->matrix[x] = self->contigPtr + (x * 4); } //move data to new spot in array + clean for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){ for(x = 0; x < 4; x++){ self->contigPtr[(4 * (self->rowSize + (blank_rows - 1))) + x] = 0.0f; } } for(x = 1; x <= self->rowSize; x++){ first_row_elem = (self->colSize * (self->rowSize - x)); curr_pos = (first_row_elem + (self->colSize -1)); new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem); for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){ self->contigPtr[new_pos + blank_columns] = 0.0f; } for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){ self->contigPtr[new_pos] = self->contigPtr[curr_pos]; new_pos--; } } self->rowSize = 4; self->colSize = 4; return EXPP_incr_ret((PyObject*)self); } //---------------------------Matrix.translationPart() ------------ PyObject *Matrix_TranslationPart(MatrixObject * self) { float vec[4]; if(self->colSize < 3 && self->rowSize < 4){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.translationPart: inappropriate matrix size\n"); } vec[0] = self->matrix[3][0]; vec[1] = self->matrix[3][1]; vec[2] = self->matrix[3][2]; return newVectorObject(vec, 3, Py_NEW); } //---------------------------Matrix.rotationPart() --------------- PyObject *Matrix_RotationPart(MatrixObject * self) { float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(self->colSize < 3 && self->rowSize < 3){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.rotationPart: inappropriate matrix size\n"); } mat[0] = self->matrix[0][0]; mat[1] = self->matrix[0][1]; mat[2] = self->matrix[0][2]; mat[3] = self->matrix[1][0]; mat[4] = self->matrix[1][1]; mat[5] = self->matrix[1][2]; mat[6] = self->matrix[2][0]; mat[7] = self->matrix[2][1]; mat[8] = self->matrix[2][2]; return newMatrixObject(mat, 3, 3, Py_NEW); } //---------------------------Matrix.invert() --------------------- PyObject *Matrix_Invert(MatrixObject * self) { int x, y, z = 0; float det = 0.0f; PyObject *f = NULL; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(self->rowSize != self->colSize){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.invert: only square matrices are supported\n"); } //calculate the determinant f = Matrix_Determinant(self); det = (float)PyFloat_AS_DOUBLE(f); if(det != 0) { //calculate the classical adjoint if(self->rowSize == 2) { mat[0] = self->matrix[1][1]; mat[1] = -self->matrix[1][0]; mat[2] = -self->matrix[0][1]; mat[3] = self->matrix[0][0]; } else if(self->rowSize == 3) { Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix); } else if(self->rowSize == 4) { Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix); } //divide by determinate for(x = 0; x < (self->rowSize * self->colSize); x++) { mat[x] /= det; } //set values for(x = 0; x < self->rowSize; x++) { for(y = 0; y < self->colSize; y++) { self->matrix[x][y] = mat[z]; z++; } } //transpose //Matrix_Transpose(self); } else { printf("Matrix.invert: matrix does not have an inverse\n"); } return EXPP_incr_ret((PyObject*)self); } //---------------------------Matrix.determinant() ---------------- PyObject *Matrix_Determinant(MatrixObject * self) { float det = 0.0f; if(self->rowSize != self->colSize){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported\n"); } if(self->rowSize == 2) { det = Det2x2(self->matrix[0][0], self->matrix[0][1], self->matrix[1][0], self->matrix[1][1]); } else if(self->rowSize == 3) { det = Det3x3(self->matrix[0][0], self->matrix[0][1], self->matrix[0][2], self->matrix[1][0], self->matrix[1][1], self->matrix[1][2], self->matrix[2][0], self->matrix[2][1], self->matrix[2][2]); } else { det = Det4x4((float (*)[4]) *self->matrix); } return PyFloat_FromDouble( (double) det ); } //---------------------------Matrix.transpose() ------------------ PyObject *Matrix_Transpose(MatrixObject * self) { float t = 0.0f; if(self->rowSize != self->colSize){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.transpose: only square matrices are supported\n"); } if(self->rowSize == 2) { t = self->matrix[1][0]; self->matrix[1][0] = self->matrix[0][1]; self->matrix[0][1] = t; } else if(self->rowSize == 3) { Mat3Transp((float (*)[3])*self->matrix); } else { Mat4Transp((float (*)[4])*self->matrix); } return EXPP_incr_ret((PyObject*)self); } //---------------------------Matrix.zero() ----------------------- PyObject *Matrix_Zero(MatrixObject * self) { int row, col; for(row = 0; row < self->rowSize; row++) { for(col = 0; col < self->colSize; col++) { self->matrix[row][col] = 0.0f; } } return EXPP_incr_ret((PyObject*)self); } //---------------------------Matrix.identity(() ------------------ PyObject *Matrix_Identity(MatrixObject * self) { if(self->rowSize != self->colSize){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n"); } if(self->rowSize == 2) { self->matrix[0][0] = 1.0f; self->matrix[0][1] = 0.0f; self->matrix[1][0] = 0.0f; self->matrix[1][1] = 1.0f; } else if(self->rowSize == 3) { Mat3One((float (*)[3]) *self->matrix); } else { Mat4One((float (*)[4]) *self->matrix); } return EXPP_incr_ret((PyObject*)self); } //----------------------------dealloc()(internal) ---------------- //free the py_object static void Matrix_dealloc(MatrixObject * self) { Py_XDECREF(self->coerced_object); PyMem_Free(self->matrix); //only free py_data if(self->data.py_data){ PyMem_Free(self->data.py_data); } PyObject_DEL(self); } //----------------------------getattr()(internal) ---------------- //object.attribute access (get) static PyObject *Matrix_getattr(MatrixObject * self, char *name) { if(STREQ(name, "rowSize")) { return PyInt_FromLong((long) self->rowSize); } else if(STREQ(name, "colSize")) { return PyInt_FromLong((long) self->colSize); } if(STREQ(name, "wrapped")){ if(self->wrapped == Py_WRAP) return EXPP_incr_ret((PyObject *)Py_True); else return EXPP_incr_ret((PyObject *)Py_False); } return Py_FindMethod(Matrix_methods, (PyObject *) self, name); } //----------------------------setattr()(internal) ---------------- //object.attribute access (set) static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v) { /* This is not supported. */ return (-1); } //----------------------------print object (internal)------------- //print the object to screen static PyObject *Matrix_repr(MatrixObject * self) { int x, y; char buffer[48], str[1024]; BLI_strncpy(str,"",1024); for(x = 0; x < self->rowSize; x++){ sprintf(buffer, "["); strcat(str,buffer); for(y = 0; y < (self->colSize - 1); y++) { sprintf(buffer, "%.6f, ", self->matrix[x][y]); strcat(str,buffer); } if(x < (self->rowSize-1)){ sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x); strcat(str,buffer); }else{ sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x); strcat(str,buffer); } } return PyString_FromString(str); } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Matrix_len(MatrixObject * self) { return (self->colSize * self->rowSize); } //----------------------------object[]--------------------------- //sequence accessor (get) //the wrapped vector gives direct access to the matrix data static PyObject *Matrix_item(MatrixObject * self, int i) { if(i < 0 || i >= self->rowSize) return EXPP_ReturnPyObjError(PyExc_IndexError, "matrix[attribute]: array index out of range\n"); return newVectorObject(self->matrix[i], self->colSize, Py_WRAP); } //----------------------------object[]------------------------- //sequence accessor (set) static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob) { int y, x, size = 0; float vec[4]; PyObject *m, *f; if(i > self->rowSize || i < 0){ return EXPP_ReturnIntError(PyExc_TypeError, "matrix[attribute] = x: bad row\n"); } if(PySequence_Check(ob)){ size = PySequence_Length(ob); if(size != self->colSize){ return EXPP_ReturnIntError(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n"); } for (x = 0; x < size; x++) { m = PySequence_GetItem(ob, x); if (m == NULL) { // Failed to read sequence return EXPP_ReturnIntError(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n"); } f = PyNumber_Float(m); if(f == NULL) { // parsed item not a number Py_DECREF(m); return EXPP_ReturnIntError(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n"); } vec[x] = (float)PyFloat_AS_DOUBLE(f); EXPP_decr2(m, f); } //parsed well - now set in matrix for(y = 0; y < size; y++){ self->matrix[i][y] = vec[y]; } return 0; }else{ return EXPP_ReturnIntError(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n"); } } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Matrix_slice(MatrixObject * self, int begin, int end) { PyObject *list = NULL; int count; CLAMP(begin, 0, self->rowSize); CLAMP(end, 0, self->rowSize); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, newVectorObject(self->matrix[count], self->colSize, Py_WRAP)); } return list; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq) { int i, x, y, size, sub_size = 0; float mat[16]; PyObject *subseq; PyObject *m, *f; CLAMP(begin, 0, self->rowSize); CLAMP(end, 0, self->rowSize); begin = MIN2(begin,end); if(PySequence_Check(seq)){ size = PySequence_Length(seq); if(size != (end - begin)){ return EXPP_ReturnIntError(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n"); } //parse sub items for (i = 0; i < size; i++) { //parse each sub sequence subseq = PySequence_GetItem(seq, i); if (subseq == NULL) { // Failed to read sequence return