/* * $Id$ * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes * * ***** END GPL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BLI_blenlib.h" #include "BKE_utildefines.h" #include "BLI_arithb.h" #include "gen_utils.h" /*-------------------------DOC STRINGS ---------------------------*/ char Vector_Zero_doc[] = "() - set all values in the vector to 0"; char Vector_Normalize_doc[] = "() - normalize the vector"; char Vector_Negate_doc[] = "() - changes vector to it's additive inverse"; char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]"; char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]"; char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]"; char Vector_toPoint_doc[] = "() - create a new Point Object from this vector"; char Vector_ToTrackQuat_doc[] = "(track, up) - extract a quaternion from the vector and the track and up axis"; char Vector_copy_doc[] = "() - return a copy of the vector"; /*-----------------------METHOD DEFINITIONS ----------------------*/ struct PyMethodDef Vector_methods[] = { {"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc}, {"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc}, {"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc}, {"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc}, {"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc}, {"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc}, {"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc}, {"toTrackQuat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc}, {"copy", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc}, {"__copy__", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc}, {NULL, NULL, 0, NULL} }; /*-----------------------------METHODS---------------------------- --------------------------Vector.toPoint()---------------------- create a new point object to represent this vector */ PyObject *Vector_toPoint(VectorObject * self) { float coord[3]; int i; if(self->size < 2 || self->size > 3) { return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n"); } for(i = 0; i < self->size; i++){ coord[i] = self->vec[i]; } return newPointObject(coord, self->size, Py_NEW); } /*----------------------------Vector.zero() ---------------------- set the vector data to 0,0,0 */ PyObject *Vector_Zero(VectorObject * self) { int i; for(i = 0; i < self->size; i++) { self->vec[i] = 0.0f; } return EXPP_incr_ret((PyObject*)self); } /*----------------------------Vector.normalize() ----------------- normalize the vector data to a unit vector */ PyObject *Vector_Normalize(VectorObject * self) { int i; float norm = 0.0f; for(i = 0; i < self->size; i++) { norm += self->vec[i] * self->vec[i]; } norm = (float) sqrt(norm); for(i = 0; i < self->size; i++) { self->vec[i] /= norm; } return EXPP_incr_ret((PyObject*)self); } /*----------------------------Vector.resize2D() ------------------ resize the vector to x,y */ PyObject *Vector_Resize2D(VectorObject * self) { if(self->wrapped==Py_WRAP) return EXPP_ReturnPyObjError(PyExc_TypeError, "vector.resize2d(): cannot resize wrapped data - only python vectors\n"); self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 2)); if(self->vec == NULL) return EXPP_ReturnPyObjError(PyExc_MemoryError, "vector.resize2d(): problem allocating pointer space\n\n"); self->size = 2; return EXPP_incr_ret((PyObject*)self); } /*----------------------------Vector.resize3D() ------------------ resize the vector to x,y,z */ PyObject *Vector_Resize3D(VectorObject * self) { if (self->wrapped==Py_WRAP) return EXPP_ReturnPyObjError(PyExc_TypeError, "vector.resize3d(): cannot resize wrapped data - only python vectors\n"); self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 3)); if(self->vec == NULL) return EXPP_ReturnPyObjError(PyExc_MemoryError, "vector.resize3d(): problem allocating pointer space\n\n"); if(self->size == 2) self->vec[2] = 0.0f; self->size = 3; return EXPP_incr_ret((PyObject*)self); } /*----------------------------Vector.resize4D() ------------------ resize the vector to x,y,z,w */ PyObject *Vector_Resize4D(VectorObject * self) { if(self->wrapped==Py_WRAP) return EXPP_ReturnPyObjError(PyExc_TypeError, "vector.resize4d(): cannot