/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BLI_arithb.h" #include "BKE_utildefines.h" #include "BLI_blenlib.h" #include "gen_utils.h" //-------------------------DOC STRINGS --------------------------- char Quaternion_Identity_doc[] = "() - set the quaternion to it's identity (1, vector)"; char Quaternion_Negate_doc[] = "() - set all values in the quaternion to their negative"; char Quaternion_Conjugate_doc[] = "() - set the quaternion to it's conjugate"; char Quaternion_Inverse_doc[] = "() - set the quaternion to it's inverse"; char Quaternion_Normalize_doc[] = "() - normalize the vector portion of the quaternion"; char Quaternion_ToEuler_doc[] = "() - return a euler rotation representing the quaternion"; char Quaternion_ToMatrix_doc[] = "() - return a rotation matrix representing the quaternion"; char Quaternion_copy_doc[] = "() - return a copy of the quat"; //-----------------------METHOD DEFINITIONS ---------------------- struct PyMethodDef Quaternion_methods[] = { {"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc}, {"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc}, {"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc}, {"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc}, {"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc}, {"toEuler", (PyCFunction) Quaternion_ToEuler, METH_NOARGS, Quaternion_ToEuler_doc}, {"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc}, {"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc}, {"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc}, {NULL, NULL, 0, NULL} }; //-----------------------------METHODS------------------------------ //----------------------------Quaternion.toEuler()------------------ //return the quat as a euler PyObject *Quaternion_ToEuler(QuaternionObject * self) { float eul[3]; int x; QuatToEul(self->quat, eul); for(x = 0; x < 3; x++) { eul[x] *= (180 / (float)Py_PI); } return newEulerObject(eul, Py_NEW); } //----------------------------Quaternion.toMatrix()------------------ //return the quat as a matrix PyObject *Quaternion_ToMatrix(QuaternionObject * self) { float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}; QuatToMat3(self->quat, (float (*)[3]) mat); return newMatrixObject(mat, 3, 3, Py_NEW); } //----------------------------Quaternion.normalize()---------------- //normalize the axis of rotation of [theta,vector] PyObject *Quaternion_Normalize(QuaternionObject * self) { NormalQuat(self->quat); return EXPP_incr_ret((PyObject*)self); } //----------------------------Quaternion.inverse()------------------ //invert the quat PyObject *Quaternion_Inverse(QuaternionObject * self) { double mag = 0.0f; int x; for(x = 1; x < 4; x++) { self->quat[x] = -self->quat[x]; } for(x = 0; x < 4; x++) { mag += (self->quat[x] * self->quat[x]); } mag = sqrt(mag); for(x = 0; x < 4; x++) { self->quat[x] /= (float)(mag * mag); } return EXPP_incr_ret((PyObject*)self); } //----------------------------Quaternion.identity()----------------- //generate the identity quaternion PyObject *Quaternion_Identity(QuaternionObject * self) { self->quat[0] = 1.0; self->quat[1] = 0.0; self->quat[2] = 0.0; self->quat[3] = 0.0; return EXPP_incr_ret((PyObject*)self); } //----------------------------Quaternion.negate()------------------- //negate the quat PyObject *Quaternion_Negate(QuaternionObject * self) { int x; for(x = 0; x < 4; x++) { self->quat[x] = -self->quat[x]; } return EXPP_incr_ret((PyObject*)self); } //----------------------------Quaternion.conjugate()---------------- //negate the vector part PyObject *Quaternion_Conjugate(QuaternionObject * self) { int x; for(x = 1; x < 4; x++) { self->quat[x] = -self->quat[x]; } return EXPP_incr_ret((PyObject*)self); } //----------------------------Quaternion.copy()---------------- //return a copy of the quat PyObject *Quaternion_copy(QuaternionObject * self) { return newQuaternionObject(self->quat, Py_NEW); } //----------------------------dealloc()(internal) ------------------ //free the py_object static void Quaternion_dealloc(QuaternionObject * self) { Py_XDECREF(self->coerced_object); //only free py_data if(self->data.py_data){ PyMem_Free(self->data.py_data); } PyObject_DEL(self); } //----------------------------getattr()(internal) ------------------ //object.attribute access (get) static PyObject *Quaternion_getattr(QuaternionObject * self, char *name) { int x; double mag = 0.0f; float vec[3]; if(STREQ(name,"w")){ return PyFloat_FromDouble(self->quat[0]); }else if(STREQ(name, "x")){ return PyFloat_FromDouble(self->quat[1]); }else if(STREQ(name, "y")){ return PyFloat_FromDouble(self->quat[2]); }else if(STREQ(name, "z")){ return PyFloat_FromDouble(self->quat[3]); } if(STREQ(name, "magnitude")) { for(x = 0; x < 4; x++) { mag += self->quat[x] * self->quat[x]; } mag = sqrt(mag); return PyFloat_FromDouble(mag); } if(STREQ(name, "angle")) { mag = self->quat[0]; mag = 2 * (saacos(mag)); mag *= (180 / Py_PI); return PyFloat_FromDouble(mag); } if(STREQ(name, "axis")) { mag = self->quat[0] * (Py_PI / 180); mag = 2 * (saacos(mag)); mag = sin(mag / 2); for(x = 0; x < 3; x++) { vec[x] = (float)(self->quat[x + 1] / mag); } Normalize(vec); //If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) && EXPP_FloatsAreEqual(vec[1], 0.0f, 10) && EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){ vec[0] = 1.0f; } return (PyObject *) newVectorObject(vec, 3, Py_NEW); } if(STREQ(name, "wrapped")){ if(self->wrapped == Py_WRAP) return EXPP_incr_ret((PyObject *)Py_True); else return EXPP_incr_ret((PyObject *)Py_False); } return Py_FindMethod(Quaternion_methods, (PyObject *) self, name); } //----------------------------setattr()(internal) ------------------ //object.attribute access (set) static int Quaternion_setattr(QuaternionObject * self, char *name, PyObject * q) { PyObject *f = NULL; f = PyNumber_Float(q); if(f == NULL) { // parsed item not a number return EXPP_ReturnIntError(PyExc_TypeError, "quaternion.attribute = x: argument not a number\n"); } if(STREQ(name,"w")){ self->quat[0] = (float)PyFloat_AS_DOUBLE(f); }else if(STREQ(name, "x")){ self->quat[1] = (float)PyFloat_AS_DOUBLE(f); }else if(STREQ(name, "y")){ self->quat[2] = (float)PyFloat_AS_DOUBLE(f); }else if(STREQ(name, "z")){ self->quat[3] = (float)PyFloat_AS_DOUBLE(f); }else{ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_AttributeError, "quaternion.attribute = x: unknown attribute\n"); } Py_DECREF(f); return 0; } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Quaternion_repr(QuaternionObject * self) { int i; char buffer[48], str[1024]; BLI_strncpy(str,"[",1024); for(i = 0; i < 4; i++){ if(i < (3)){ sprintf(buffer, "%.6f, ", self->quat[i]); strcat(str,buffer); }else{ sprintf(buffer, "%.6f", self->quat[i]); strcat(str,buffer); } } strcat(str, "](quaternion)"); return PyString_FromString(str); } //------------------------tp_richcmpr //returns -1 execption, 0 false, 1 true static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { QuaternionObject *quatA = NULL, *quatB = NULL; int result = 0; if (!QuaternionObject_Check(objectA) || !QuaternionObject_Check(objectB)){ if (comparison_type == Py_NE){ return EXPP_incr_ret(Py_True); }else{ return EXPP_incr_ret(Py_False); } } quatA = (QuaternionObject*)objectA; quatB = (QuaternionObject*)objectB; switch (comparison_type){ case Py_EQ: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1); break; case Py_NE: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1); if (result == 0){ result = 1; }else{ result = 0; } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ return EXPP_incr_ret(Py_True); }else{ return EXPP_incr_ret(Py_False); } } //------------------------tp_doc static char QuaternionObject_doc[] = "This is a wrapper for quaternion objects."; //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Quaternion_len(QuaternionObject * self) { return 4; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Quaternion_item(QuaternionObject * self, int i) { if(i < 0 || i >= 4) return EXPP_ReturnPyObjError(PyExc_IndexError, "quaternion[attribute]: array index out of range\n"); return PyFloat_FromDouble(self->quat[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob) { PyObject *f = NULL; f = PyNumber_Float(ob); if(f == NULL) { // parsed item not a number return EXPP_ReturnIntError(PyExc_TypeError, "quaternion[attribute] = x: argument not a number\n"); } if(i < 0 || i >= 4){ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n"); } self->quat[i] = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(f); return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end) { PyObject *list = NULL; int count; CLAMP(begin, 0, 4); if (end<0) end= 5+end; CLAMP(end, 0, 4); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->quat[count])); } return list; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq) { int i, y, size = 0; float quat[4]; PyObject *q, *f; CLAMP(begin, 0, 4); if (end<0) end= 5+end; CLAMP(end, 0, 4); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ return EXPP_ReturnIntError(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment\n"); } for (i = 0; i < size; i++) { q = PySequence_GetItem(seq, i); if (q == NULL) { // Failed to read sequence return EXPP_ReturnIntError(PyExc_RuntimeError, "quaternion[begin:end] = []: unable to read sequence\n"); } f = PyNumber_Float(q); if(f == NULL) { // parsed item not a number Py_DECREF(q); return EXPP_ReturnIntError(PyExc_TypeError, "quaternion[begin:end] = []: sequence argument not a number\n"); } quat[i] = (float)PyFloat_AS_DOUBLE(f); EXPP_decr2(f,q); } //parsed well - now set in vector for(y = 0; y < size; y++){ self->quat[begin + y] = quat[y]; } return 0; } //------------------------NUMERIC PROTOCOLS---------------------- //------------------------obj + obj------------------------------ //addition static PyObject *Quaternion_add(PyObject * q1, PyObject * q2) { int x; float quat[4]; QuaternionObject *quat1 = NULL, *quat2 = NULL; quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(quat1->coerced_object || quat2->coerced_object){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n"); } for(x = 0; x < 4; x++) { quat[x] = quat1->quat[x] + quat2->quat[x]; } return newQuaternionObject(quat, Py_NEW); } //------------------------obj - obj------------------------------ //subtraction static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2) { int x; float quat[4]; QuaternionObject *quat1 = NULL, *quat2 = NULL; quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(quat1->coerced_object || quat2->coerced_object){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n"); } for(x = 0; x < 4; x++) { quat[x] = quat1->quat[x] - quat2->quat[x]; } return newQuaternionObject(quat, Py_NEW); } //------------------------obj * obj------------------------------ //mulplication static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2) { int x; float quat[4], scalar; double dot = 0.0f; QuaternionObject *quat1 = NULL, *quat2 = NULL; PyObject *f = NULL; VectorObject *vec = NULL; PointObject *pt = NULL; quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(quat1->coerced_object){ if (PyFloat_Check(quat1->coerced_object) || PyInt_Check(quat1->coerced_object)){ // FLOAT/INT * QUAT f = PyNumber_Float(quat1->coerced_object); if(f == NULL) { // parsed item not a number return EXPP_ReturnPyObjError(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n"); } scalar = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(f); for(x = 0; x < 4; x++) { quat[x] = quat2->quat[x] * scalar; } return newQuaternionObject(quat, Py_NEW); } }else{ if(quat2->coerced_object){ if (PyFloat_Check(quat2->coerced_object) || PyInt_Check(quat2->coerced_object)){ // QUAT * FLOAT/INT f = PyNumber_Float(quat2->coerced_object); if(f == NULL) { // parsed item not a number return EXPP_ReturnPyObjError(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n"); } scalar = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(f); for(x = 0; x < 4; x++) { quat[x] = quat1->quat[x] * scalar; } return newQuaternionObject(quat, Py_NEW); }else if(VectorObject_Check(quat2->coerced_object)){ //QUAT * VEC vec = (VectorObject*)quat2->coerced_object; if(vec->size != 3){ return EXPP_ReturnPyObjError(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n"); } return quat_rotation((PyObject*)quat1, (PyObject*)vec); }else if(PointObject_Check(quat2->coerced_object)){ //QUAT * POINT pt = (PointObject*)quat2->coerced_object; if(pt->size != 3){ return EXPP_ReturnPyObjError(PyExc_TypeError, "Quaternion multiplication: only 3D point rotations currently supported\n"); } return quat_rotation((PyObject*)quat1, (PyObject*)pt); } }else{ //QUAT * QUAT (dot product) for(x = 0; x < 4; x++) { dot += quat1->quat[x] * quat1->quat[x]; } return PyFloat_FromDouble(dot); } } return EXPP_ReturnPyObjError(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n"); } //------------------------coerce(obj, obj)----------------------- //coercion of unknown types to type QuaternionObject for numeric protocols /*Coercion() is called whenever a math operation has 2 operands that it doesn't understand how to evaluate. 