EXPP_ReturnIntError(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n"); } if(PySequence_Check(subseq)){ //subsequence is also a sequence sub_size = PySequence_Length(subseq); if(sub_size != self->colSize){ Py_DECREF(subseq); return EXPP_ReturnIntError(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n"); } for (y = 0; y < sub_size; y++) { m = PySequence_GetItem(subseq, y); if (m == NULL) { // Failed to read sequence Py_DECREF(subseq); return EXPP_ReturnIntError(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n"); } f = PyNumber_Float(m); if(f == NULL) { // parsed item not a number EXPP_decr2(m, subseq); return EXPP_ReturnIntError(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n"); } mat[(i * self->colSize) + y] = (float)PyFloat_AS_DOUBLE(f); EXPP_decr2(f, m); } }else{ Py_DECREF(subseq); return EXPP_ReturnIntError(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n"); } Py_DECREF(subseq); } //parsed well - now set in matrix for(x = 0; x < (size * sub_size); x++){ self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x]; } return 0; }else{ return EXPP_ReturnIntError(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n"); } } //------------------------NUMERIC PROTOCOLS---------------------- //------------------------obj + obj------------------------------ static PyObject *Matrix_add(PyObject * m1, PyObject * m2) { int x, y; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(mat1->coerced_object || mat2->coerced_object){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....\n"); } if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation\n"); } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW); } //------------------------obj - obj------------------------------ //subtraction static PyObject *Matrix_sub(PyObject * m1, PyObject * m2) { int x, y; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(mat1->coerced_object || mat2->coerced_object){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....\n"); } if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation\n"); } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW); } //------------------------obj * obj------------------------------ //mulplication static PyObject *Matrix_mul(PyObject * m1, PyObject * m2) { int x, y, z; float scalar; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; double dot = 0.0f; MatrixObject *mat1 = NULL, *mat2 = NULL; PyObject *f = NULL; VectorObject *vec = NULL; PointObject *pt = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(mat1->coerced_object){ if (PyFloat_Check(mat1->coerced_object) || PyInt_Check(mat1->coerced_object)){ // FLOAT/INT * MATRIX f = PyNumber_Float(mat1->coerced_object); if(f == NULL) { // parsed item not a number return EXPP_ReturnPyObjError(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n"); } scalar = (float)PyFloat_AS_DOUBLE(f); for(x = 0; x < mat2->rowSize; x++) { for(y = 0; y < mat2->colSize; y++) { mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y]; } } return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW); } }else{ if(mat2->coerced_object){ if(VectorObject_Check(mat2->coerced_object)){ //MATRIX * VECTOR vec = (VectorObject*)mat2->coerced_object; return column_vector_multiplication(mat1, vec); }else if(PointObject_Check(mat2->coerced_object)){ //MATRIX * POINT pt = (PointObject*)mat2->coerced_object; return column_point_multiplication(mat1, pt); }else if (PyFloat_Check(mat2->coerced_object) || PyInt_Check(mat2->coerced_object)){ // MATRIX * FLOAT/INT f = PyNumber_Float(mat2->coerced_object); if(f == NULL) { // parsed item not a number return EXPP_ReturnPyObjError(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n"); } scalar = (float)PyFloat_AS_DOUBLE(f); for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW); } }else{ //MATRIX * MATRIX if(mat1->colSize != mat2->rowSize){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Matrix multiplication: matrix A rowsize must equal matrix B colsize\n"); } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat2->colSize; y++) { for(z = 0; z < mat1->colSize; z++) { dot += (mat1->matrix[x][z] * mat2->matrix[z][y]); } mat[((x * mat1->rowSize) + y)] = (float)dot; dot = 0.0f; } } return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW); } } return EXPP_ReturnPyObjError(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n"); } PyObject* Matrix_inv(MatrixObject *self) { return Matrix_Invert(self); } //------------------------coerce(obj, obj)----------------------- //coercion of unknown types to type MatrixObject for numeric protocols /*Coercion() is called whenever a math operation has 2 operands that it doesn't understand how to evaluate. 