resize wrapped data - only python vectors\n"); self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 4)); if(self->vec == NULL) return EXPP_ReturnPyObjError(PyExc_MemoryError, "vector.resize4d(): problem allocating pointer space\n\n"); if(self->size == 2){ self->vec[2] = 0.0f; self->vec[3] = 1.0f; }else if(self->size == 3){ self->vec[3] = 1.0f; } self->size = 4; return EXPP_incr_ret((PyObject*)self); } /*----------------------------Vector.toTrackQuat(track, up) ---------------------- extract a quaternion from the vector and the track and up axis */ PyObject *Vector_ToTrackQuat( VectorObject * self, PyObject * args ) { float vec[3], quat[4]; char *strack, *sup; short track = 2, up = 1; if( !PyArg_ParseTuple ( args, "|ss", &strack, &sup ) ) { return EXPP_ReturnPyObjError( PyExc_TypeError, "expected optional two strings\n" ); } if (self->size != 3) { return EXPP_ReturnPyObjError( PyExc_TypeError, "only for 3D vectors\n" ); } if (strack) { if (strlen(strack) == 2) { if (strack[0] == '-') { switch(strack[1]) { case 'X': case 'x': track = 3; break; case 'Y': case 'y': track = 4; break; case 'z': case 'Z': track = 5; break; default: return EXPP_ReturnPyObjError( PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis\n" ); } } else { return EXPP_ReturnPyObjError( PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis\n" ); } } else if (strlen(strack) == 1) { switch(strack[0]) { case '-': case 'X': case 'x': track = 0; break; case 'Y': case 'y': track = 1; break; case 'z': case 'Z': track = 2; break; default: return EXPP_ReturnPyObjError( PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis\n" ); } } else { return EXPP_ReturnPyObjError( PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis\n" ); } } if (sup) { if (strlen(sup) == 1) { switch(*sup) { case 'X': case 'x': up = 0; break; case 'Y': case 'y': up = 1; break; case 'z': case 'Z': up = 2; break; default: return EXPP_ReturnPyObjError( PyExc_ValueError, "only X, Y or Z for up axis\n" ); } } else { return EXPP_ReturnPyObjError( PyExc_ValueError, "only X, Y or Z for up axis\n" ); } } if (track == up) { return EXPP_ReturnPyObjError( PyExc_ValueError, "Can't have the same axis for track and up\n" ); } /* flip vector around, since vectoquat expect a vector from target to tracking object and the python function expects the inverse (a vector to the target). */ vec[0] = -self->vec[0]; vec[1] = -self->vec[1]; vec[2] = -self->vec[2]; vectoquat(vec, track, up, quat); return newQuaternionObject(quat, Py_NEW); } /*----------------------------Vector.copy() -------------------------------------- return a copy of the vector */ PyObject *Vector_copy(VectorObject * self) { return newVectorObject(self->vec, self->size, Py_NEW); } /*----------------------------dealloc()(internal) ---------------- free the py_object */ static void Vector_dealloc(VectorObject * self) { /* only free non wrapped */ if(self->wrapped != Py_WRAP){ PyMem_Free(self->vec); } PyObject_DEL(self); } /*----------------------------print object (internal)------------- print the object to screen */ static PyObject *Vector_repr(VectorObject * self) { int i; char buffer[48], str[1024]; BLI_strncpy(str,"[",1024); for(i = 0; i < self->size; i++){ if(i < (self->size - 1)){ sprintf(buffer, "%.6f, ", self->vec[i]); strcat(str,buffer); }else{ sprintf(buffer, "%.6f", self->vec[i]); strcat(str,buffer); } } strcat(str, "](vector)"); return PyString_FromString(str); } /*---------------------SEQUENCE PROTOCOLS------------------------ ----------------------------len(object)------------------------ sequence length*/ static int Vector_len(VectorObject * self) { return self->size; } /*----------------------------object[]--------------------------- sequence accessor (get)*/ static PyObject *Vector_item(VectorObject * self, int i) { if(i < 0 || i >= self->size) return EXPP_ReturnPyObjError(PyExc_IndexError, "vector[index]: out of range\n"); return PyFloat_FromDouble(self->vec[i]); } /*----------------------------object[]------------------------- sequence accessor (set)*/ static int Vector_ass_item(VectorObject * self, int i, PyObject * ob) { if(!