/* * $Id$ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BLI_blenlib.h" #include "BKE_utildefines.h" #include "gen_utils.h" //-------------------------DOC STRINGS --------------------------- char Vector_Zero_doc[] = "() - set all values in the vector to 0"; char Vector_Normalize_doc[] = "() - normalize the vector"; char Vector_Negate_doc[] = "() - changes vector to it's additive inverse"; char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]"; char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]"; char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]"; //-----------------------METHOD DEFINITIONS ---------------------- struct PyMethodDef Vector_methods[] = { {"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc}, {"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc}, {"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc}, {"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc}, {"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc}, {"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc}, {NULL, NULL, 0, NULL} }; //-----------------------------METHODS---------------------------- //----------------------------Vector.zero() ---------------------- //set the vector data to 0,0,0 PyObject *Vector_Zero(VectorObject * self) { int x; for(x = 0; x < self->size; x++) { self->vec[x] = 0.0f; } return EXPP_incr_ret((PyObject*)self); } //----------------------------Vector.normalize() ----------------- //normalize the vector data to a unit vector PyObject *Vector_Normalize(VectorObject * self) { int x; float norm = 0.0f; for(x = 0; x < self->size; x++) { norm += self->vec[x] * self->vec[x]; } norm = (float) sqrt(norm); for(x = 0; x < self->size; x++) { self->vec[x] /= norm; } return EXPP_incr_ret((PyObject*)self); } //----------------------------Vector.negate() -------------------- //set the vector to it's negative -x, -y, -z PyObject *Vector_Negate(VectorObject * self) { int x; for(x = 0; x < self->size; x++) { self->vec[x] = -(self->vec[x]); } return EXPP_incr_ret((PyObject*)self); } //----------------------------Vector.resize2D() ------------------ //resize the vector to x,y PyObject *Vector_Resize2D(VectorObject * self) { if(self->data.blend_data){ return EXPP_ReturnPyObjError(PyExc_TypeError, "vector.resize2d(): cannot resize wrapped data - only python vectors\n"); } self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 2)); if(self->data.py_data == NULL) { return EXPP_ReturnPyObjError(PyExc_MemoryError, "vector.resize2d(): problem allocating pointer space\n\n"); } self->vec = self->data.py_data; //force self->size = 2; return EXPP_incr_ret((PyObject*)self); } //----------------------------Vector.resize3D() ------------------ //resize the vector to x,y,z PyObject *Vector_Resize3D(VectorObject * self) { if(self->data.blend_data){ return EXPP_ReturnPyObjError(PyExc_TypeError, "vector.resize3d(): cannot resize wrapped data - only python vectors\n"); } self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 3)); if(self->data.py_data == NULL) { return EXPP_ReturnPyObjError(PyExc_MemoryError, "vector.resize3d(): problem allocating pointer space\n\n"); } self->vec = self->data.py_data; //force if(self->size == 2){ self->data.py_data[2] = 0.0f; } self->size = 3; return EXPP_incr_ret((PyObject*)self); } //----------------------------Vector.resize4D() ------------------ //resize the vector to x,y,z,w PyObject *Vector_Resize4D(VectorObject * self) { if(self->data.blend_data){ return EXPP_ReturnPyObjError(PyExc_TypeError, "vector.resize4d(): cannot resize wrapped data - only python vectors\n"); } self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 4)); if(self->data.py_data == NULL) { return EXPP_ReturnPyObjError(PyExc_MemoryError, "vector.resize4d(): problem