/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BLI_math.h" #include "BKE_utildefines.h" #ifndef int32_t #include "BLO_sys_types.h" #endif //----------------------------------Mathutils.Euler() ------------------- //makes a new euler for you to play with static PyObject *Euler_new(PyTypeObject * type, PyObject * args, PyObject * kwargs) { PyObject *listObject = NULL; int size, i; float eul[3]; PyObject *e; short order= 0; // TODO, add order option size = PyTuple_GET_SIZE(args); if (size == 1) { listObject = PyTuple_GET_ITEM(args, 0); if (PySequence_Check(listObject)) { size = PySequence_Length(listObject); } else { // Single argument was not a sequence PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n"); return NULL; } } else if (size == 0) { //returns a new empty 3d euler return newEulerObject(NULL, order, Py_NEW, NULL); } else { listObject = args; } if (size != 3) { // Invalid euler size PyErr_SetString(PyExc_AttributeError, "Mathutils.Euler(): 3d numeric sequence expected\n"); return NULL; } for (i=0; iorder==0) eul_to_quat(quat, self->eul); else eulO_to_quat(quat, self->eul, self->order); return newQuaternionObject(quat, Py_NEW, NULL); } //----------------------------Euler.toMatrix()--------------------- //return a matrix representation of the euler static char Euler_ToMatrix_doc[] = ".. method:: to_matrix()\n" "\n" " Return a matrix representation of the euler.\n" "\n" " :return: A 3x3 roation matrix representation of the euler.\n" " :rtype: :class:`Matrix`\n"; static PyObject *Euler_ToMatrix(EulerObject * self) { float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}; if(!BaseMath_ReadCallback(self)) return NULL; if(self->order==0) eul_to_mat3((float (*)[3])mat, self->eul); else eulO_to_mat3((float (*)[3])mat, self->eul, self->order); return newMatrixObject(mat, 3, 3 , Py_NEW, NULL); } //----------------------------Euler.unique()----------------------- //sets the x,y,z values to a unique euler rotation // TODO, check if this works with rotation order!!! static char Euler_Unique_doc[] = ".. method:: unique()\n" "\n" " Calculate a unique rotation for this euler. Avoids gimble lock.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Euler`\n"; static PyObject *Euler_Unique(EulerObject * self) { #define PI_2 (Py_PI * 2.0) #define PI_HALF (Py_PI / 2.0) #define PI_INV (1.0 / Py_PI) double heading, pitch, bank; if(!BaseMath_ReadCallback(self)) return NULL; heading = self->eul[0]; pitch = self->eul[1]; bank = self->eul[2]; //wrap heading in +180 / -180 pitch += Py_PI; pitch -= floor(pitch * PI_INV) * PI_2; pitch -= Py_PI; if(pitch < -PI_HALF) { pitch = -Py_PI - pitch; heading += Py_PI; bank += Py_PI; } else if(pitch > PI_HALF) { pitch = Py_PI - pitch; heading += Py_PI; bank += Py_PI; } //gimbal lock test if(fabs(pitch) > PI_HALF - 1e-4) { heading += bank; bank = 0.0f; } else { bank += Py_PI; bank -= (floor(bank * PI_INV)) * PI_2; bank -= Py_PI; } heading += Py_PI; heading -= (floor(heading * PI_INV)) * PI_2; heading -= Py_PI; BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject *)self; } //----------------------------Euler.zero()------------------------- //sets the euler to 0,0,0 static char Euler_Zero_doc[] = ".. method:: zero()\n" "\n" " Set all values to zero.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Euler`\n"; static PyObject *Euler_Zero(EulerObject * self) { self->eul[0] = 0.0; self->eul[1] = 0.0; self->eul[2] = 0.0; BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject *)self; } //----------------------------Euler.rotate()----------------------- //rotates a euler a certain amount and returns the result //should return a unique euler rotation (i.e. no 720 degree pitches :) static PyObject *Euler_Rotate(EulerObject * self, PyObject *args) { float angle = 0.0f; char *axis; if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){ PyErr_SetString(PyExc_TypeError, "euler.rotate():expected angle (float) and axis (x,y,z)"); return NULL; } if(ELEM3(*axis, 'x', 'y', 'z') && axis[1]=='\0'){ PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'x', 'y' or 'z'"); return NULL; } if(!BaseMath_ReadCallback(self)) return NULL; if(self->order == 0) rotate_eul(self->eul, *axis, angle); else rotate_eulO(self->eul, self->order, *axis, angle); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject *)self; } static char Euler_MakeCompatible_doc[] = ".. method:: make_compatible(other)\n" "\n" " Make this euler compatible with another, so interpolating between them works as intended.\n" "\n" " :arg other: make compatible with this rotation.