(PyNumber_Check(ob))) { /* parsed item not a number */ return EXPP_ReturnIntError(PyExc_TypeError, "vector[index] = x: index argument not a number\n"); } if(i < 0 || i >= self->size){ return EXPP_ReturnIntError(PyExc_IndexError, "vector[index] = x: assignment index out of range\n"); } self->vec[i] = (float)PyFloat_AsDouble(ob); return 0; } /*----------------------------object[z:y]------------------------ sequence slice (get) */ static PyObject *Vector_slice(VectorObject * self, int begin, int end) { PyObject *list = NULL; int count; CLAMP(begin, 0, self->size); if (end<0) end= self->size+end+1; CLAMP(end, 0, self->size); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->vec[count])); } return list; } /*----------------------------object[z:y]------------------------ sequence slice (set) */ static int Vector_ass_slice(VectorObject * self, int begin, int end, PyObject * seq) { int i, y, size = 0; float vec[4]; PyObject *v; CLAMP(begin, 0, self->size); if (end<0) end= self->size+end+1; CLAMP(end, 0, self->size); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ return EXPP_ReturnIntError(PyExc_TypeError, "vector[begin:end] = []: size mismatch in slice assignment\n"); } for (i = 0; i < size; i++) { v = PySequence_GetItem(seq, i); if (v == NULL) { /* Failed to read sequence */ return EXPP_ReturnIntError(PyExc_RuntimeError, "vector[begin:end] = []: unable to read sequence\n"); } if(!PyNumber_Check(v)) { /* parsed item not a number */ Py_DECREF(v); return EXPP_ReturnIntError(PyExc_TypeError, "vector[begin:end] = []: sequence argument not a number\n"); } vec[i] = (float)PyFloat_AsDouble(v); Py_DECREF(v); } /*parsed well - now set in vector*/ for(y = 0; y < size; y++){ self->vec[begin + y] = vec[y]; } return 0; } /*------------------------NUMERIC PROTOCOLS---------------------- ------------------------obj + obj------------------------------ addition*/ static PyObject *Vector_add(PyObject * v1, PyObject * v2) { int i; float vec[4]; VectorObject *vec1 = NULL, *vec2 = NULL; if VectorObject_Check(v1) vec1= (VectorObject *)v1; if VectorObject_Check(v2) vec2= (VectorObject *)v2; /* make sure v1 is always the vector */ if (vec1 && vec2 ) { /*VECTOR + VECTOR*/ if(vec1->size != vec2->size) return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: vectors must have the same dimensions for this operation\n"); for(i = 0; i < vec1->size; i++) { vec[i] = vec1->vec[i] + vec2->vec[i]; } return newVectorObject(vec, vec1->size, Py_NEW); } if(PointObject_Check(v2)){ /*VECTOR + POINT*/ /*Point translation*/ PointObject *pt = (PointObject*)v2; if(pt->size == vec1->size){ for(i = 0; i < vec1->size; i++){ vec[i] = vec1->vec[i] + pt->coord[i]; } }else{ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: arguments are the wrong size....\n"); } return newPointObject(vec, vec1->size, Py_NEW); } return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: arguments not valid for this operation....\n"); } /* ------------------------obj += obj------------------------------ addition in place */ static PyObject *Vector_iadd(PyObject * v1, PyObject * v2) { int i; VectorObject *vec1 = NULL, *vec2 = NULL; if VectorObject_Check(v1) vec1= (VectorObject *)v1; if VectorObject_Check(v2) vec2= (VectorObject *)v2; /* make sure v1 is always the vector */ if (vec1 && vec2 ) { /*VECTOR + VECTOR*/ if(vec1->size != vec2->size) return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: vectors must have the same dimensions for this operation\n"); for(i = 0; i < vec1->size; i++) { vec1->vec[i] += vec2->vec[i]; } Py_INCREF( v1 ); return v1; } if(PointObject_Check(v2)){ /*VECTOR + POINT*/ /*Point translation*/ PointObject *pt = (PointObject*)v2; if(pt->size == vec1->size){ for(i = 0; i < vec1->size; i++){ vec1->vec[i] += pt->coord[i]; } }else{ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: arguments are the wrong size....\n"); } Py_INCREF( v1 ); return v1; } return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: arguments not valid for this operation....\n"); } /*------------------------obj - obj------------------------------ subtraction*/ static PyObject *Vector_sub(PyObject * v1, PyObject * v2) { int i; float vec[4]; VectorObject *vec1 = NULL, *vec2 = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector subtraction: arguments not valid for this operation....