allocating pointer space\n\n"); } self->vec = self->data.py_data; //force if(self->size == 2){ self->data.py_data[2] = 0.0f; self->data.py_data[3] = 0.0f; }else if(self->size == 3){ self->data.py_data[3] = 0.0f; } self->size = 4; return EXPP_incr_ret((PyObject*)self); } //----------------------------dealloc()(internal) ---------------- //free the py_object static void Vector_dealloc(VectorObject * self) { //only free py_data if(self->data.py_data){ PyMem_Free(self->data.py_data); } PyObject_DEL(self); } //----------------------------getattr()(internal) ---------------- //object.attribute access (get) static PyObject *Vector_getattr(VectorObject * self, char *name) { int x; double dot = 0.0f; if(STREQ(name,"x")){ return PyFloat_FromDouble(self->vec[0]); }else if(STREQ(name, "y")){ return PyFloat_FromDouble(self->vec[1]); }else if(STREQ(name, "z")){ if(self->size > 2){ return PyFloat_FromDouble(self->vec[2]); }else{ return EXPP_ReturnPyObjError(PyExc_AttributeError, "vector.z: illegal attribute access\n"); } }else if(STREQ(name, "w")){ if(self->size > 3){ return PyFloat_FromDouble(self->vec[3]); }else{ return EXPP_ReturnPyObjError(PyExc_AttributeError, "vector.w: illegal attribute access\n"); } }else if(STREQ2(name, "length", "magnitude")) { for(x = 0; x < self->size; x++){ dot += (self->vec[x] * self->vec[x]); } return PyFloat_FromDouble(sqrt(dot)); } return Py_FindMethod(Vector_methods, (PyObject *) self, name); } //----------------------------setattr()(internal) ---------------- //object.attribute access (set) static int Vector_setattr(VectorObject * self, char *name, PyObject * v) { PyObject *f = NULL; f = PyNumber_Float(v); if(f == NULL) { // parsed item not a number return EXPP_ReturnIntError(PyExc_TypeError, "vector.attribute = x: argument not a number\n"); } if(STREQ(name,"x")){ self->vec[0] = (float)PyFloat_AS_DOUBLE(f); }else if(STREQ(name, "y")){ self->vec[1] = (float)PyFloat_AS_DOUBLE(f); }else if(STREQ(name, "z")){ if(self->size > 2){ self->vec[2] = (float)PyFloat_AS_DOUBLE(f); }else{ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_AttributeError, "vector.z = x: illegal attribute access\n"); } }else if(STREQ(name, "w")){ if(self->size > 3){ self->vec[3] = (float)PyFloat_AS_DOUBLE(f); }else{ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_AttributeError, "vector.w = x: illegal attribute access\n"); } }else{ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_AttributeError, "vector.attribute = x: unknown attribute\n"); } Py_DECREF(f); return 0; } //----------------------------print object (internal)------------- //print the object to screen static PyObject *Vector_repr(VectorObject * self) { int i; char buffer[48], str[1024]; BLI_strncpy(str,"[",1024); for(i = 0; i < self->size; i++){ if(i < (self->size - 1)){ sprintf(buffer, "%.6f, ", self->vec[i]); strcat(str,buffer); }else{ sprintf(buffer, "%.6f", self->vec[i]); strcat(str,buffer); } } strcat(str, "](vector)"); return EXPP_incr_ret(PyString_FromString(str)); } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Vector_len(VectorObject * self) { return self->size; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Vector_item(VectorObject * self, int i) { if(i < 0 || i >= self->size) return EXPP_ReturnPyObjError(PyExc_IndexError, "vector[attribute]: array index out of range\n"); return Py_BuildValue("f", self->vec[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Vector_ass_item(VectorObject * self, int i, PyObject * ob) { PyObject *f = NULL; f = PyNumber_Float(ob); if(f == NULL) { // parsed item not a number return EXPP_ReturnIntError(PyExc_TypeError, "vector[attribute] = x: argument not a number\n"); } if(i < 0 || i >= self->size){ Py_DECREF(f); return EXPP_ReturnIntError(PyExc_IndexError, "vector[attribute] = x: array assignment index out of range\n"); } self->vec[i] = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(f); return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Vector_slice(VectorObject * self, int begin, int end) { PyObject *list = NULL; int count; CLAMP(begin, 0, self->size); CLAMP(end, 0, self->size); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->vec[count])); } return list; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Vector_ass_slice(VectorObject * self, int begin, int end, PyObject * seq) { int i, y, size = 0; float vec[4]; CLAMP(begin, 0, self->size); CLAMP(end, 0, self->size); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ return EXPP_ReturnIntError(PyExc_TypeError, "vector[begin:end] = []: size mismatch in slice assignment\n"); } for (i = 0; i < size; i++) { PyObject *v, *f; v = PySequence_GetItem(seq, i); if (v == NULL) { // Failed to read sequence return EXPP_ReturnIntError(PyExc_RuntimeError, "vector[begin:end] = []: unable to read sequence\n"); } f = PyNumber_Float(v); if(f == NULL) { // parsed item not a number Py_DECREF(v); return EXPP_ReturnIntError(PyExc_TypeError, "vector[begin:end] = []: sequence argument not a number\n"); } vec[i] = (float)PyFloat_AS_DOUBLE(f); EXPP_decr2(f,v); } //parsed well - now set in vector for(y = 0; y < size; y++){ self->vec[begin + y] = vec[y]; } return 0; } //------------------------NUMERIC PROTOCOLS---------------------- //------------------------obj + obj------------------------------ //addition static PyObject *Vector_add(PyObject * v1, PyObject * v2) { int x, size; float vec[4]; VectorObject *vec1 = NULL, *vec2 = NULL; EXPP_incr2(v1, v2); vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->coerced_object || vec2->coerced_object){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: arguments not valid for this operation....\n"); } if(vec1->size != vec2->size){ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector addition: vectors must have the same dimensions for this operation\n"); } size = vec1->size; for(x = 0; x < size; x++) { vec[x] = vec1->vec[x] + vec2->vec[x]; } EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return (PyObject *) newVectorObject(vec, size, Py_NEW); } //------------------------obj - obj------------------------------ //subtraction static PyObject *Vector_sub(PyObject * v1, PyObject * v2) { int x, size; float vec[4]; VectorObject *vec1 = NULL, *vec2 = NULL; EXPP_incr2(v1, v2); vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->coerced_object || vec2->coerced_object){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector subtraction: arguments not valid for this operation....\n"); } if(vec1->size != vec2->size){ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector subtraction: vectors must have the same dimensions for this operation\n"); } size = vec1->size; for(x = 0; x < size; x++) { vec[x] = vec1->vec[x] - vec2->vec[x]; } EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return (PyObject *) newVectorObject(vec, size, Py_NEW); } //------------------------obj * obj------------------------------ //mulplication static PyObject *Vector_mul(PyObject * v1, PyObject * v2) { int x, size; float vec[4], scalar, newVec[3]; double dot = 0.0f; VectorObject *vec1 = NULL, *vec2 = NULL; PyObject *f = NULL, *retObj = NULL; MatrixObject *mat = NULL; QuaternionObject *quat = NULL; EXPP_incr2(v1, v2); vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->coerced_object){ if (PyFloat_Check(vec1->coerced_object) || PyInt_Check(vec1->coerced_object)){ // FLOAT/INT * VECTOR f = PyNumber_Float(vec1->coerced_object); if(f == NULL) { // parsed item not a number EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation\n"); } scalar = (float)PyFloat_AS_DOUBLE(f); size = vec2->size; for(x = 0; x < size; x++) { vec[x] = vec2->vec[x] * scalar; } EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return (PyObject *) newVectorObject(vec, size, Py_NEW); } }else{ if(vec2->coerced_object){ if(MatrixObject_Check(vec2->coerced_object)){ //VECTOR * MATRIX mat = (MatrixObject*)EXPP_incr_ret(vec2->coerced_object); retObj = row_vector_multiplication(vec1, mat); EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)mat); return retObj; }else if (PyFloat_Check(vec2->coerced_object) || PyInt_Check(vec2->coerced_object)){ // VECTOR * FLOAT/INT f = PyNumber_Float(vec2->coerced_object); if(f == NULL) { // parsed item not a number EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation\n"); } scalar = (float)PyFloat_AS_DOUBLE(f); size = vec1->size; for(x = 0; x < size; x++) { vec[x] = vec1->vec[x] * scalar; } EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return (PyObject *) newVectorObject(vec, size, Py_NEW); }else if(QuaternionObject_Check(vec2->coerced_object)){ //QUAT * VEC quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object); if(vec1->size != 3){ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector multiplication: only 3D vector rotations (with quats) currently supported\n"); } newVec[0] = quat->quat[0]*quat->quat[0]*vec1->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec1->vec[2] - 2*quat->quat[3]*quat->quat[0]*vec1->vec[1] + quat->quat[1]*quat->quat[1]*vec1->vec[0] + 2*quat->quat[2]*quat->quat[1]*vec1->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec1->vec[2] - quat->quat[3]*quat->quat[3]*vec1->vec[0] - quat->quat[2]*quat->quat[2]*vec1->vec[0]; newVec[1] = 2*quat->quat[1]*quat->quat[2]*vec1->vec[0] + quat->quat[2]*quat->quat[2]*vec1->vec[1] + 2*quat->quat[3]*quat->quat[2]*vec1->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec1->vec[0] - quat->quat[3]*quat->quat[3]*vec1->vec[1] + quat->quat[0]*quat->quat[0]*vec1->vec[1] - 2*quat->quat[1]*quat->quat[0]*vec1->vec[2] - quat->quat[1]*quat->quat[1]*vec1->vec[1]; newVec[2] = 2*quat->quat[1]*quat->quat[3]*vec1->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec1->vec[1] + quat->quat[3]*quat->quat[3]*vec1->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec1->vec[0] - quat->quat[2]*quat->quat[2]*vec1->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec1->vec[1] - quat->quat[1]*quat->quat[1]*vec1->vec[2] + quat->quat[0]*quat->quat[0]*vec1->vec[2]; EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat); return newVectorObject(newVec,3,Py_NEW); } }else{ //VECTOR * VECTOR if(vec1->size != vec2->size){ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector multiplication: vectors must have the same dimensions for this operation\n"); } size = vec1->size; //dot product for(x = 0; x < size; x++) { dot += vec1->vec[x] * vec2->vec[x]; } EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return PyFloat_FromDouble(dot); } } EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation\n"); } //------------------------obj / obj------------------------------ //division static PyObject *Vector_div(PyObject * v1, PyObject * v2) { int x, size; float vec[4]; VectorObject *vec1 = NULL, *vec2 = NULL; EXPP_incr2(v1, v2); vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->coerced_object || vec2->coerced_object){ return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector division: arguments not valid for this operation....\n"); } if(vec1->size != vec2->size){ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return EXPP_ReturnPyObjError(PyExc_AttributeError, "Vector division: vectors must have the same dimensions for this operation\n"); } size = vec1->size; for(x = 0; x < size; x++) { vec[x] = vec1->vec[x] / vec2->vec[x]; } EXPP_decr2((PyObject*)vec1, (PyObject*)vec2); return (PyObject *) newVectorObject(vec, size, Py_NEW); } //------------------------coerce(obj, obj)----------------------- //coercion of unknown types to type VectorObject for numeric protocols /*Coercion() is called whenever a math operation has 2 operands that it doesn't understand how to evaluate. 