\n" " :type other: :class:`Euler`\n" " :return: an instance of itself.\n" " :rtype: :class:`Euler`\n" "\n" " .. note:: the order of eulers must match or an exception is raised.\n"; static PyObject *Euler_MakeCompatible(EulerObject * self, EulerObject *value) { if(!EulerObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "euler.make_compatible(euler): expected a single euler argument."); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; if(self->order != value->order) { PyErr_SetString(PyExc_ValueError, "euler.make_compatible(euler): rotation orders don't match\n"); return NULL; } compatible_eul(self->eul, value->eul); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject *)self; } //----------------------------Euler.rotate()----------------------- // return a copy of the euler static char Euler_copy_doc[] = ".. function:: copy()\n" "\n" " Returns a copy of this euler.\n" "\n" " :return: A copy of the euler.\n" " :rtype: :class:`Euler`\n" "\n" " .. note:: use this to get a copy of a wrapped euler with no reference to the original data.\n"; static PyObject *Euler_copy(EulerObject * self, PyObject *args) { if(!BaseMath_ReadCallback(self)) return NULL; return newEulerObject(self->eul, self->order, Py_NEW, Py_TYPE(self)); } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Euler_repr(EulerObject * self) { char str[64]; if(!BaseMath_ReadCallback(self)) return NULL; sprintf(str, "[%.6f, %.6f, %.6f](euler)", self->eul[0], self->eul[1], self->eul[2]); return PyUnicode_FromString(str); } //------------------------tp_richcmpr //returns -1 execption, 0 false, 1 true static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { EulerObject *eulA = NULL, *eulB = NULL; int result = 0; if(EulerObject_Check(objectA)) { eulA = (EulerObject*)objectA; if(!BaseMath_ReadCallback(eulA)) return NULL; } if(EulerObject_Check(objectB)) { eulB = (EulerObject*)objectB; if(!BaseMath_ReadCallback(eulB)) return NULL; } if (!eulA || !eulB){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } eulA = (EulerObject*)objectA; eulB = (EulerObject*)objectB; switch (comparison_type){ case Py_EQ: result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1); break; case Py_NE: result = !EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1); break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Euler_len(EulerObject * self) { return 3; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Euler_item(EulerObject * self, int i) { if(i<0) i= 3-i; if(i < 0 || i >= 3) { PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range"); return NULL; } if(!BaseMath_ReadIndexCallback(self, i)) return NULL; return PyFloat_FromDouble(self->eul[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Euler_ass_item(EulerObject * self, int i, PyObject * value) { float f = PyFloat_AsDouble(value); if(f == -1 && PyErr_Occurred()) { // parsed item not a number PyErr_SetString(PyExc_TypeError, "euler[attribute] = x: argument not a number"); return -1; } if(i<0) i= 3-i; if(i < 0 || i >= 3){ PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n"); return -1; } self->eul[i] = f; if(!BaseMath_WriteIndexCallback(self, i)) return -1; return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Euler_slice(EulerObject * self, int begin, int end) { PyObject *list = NULL; int count; if(!BaseMath_ReadCallback(self)) return NULL; CLAMP(begin, 0, 3); if (end<0) end= 4+end; CLAMP(end, 0, 3); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->eul[count])); } return list; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Euler_ass_slice(EulerObject * self, int begin, int end, PyObject * seq) { int i, y, size = 0; float eul[3]; PyObject *e; if(!BaseMath_ReadCallback(self)) return -1; CLAMP(begin, 0, 3); if (end<0) end= 4+end; CLAMP(end, 0, 3); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment"); return -1; } for (i = 0; i < size; i++) { e = PySequence_GetItem(seq, i); if (e == NULL) { // Failed to read sequence PyErr_SetString(PyExc_RuntimeError, "euler[begin:end] = []: unable to read sequence"); return -1; } eul[i] = (float)PyFloat_AsDouble(e); Py_DECREF(e); if(eul[i]==-1 && PyErr_Occurred()) { // parsed item not a number PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: sequence argument not a number"); return -1; } } //parsed well - now set in vector for(y = 0; y < 3; y++){ self->eul[begin + y] = eul[y]; } BaseMath_WriteCallback(self); return 0; } //-----------------PROTCOL DECLARATIONS-------------------------- static PySequenceMethods Euler_SeqMethods = { (lenfunc) Euler_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (ssizeargfunc) 