\n"); vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->size != vec2->size) return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector subtraction: vectors must have the same dimensions for this operation\n"); for(i = 0; i < vec1->size; i++) { vec[i] = vec1->vec[i] - vec2->vec[i]; } return newVectorObject(vec, vec1->size, Py_NEW); } /*------------------------obj -= obj------------------------------ subtraction*/ static PyObject *Vector_isub(PyObject * v1, PyObject * v2) { int i, size; VectorObject *vec1 = NULL, *vec2 = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector subtraction: arguments not valid for this operation....\n"); vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->size != vec2->size) return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector subtraction: vectors must have the same dimensions for this operation\n"); size = vec1->size; for(i = 0; i < vec1->size; i++) { vec1->vec[i] = vec1->vec[i] - vec2->vec[i]; } Py_INCREF( v1 ); return v1; } /*------------------------obj * obj------------------------------ mulplication*/ static PyObject *Vector_mul(PyObject * v1, PyObject * v2) { VectorObject *vec1 = NULL, *vec2 = NULL; if VectorObject_Check(v1) vec1= (VectorObject *)v1; if VectorObject_Check(v2) vec2= (VectorObject *)v2; /* make sure v1 is always the vector */ if (vec1 && vec2 ) { int i; double dot = 0.0f; if(vec1->size != vec2->size) return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector multiplication: vectors must have the same dimensions for this operation\n"); /*dot product*/ for(i = 0; i < vec1->size; i++) { dot += vec1->vec[i] * vec2->vec[i]; } return PyFloat_FromDouble(dot); } /*swap so vec1 is always the vector */ if (vec2) { vec1= vec2; v2= v1; } if (PyNumber_Check(v2)) { /* VEC * NUM */ int i; float vec[4]; float scalar = (float)PyFloat_AsDouble( v2 ); for(i = 0; i < vec1->size; i++) { vec[i] = vec1->vec[i] * scalar; } return newVectorObject(vec, vec1->size, Py_NEW); } else if (MatrixObject_Check(v2)) { /* VEC * MATRIX */ if (v1==v2) /* mat*vec, we have swapped the order */ return column_vector_multiplication((MatrixObject*)v2, vec1); else /* vec*mat */ return row_vector_multiplication(vec1, (MatrixObject*)v2); } else if (QuaternionObject_Check(v2)) { QuaternionObject *quat = (QuaternionObject*)v2; if(vec1->size != 3) return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector multiplication: only 3D vector rotations (with quats) currently supported\n"); return quat_rotation((PyObject*)vec1, (PyObject*)quat); } return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation\n"); } /*------------------------obj *= obj------------------------------ in place mulplication */ static PyObject *Vector_imul(PyObject * v1, PyObject * v2) { VectorObject *vec = (VectorObject *)v1; int i; /* only support vec*=float and vec*=mat vec*=vec result is a float so that wont work */ if (PyNumber_Check(v2)) { /* VEC * NUM */ float scalar = (float)PyFloat_AsDouble( v2 ); for(i = 0; i < vec->size; i++) { vec->vec[i] *= scalar; } Py_INCREF( v1 ); return v1; } else if (MatrixObject_Check(v2)) { float vecCopy[4]; int x,y, size = vec->size; MatrixObject *mat= (MatrixObject*)v2; if(mat->colSize != size){ if(mat->rowSize == 4 && vec->size != 3){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "vector * matrix: matrix column size and the vector size must be the same"); } else { vecCopy[3] = 1.0f; } } for(i = 0; i < size; i++){ vecCopy[i] = vec->vec[i]; } size = MIN2(size, mat->colSize); /*muliplication*/ for(x = 0, i = 0; x < size; x++, i++) { double dot = 0.0f; for(y = 0; y < mat->rowSize; y++) { dot += mat->matrix[y][x] * vecCopy[y]; } vec->vec[i] = (float)dot; } Py_INCREF( v1 ); return v1; } return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation\n"); } /*------------------------obj / obj------------------------------ divide*/ static PyObject *Vector_div(PyObject * v1, PyObject * v2) { int i, size; float vec[4], scalar; VectorObject *vec1 = NULL; if(!VectorObject_Check(v1)) /* not a vector */ return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector division: Vector must be divided by a float\n"); vec1 = (VectorObject*)v1; /* vector */ if(!PyNumber_Check(v2)) /* parsed item not a number */ return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector division: Vector must be divided by a float\n"); scalar = (float)PyFloat_AsDouble(v2); if(scalar==0.0) /* not a vector */ return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError, "Vector division: divide by zero error.