2+Matrix for example. We want to evaluate some of these operations like: (vector * 2), however, for math to proceed, the unknown operand must be cast to a type that python math will understand. (e.g. in the case above case, 2 must be cast to a vector and then call vector.multiply(vector, scalar_cast_as_vector)*/ static int Matrix_coerce(PyObject ** m1, PyObject ** m2) { PyObject *coerced = NULL; if(!MatrixObject_Check(*m2)) { if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2) || PointObject_Check(*m2)) { coerced = EXPP_incr_ret(*m2); *m2 = newMatrixObject(NULL,3,3,Py_NEW); ((MatrixObject*)*m2)->coerced_object = coerced; }else{ return EXPP_ReturnIntError(PyExc_TypeError, "matrix.coerce(): unknown operand - can't coerce for numeric protocols\n"); } } EXPP_incr2(*m1, *m2); return 0; } //-----------------PROTCOL DECLARATIONS-------------------------- static PySequenceMethods Matrix_SeqMethods = { (inquiry) Matrix_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (intargfunc) 0, /* sq_repeat */ (intargfunc) Matrix_item, /* sq_item */ (intintargfunc) Matrix_slice, /* sq_slice */ (intobjargproc) Matrix_ass_item, /* sq_ass_item */ (intintobjargproc) Matrix_ass_slice, /* sq_ass_slice */ }; static PyNumberMethods Matrix_NumMethods = { (binaryfunc) Matrix_add, /* __add__ */ (binaryfunc) Matrix_sub, /* __sub__ */ (binaryfunc) Matrix_mul, /* __mul__ */ (binaryfunc) 0, /* __div__ */ (binaryfunc) 0, /* __mod__ */ (binaryfunc) 0, /* __divmod__ */ (ternaryfunc) 0, /* __pow__ */ (unaryfunc) 0, /* __neg__ */ (unaryfunc) 0, /* __pos__ */ (unaryfunc) 0, /* __abs__ */ (inquiry) 0, /* __nonzero__ */ (unaryfunc) Matrix_inv, /* __invert__ */ (binaryfunc) 0, /* __lshift__ */ (binaryfunc) 0, /* __rshift__ */ (binaryfunc) 0, /* __and__ */ (binaryfunc) 0, /* __xor__ */ (binaryfunc) 0, /* __or__ */ (coercion) Matrix_coerce, /* __coerce__ */ (unaryfunc) 0, /* __int__ */ (unaryfunc) 0, /* __long__ */ (unaryfunc) 0, /* __float__ */ (unaryfunc) 0, /* __oct__ */ (unaryfunc) 0, /* __hex__ */ }; //------------------PY_OBECT DEFINITION-------------------------- PyTypeObject matrix_Type = { PyObject_HEAD_INIT(NULL) /* required python macro */ 0, /*ob_size */ "Matrix", /*tp_name */ sizeof(MatrixObject), /*tp_basicsize */ 0, /*tp_itemsize */ (destructor) Matrix_dealloc, /*tp_dealloc */ (printfunc) 0, /*tp_print */ (getattrfunc) Matrix_getattr, /*tp_getattr */ (setattrfunc) Matrix_setattr, /*tp_setattr */ 0, /*tp_compare */ (reprfunc) Matrix_repr, /*tp_repr */ &Matrix_NumMethods, /*tp_as_number */ &Matrix_SeqMethods, /*tp_as_sequence */ }; //------------------------newMatrixObject (internal)------------- //creates a new matrix object //self->matrix self->contiguous_ptr (reference to data.xxx) // [0]------------->[0] // [1] // [2] // [1]------------->[3] // [4] // [5] // .... //self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4] /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type) { MatrixObject *self; int x, row, col; //matrix objects can be any 2-4row x 2-4col matrix if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){ return EXPP_ReturnPyObjError(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4\n"); } matrix_Type.ob_type = &PyType_Type; self = PyObject_NEW(MatrixObject, &matrix_Type); self->data.blend_data = NULL; self->data.py_data = NULL; self->rowSize = rowSize; self->colSize = colSize; self->coerced_object = NULL; if(type == Py_WRAP){ self->data.blend_data = mat; self->contigPtr = self->data.blend_data; //create pointer array self->matrix = PyMem_Malloc(rowSize * sizeof(float *)); if(self->matrix == NULL) { //allocation failure return EXPP_ReturnPyObjError( PyExc_MemoryError, "matrix(): problem allocating pointer space\n"); } //pointer array points to contigous memory for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float)); if(self->data.py_data == NULL) { //allocation failure return EXPP_ReturnPyObjError( PyExc_MemoryError, "matrix(): problem allocating pointer space\n"); } self->contigPtr = self->data.py_data; //create pointer array self->matrix = PyMem_Malloc(rowSize * sizeof(float *)); if(self->matrix == NULL) { //allocation failure PyMem_Free(self->data.py_data); return EXPP_ReturnPyObjError( PyExc_MemoryError, "matrix(): problem allocating pointer space\n"); } //pointer array points to contigous memory for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } //parse if(mat) { //if a float array passed for(row = 0; row < rowSize; row++) { for(col = 0; col < colSize; col++) { self->matrix[row][col] = mat[(row * colSize) + col]; } } } else { //or if no arguments are passed return identity matrix Matrix_Identity(self); } self->wrapped = Py_NEW; }else{ //bad type return NULL; } return (PyObject *) self; }