2+Matrix for example. We want to evaluate some of these operations like: (vector * 2), however, for math to proceed, the unknown operand must be cast to a type that python math will understand. (e.g. in the case above case, 2 must be cast to a vector and then call vector.multiply(vector, scalar_cast_as_vector)*/ static int Vector_coerce(PyObject ** v1, PyObject ** v2) { PyObject *coerced = NULL; if(!VectorObject_Check(*v2)) { if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || QuaternionObject_Check(*v2)) { coerced = EXPP_incr_ret(*v2); *v2 = newVectorObject(NULL,3,Py_NEW); ((VectorObject*)*v2)->coerced_object = coerced; }else{ return EXPP_ReturnIntError(PyExc_TypeError, "vector.coerce(): unknown operand - can't coerce for numeric protocols\n"); } } EXPP_incr2(*v1, *v2); return 0; } //-----------------PROTCOL DECLARATIONS-------------------------- static PySequenceMethods Vector_SeqMethods = { (inquiry) Vector_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (intargfunc) 0, /* sq_repeat */ (intargfunc) Vector_item, /* sq_item */ (intintargfunc) Vector_slice, /* sq_slice */ (intobjargproc) Vector_ass_item, /* sq_ass_item */ (intintobjargproc) Vector_ass_slice, /* sq_ass_slice */ }; static PyNumberMethods Vector_NumMethods = { (binaryfunc) Vector_add, /* __add__ */ (binaryfunc) Vector_sub, /* __sub__ */ (binaryfunc) Vector_mul, /* __mul__ */ (binaryfunc) Vector_div, /* __div__ */ (binaryfunc) 0, /* __mod__ */ (binaryfunc) 0, /* __divmod__ */ (ternaryfunc) 0, /* __pow__ */ (unaryfunc) 0, /* __neg__ */ (unaryfunc) 0, /* __pos__ */ (unaryfunc) 0, /* __abs__ */ (inquiry) 0, /* __nonzero__ */ (unaryfunc) 0, /* __invert__ */ (binaryfunc) 0, /* __lshift__ */ (binaryfunc) 0, /* __rshift__ */ (binaryfunc) 0, /* __and__ */ (binaryfunc) 0, /* __xor__ */ (binaryfunc) 0, /* __or__ */ (coercion) Vector_coerce, /* __coerce__ */ (unaryfunc) 0, /* __int__ */ (unaryfunc) 0, /* __long__ */ (unaryfunc) 0, /* __float__ */ (unaryfunc) 0, /* __oct__ */ (unaryfunc) 0, /* __hex__ */ }; //------------------PY_OBECT DEFINITION-------------------------- PyTypeObject vector_Type = { PyObject_HEAD_INIT(NULL) 0, /*ob_size */ "vector", /*tp_name */ sizeof(VectorObject), /*tp_basicsize */ 0, /*tp_itemsize */ (destructor) Vector_dealloc, /*tp_dealloc */ (printfunc) 0, /*tp_print */ (getattrfunc) Vector_getattr, /*tp_getattr */ (setattrfunc) Vector_setattr, /*tp_setattr */ 0, /*tp_compare */ (reprfunc) Vector_repr, /*tp_repr */ &Vector_NumMethods, /*tp_as_number */ &Vector_SeqMethods, /*tp_as_sequence */ }; //------------------------newVectorObject (internal)------------- //creates a new vector object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newVectorObject(float *vec, int size, int type) { VectorObject *self; int x; vector_Type.ob_type = &PyType_Type; self = PyObject_NEW(VectorObject, &vector_Type); self->data.blend_data = NULL; self->data.py_data = NULL; self->size = size; self->coerced_object = NULL; if(type == Py_WRAP){ self->data.blend_data = vec; self->vec = self->data.blend_data; }else if (type == Py_NEW){ self->data.py_data = PyMem_Malloc(size * sizeof(float)); self->vec = self->data.py_data; if(!vec) { //new empty for(x = 0; x < size; x++){ self->vec[x] = 0.0f; } if(size == 4) /* do the homogenous thing */ self->vec[3] = 1.0f; }else{ for(x = 0; x < size; x++){ self->vec[x] = vec[x]; } } }else{ //bad type return NULL; } return (PyObject *) EXPP_incr_ret((PyObject *)self); }