\n"); size = vec1->size; for(i = 0; i < size; i++) { vec[i] = vec1->vec[i] / scalar; } return newVectorObject(vec, size, Py_NEW); } /*------------------------obj / obj------------------------------ divide*/ static PyObject *Vector_idiv(PyObject * v1, PyObject * v2) { int i, size; float scalar; VectorObject *vec1 = NULL; /*if(!VectorObject_Check(v1)) return EXPP_ReturnIntError(PyExc_TypeError, "Vector division: Vector must be divided by a float\n");*/ vec1 = (VectorObject*)v1; /* vector */ if(!PyNumber_Check(v2)) /* parsed item not a number */ return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector division: Vector must be divided by a float\n"); scalar = (float)PyFloat_AsDouble(v2); if(scalar==0.0) /* not a vector */ return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError, "Vector division: divide by zero error.\n"); size = vec1->size; for(i = 0; i < size; i++) { vec1->vec[i] /= scalar; } Py_INCREF( v1 ); return v1; } /*-------------------------- -obj ------------------------------- returns the negative of this object*/ static PyObject *Vector_neg(VectorObject *self) { int i; float vec[4]; for(i = 0; i < self->size; i++){ vec[i] = -self->vec[i]; } return newVectorObject(vec, self->size, Py_NEW); } /*------------------------coerce(obj, obj)----------------------- coercion of unknown types to type VectorObject for numeric protocols Coercion() is called whenever a math operation has 2 operands that it doesn't understand how to evaluate. 2+Matrix for example. We want to evaluate some of these operations like: (vector * 2), however, for math to proceed, the unknown operand must be cast to a type that python math will understand. (e.g. in the case above case, 2 must be cast to a vector and then call vector.multiply(vector, scalar_cast_as_vector)*/ static int Vector_coerce(PyObject ** v1, PyObject ** v2) { /* Just incref, each functon must raise errors for bad types */ Py_INCREF (*v1); Py_INCREF (*v2); return 0; } /*------------------------tp_doc*/ static char VectorObject_doc[] = "This is a wrapper for vector objects."; /*------------------------vec_magnitude_nosqrt (internal) - for comparing only */ static double vec_magnitude_nosqrt(float *data, int size) { double dot = 0.0f; int i; for(i=0; isize != vecB->size){ if (comparison_type == Py_NE){ return EXPP_incr_ret(Py_True); }else{ return EXPP_incr_ret(Py_False); } } switch (comparison_type){ case Py_LT: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA < lenB ){ result = 1; } break; case Py_LE: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA < lenB ){ result = 1; }else{ result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; case Py_EQ: result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1); break; case Py_NE: result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1); if (result == 0){ result = 1; }else{ result = 0; } break; case Py_GT: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA > lenB ){ result = 1; } break; case Py_GE: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA > lenB ){ result = 1; }else{ result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ return EXPP_incr_ret(Py_True); }else{ return EXPP_incr_ret(Py_False); } } /*-----------------PROTCOL DECLARATIONS--------------------------*/ static PySequenceMethods Vector_SeqMethods = { (inquiry) Vector_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (intargfunc) 0, /* sq_repeat */ (intargfunc) Vector_item, /* sq_item */ (intintargfunc) Vector_slice, /* sq_slice */ (intobjargproc) Vector_ass_item, /* sq_ass_item */ (intintobjargproc) Vector_ass_slice, /* sq_ass_slice */ }; /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all