0, /* sq_repeat */ (ssizeargfunc) Euler_item, /* sq_item */ (ssizessizeargfunc) Euler_slice, /* sq_slice */ (ssizeobjargproc) Euler_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) Euler_ass_slice, /* sq_ass_slice */ }; /* * vector axis, vector.x/y/z/w */ static PyObject *Euler_getAxis( EulerObject * self, void *type ) { return Euler_item(self, GET_INT_FROM_POINTER(type)); } static int Euler_setAxis( EulerObject * self, PyObject * value, void * type ) { return Euler_ass_item(self, GET_INT_FROM_POINTER(type), value); } /* rotation order */ static PyObject *Euler_getOrder(EulerObject *self, void *type) { static char order[][4] = {"XYZ", "XZY", "YXZ", "YZX", "ZXY", "ZYX"}; return PyUnicode_FromString(order[self->order]); } static int Euler_setOrder( EulerObject * self, PyObject * value, void * type ) { char *order_str= _PyUnicode_AsString(value); short order= euler_order_from_string(order_str, "euler.order"); if(order < 0) return -1; if(self->cb_user) { PyErr_SetString(PyExc_TypeError, "euler.order: assignment is not allowed on eulers with an owner"); return -1; } self->order= order; return 0; } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Euler_getseters[] = { {"x", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler X axis in radians. **type** float", (void *)0}, {"y", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Y axis in radians. **type** float", (void *)1}, {"z", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Z axis in radians. **type** float", (void *)2}, {"order", (getter)Euler_getOrder, (setter)Euler_setOrder, "Euler rotation order. **type** string in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']", (void *)NULL}, {"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL}, {"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; //-----------------------METHOD DEFINITIONS ---------------------- static struct PyMethodDef Euler_methods[] = { {"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc}, {"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc}, {"to_matrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc}, {"to_quat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc}, {"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, NULL}, {"make_compatible", (PyCFunction) Euler_MakeCompatible, METH_O, Euler_MakeCompatible_doc}, {"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc}, {"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc}, {NULL, NULL, 0, NULL} }; //------------------PY_OBECT DEFINITION-------------------------- static char euler_doc[] = "This object gives access to Eulers in Blender."; PyTypeObject euler_Type = { PyVarObject_HEAD_INIT(NULL, 0) "euler", //tp_name sizeof(EulerObject), //tp_basicsize 0, //tp_itemsize (destructor)BaseMathObject_dealloc, //tp_dealloc 0, //tp_print 0, //tp_getattr 0, //tp_setattr 0, //tp_compare (reprfunc) Euler_repr, //tp_repr 0, //tp_as_number &Euler_SeqMethods, //tp_as_sequence 0, //tp_as_mapping 0, //tp_hash 0, //tp_call 0, //tp_str 0, //tp_getattro 0, //tp_setattro 0, //tp_as_buffer Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags euler_doc, //tp_doc 0, //tp_traverse 0, //tp_clear (richcmpfunc)Euler_richcmpr, //tp_richcompare 0, //tp_weaklistoffset 0, //tp_iter 0, //tp_iternext Euler_methods, //tp_methods 0, //tp_members Euler_getseters, //tp_getset 0, //tp_base 0, //tp_dict 0, //tp_descr_get 0, //tp_descr_set 0, //tp_dictoffset 0, //tp_init 0, //tp_alloc Euler_new, //tp_new 0, //tp_free 0, //tp_is_gc 0, //tp_bases 0, //tp_mro 0, //tp_cache 0, //tp_subclasses 0, //tp_weaklist 0 //tp_del }; //------------------------newEulerObject (internal)------------- //creates a new euler object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newEulerObject(float *eul, short order, int type, PyTypeObject *base_type) { EulerObject *self; int x; if(base_type) self = (EulerObject *)base_type->tp_alloc(base_type, 0); else self = PyObject_NEW(EulerObject, &euler_Type); /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP){ self->eul = eul; self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->eul = PyMem_Malloc(3 * sizeof(float)); if(!eul) { //new empty for(x = 0; x < 3; x++) { self->eul[x] = 0.0f; } }else{ VECCOPY(self->eul, eul); } self->wrapped = Py_NEW; }else{ //bad type return NULL; } self->order= order; return (PyObject *)self; } PyObject *newEulerObject_cb(PyObject *cb_user, short order, int cb_type, int cb_subtype) { EulerObject *self= (EulerObject *)newEulerObject(NULL, order, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; } return (PyObject *)self; }