2+Matrix for example. We want to evaluate some of these operations like: (vector * 2), however, for math to proceed, the unknown operand must be cast to a type that python math will understand. (e.g. in the case above case, 2 must be cast to a vector and then call vector.multiply(vector, scalar_cast_as_vector)*/ static int Quaternion_coerce(PyObject ** q1, PyObject ** q2) { if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2) || PointObject_Check(*q2)) { PyObject *coerced = EXPP_incr_ret(*q2); *q2 = newQuaternionObject(NULL,Py_NEW); ((QuaternionObject*)*q2)->coerced_object = coerced; Py_INCREF (*q1); return 0; } return EXPP_ReturnIntError(PyExc_TypeError, "quaternion.coerce(): unknown operand - can't coerce for numeric protocols"); } //-----------------PROTOCOL DECLARATIONS-------------------------- static PySequenceMethods Quaternion_SeqMethods = { (inquiry) Quaternion_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (intargfunc) 0, /* sq_repeat */ (intargfunc) Quaternion_item, /* sq_item */ (intintargfunc) Quaternion_slice, /* sq_slice */ (intobjargproc) Quaternion_ass_item, /* sq_ass_item */ (intintobjargproc) Quaternion_ass_slice, /* sq_ass_slice */ }; static PyNumberMethods Quaternion_NumMethods = { (binaryfunc) Quaternion_add, /* __add__ */ (binaryfunc) Quaternion_sub, /* __sub__ */ (binaryfunc) Quaternion_mul, /* __mul__ */ (binaryfunc) 0, /* __div__ */ (binaryfunc) 0, /* __mod__ */ (binaryfunc) 0, /* __divmod__ */ (ternaryfunc) 0, /* __pow__ */ (unaryfunc) 0, /* __neg__ */ (unaryfunc) 0, /* __pos__ */ (unaryfunc) 0, /* __abs__ */ (inquiry) 0, /* __nonzero__ */ (unaryfunc) 0, /* __invert__ */ (binaryfunc) 0, /* __lshift__ */ (binaryfunc) 0, /* __rshift__ */ (binaryfunc) 0, /* __and__ */ (binaryfunc) 0, /* __xor__ */ (binaryfunc) 0, /* __or__ */ (coercion) Quaternion_coerce, /* __coerce__ */ (unaryfunc) 0, /* __int__ */ (unaryfunc) 0, /* __long__ */ (unaryfunc) 0, /* __float__ */ (unaryfunc) 0, /* __oct__ */ (unaryfunc) 0, /* __hex__ */ }; //------------------PY_OBECT DEFINITION-------------------------- PyTypeObject quaternion_Type = { PyObject_HEAD_INIT(NULL) //tp_head 0, //tp_internal "quaternion", //tp_name sizeof(QuaternionObject), //tp_basicsize 0, //tp_itemsize (destructor)Quaternion_dealloc, //tp_dealloc 0, //tp_print (getattrfunc)Quaternion_getattr, //tp_getattr (setattrfunc) Quaternion_setattr, //tp_setattr 0, //tp_compare (reprfunc) Quaternion_repr, //tp_repr &Quaternion_NumMethods, //tp_as_number &Quaternion_SeqMethods, //tp_as_sequence 0, //tp_as_mapping 0, //tp_hash 0, //tp_call 0, //tp_str 0, //tp_getattro 0, //tp_setattro 0, //tp_as_buffer Py_TPFLAGS_DEFAULT, //tp_flags QuaternionObject_doc, //tp_doc 0, //tp_traverse 0, //tp_clear (richcmpfunc)Quaternion_richcmpr, //tp_richcompare 0, //tp_weaklistoffset 0, //tp_iter 0, //tp_iternext 0, //tp_methods 0, //tp_members 0, //tp_getset 0, //tp_base 0, //tp_dict 0, //tp_descr_get 0, //tp_descr_set 0, //tp_dictoffset 0, //tp_init 0, //tp_alloc 0, //tp_new 0, //tp_free 0, //tp_is_gc 0, //tp_bases 0, //tp_mro 0, //tp_cache 0, //tp_subclasses 0, //tp_weaklist 0 //tp_del }; //------------------------newQuaternionObject (internal)------------- //creates a new quaternion object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newQuaternionObject(float *quat, int type) { QuaternionObject *self; int x; self = PyObject_NEW(QuaternionObject, &quaternion_Type); self->data.blend_data = NULL; self->data.py_data = NULL; self->coerced_object = NULL; if(type == Py_WRAP){ self->data.blend_data = quat; self->quat = self->data.blend_data; self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->data.py_data = PyMem_Malloc(4 * sizeof(float)); self->quat = self->data.py_data; if(!quat) { //new empty Quaternion_Identity(self); Py_DECREF(self); }else{ for(x = 0; x < 4; x++){ self->quat[x] = quat[x]; } } self->wrapped = Py_NEW; }else{ //bad type return NULL; } return (PyObject *) self; }