arguments are guaranteed to be of the object's type (modulo coercion hacks -- i.e. if the type's coercion function returns other types, then these are allowed as well). Numbers that have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both* arguments for proper type and implement the necessary conversions in the slot functions themselves. */ static PyNumberMethods Vector_NumMethods = { (binaryfunc) Vector_add, /* __add__ */ (binaryfunc) Vector_sub, /* __sub__ */ (binaryfunc) Vector_mul, /* __mul__ */ (binaryfunc) Vector_div, /* __div__ */ (binaryfunc) NULL, /* __mod__ */ (binaryfunc) NULL, /* __divmod__ */ (ternaryfunc) NULL, /* __pow__ */ (unaryfunc) Vector_neg, /* __neg__ */ (unaryfunc) NULL, /* __pos__ */ (unaryfunc) NULL, /* __abs__ */ (inquiry) NULL, /* __nonzero__ */ (unaryfunc) NULL, /* __invert__ */ (binaryfunc) NULL, /* __lshift__ */ (binaryfunc) NULL, /* __rshift__ */ (binaryfunc) NULL, /* __and__ */ (binaryfunc) NULL, /* __xor__ */ (binaryfunc) NULL, /* __or__ */ (coercion) Vector_coerce, /* __coerce__ */ (unaryfunc) NULL, /* __int__ */ (unaryfunc) NULL, /* __long__ */ (unaryfunc) NULL, /* __float__ */ (unaryfunc) NULL, /* __oct__ */ (unaryfunc) NULL, /* __hex__ */ /* Added in release 2.0 */ (binaryfunc) Vector_iadd, /*__iadd__*/ (binaryfunc) Vector_isub, /*__isub__*/ (binaryfunc) Vector_imul, /*__imul__*/ (binaryfunc) Vector_idiv, /*__idiv__*/ (binaryfunc) NULL, /*__imod__*/ (ternaryfunc) NULL, /*__ipow__*/ (binaryfunc) NULL, /*__ilshift__*/ (binaryfunc) NULL, /*__irshift__*/ (binaryfunc) NULL, /*__iand__*/ (binaryfunc) NULL, /*__ixor__*/ (binaryfunc) NULL, /*__ior__*/ /* Added in release 2.2 */ /* The following require the Py_TPFLAGS_HAVE_CLASS flag */ (binaryfunc) NULL, /*__floordiv__ __rfloordiv__*/ (binaryfunc) NULL, /*__truediv__ __rfloordiv__*/ (binaryfunc) NULL, /*__ifloordiv__*/ (binaryfunc) NULL, /*__itruediv__*/ }; /*------------------PY_OBECT DEFINITION--------------------------*/ /* * vector axis, vector.x/y/z/w */ static PyObject *Vector_getAxis( VectorObject * self, void *type ) { switch( (long)type ) { case 'X': /* these are backwards, but that how it works */ return PyFloat_FromDouble(self->vec[0]); case 'Y': return PyFloat_FromDouble(self->vec[1]); case 'Z': /* these are backwards, but that how it works */ if(self->size < 3) return EXPP_ReturnPyObjError(PyExc_AttributeError, "vector.z: error, cannot get this axis for a 2D vector\n"); else return PyFloat_FromDouble(self->vec[2]); case 'W': if(self->size < 4) return EXPP_ReturnPyObjError(PyExc_AttributeError, "vector.w: error, cannot get this axis for a 3D vector\n"); return PyFloat_FromDouble(self->vec[3]); default: { char errstr[1024]; sprintf( errstr, "undefined type '%d' in Vector_getAxis", (int)((long)type & 0xff)); return EXPP_ReturnPyObjError( PyExc_RuntimeError, errstr ); } } } static int Vector_setAxis( VectorObject * self, PyObject * value, void * type ) { float param; if (!PyNumber_Check(value)) return EXPP_ReturnIntError( PyExc_TypeError, "expected a number for the vector axis" ); param= (float)PyFloat_AsDouble( value ); switch( (long)type ) { case 'X': /* these are backwards, but that how it works */ self->vec[0]= param; break; case 'Y': self->vec[1]= param; break; case 'Z': /* these are backwards, but that how it works */ if(self->size < 3) return EXPP_ReturnIntError(PyExc_AttributeError, "vector.z: error, cannot get this axis for a 2D vector\n"); self->vec[2]= param; break; case 'W': if(self->size < 4) return EXPP_ReturnIntError(PyExc_AttributeError, "vector.w: error, cannot get this axis for a 3D vector\n"); self->vec[3]= param; break; default: { char errstr[1024]; sprintf( errstr, "undefined type '%d' in Vector_setAxis", (int)((long)type & 0xff)); return EXPP_ReturnIntError( PyExc_RuntimeError, errstr ); } } return 0; } /* vector.length */ static PyObject *Vector_getLength( VectorObject * self, void *type ) { double dot = 0.0f; int i; for(i = 0; i < self->size; i++){ dot += (self->vec[i] * self->vec[i]); } return PyFloat_FromDouble(sqrt(dot)); } static int Vector_setLength( VectorObject * self, PyObject * value ) { double dot = 0.0f, param; int i; if (!PyNumber_Check(value)) return EXPP_ReturnIntError( PyExc_TypeError, "expected a number for the vector axis" ); param= PyFloat_AsDouble( value ); if (param < 0) return EXPP_ReturnIntError( PyExc_TypeError, "cannot set a vectors length to a negative value" ); if (param==0) { for(i = 0; i < self->size; i++){ self->vec[i]= 0; } return 0; } for(i = 0; i < self->size; i++){ dot += (self->vec[i] * self->vec[i]); } if (!dot) /* cant sqrt zero */ return 0; dot = sqrt(dot); if (dot==param) return 0; dot= dot/param; for(i = 0; i < self->size; i++){ self->vec[i]= self->vec[i] / (float)dot; } return 0; } static PyObject *Vector_getWrapped( VectorObject * self, void *type ) { if (self->wrapped == Py_WRAP) Py_RETURN_TRUE; else Py_RETURN_FALSE; } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Vector_getseters[] = { {"x", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector X axis", (void *)'X'}, {"y", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector Y axis", (void *)'Y'}, {"z", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector Z axis", (void *)'Z'}, {"w", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector Z axis", (void *)'W'}, {"length", (getter)Vector_getLength, (setter)Vector_setLength, "Vector Length", NULL}, {"magnitude", (getter)Vector_getLength, (setter)Vector_setLength, "Vector Length", NULL}, {"wrapped", (getter)Vector_getWrapped, (setter)NULL, "Vector Length", NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; /* Note Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing but this means for eg that vec*mat and mat*vec both get sent to Vector_mul and it neesd to sort out the order */ PyTypeObject vector_Type = { PyObject_HEAD_INIT( NULL ) /* required py macro */ 0, /* ob_size */ /* For printing, in format "." */ "Blender Vector", /* char *tp_name; */ sizeof( VectorObject ), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ ( destructor ) Vector_dealloc,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ NULL, /* getattrfunc tp_getattr; */ NULL, /* setattrfunc tp_setattr; */ NULL, /* cmpfunc tp_compare; */ ( reprfunc ) Vector_repr, /* reprfunc tp_repr; */ /* Method suites for standard classes */ &Vector_NumMethods, /* PyNumberMethods *tp_as_number; */ &Vector_SeqMethods, /* PySequenceMethods *tp_as_sequence; */ NULL, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES, /* long tp_flags; */ VectorObject_doc, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ (richcmpfunc)Vector_richcmpr, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ NULL, /* getiterfunc tp_iter; */ NULL, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ Vector_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ Vector_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ NULL, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; /*------------------------newVectorObject (internal)------------- creates a new vector object pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newVectorObject(float *vec, int size, int type) { int i; VectorObject *self = PyObject_NEW(VectorObject, &vector_Type); if(size > 4 || size < 2) return NULL; self->size = size; if(type == Py_WRAP) { self->vec = vec; self->wrapped = Py_WRAP; } else if (type == Py_NEW) { self->vec = PyMem_Malloc(size * sizeof(float)); if(!vec) { /*new empty*/ for(i = 0; i < size; i++){ self->vec[i] = 0.0f; } if(size == 4) /* do the homogenous thing */ self->vec[3] = 1.0f; }else{ for(i = 0; i < size; i++){ self->vec[i] = vec[i]; } } self->wrapped = Py_NEW; }else{ /*bad type*/ return NULL; } return (PyObject *) self; } /* #############################DEPRECATED################################ ####################################################################### ----------------------------Vector.negate() -------------------- set the vector to it's negative -x, -y, -z */ PyObject *Vector_Negate(VectorObject * self) { int i; for(i = 0; i < self->size; i++) { self->vec[i] = -(self->vec[i]); } /*printf("Vector.negate(): Deprecated: use -vector instead\n");*/ return EXPP_incr_ret((PyObject*)self); } /*################################################################### ###########################DEPRECATED##############################*/