/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Michel Selten & Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/python/generic/mathutils_Matrix.c * \ingroup pygen */ #include #include "mathutils.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_utildefines.h" static PyObject *Matrix_copy(MatrixObject *self); static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *value); static PyObject *matrix__apply_to_copy(PyNoArgsFunction matrix_func, MatrixObject *self); /* matrix vector callbacks */ int mathutils_matrix_vector_cb_index= -1; static int mathutils_matrix_vector_check(BaseMathObject *bmo) { MatrixObject *self= (MatrixObject *)bmo->cb_user; return BaseMath_ReadCallback(self); } static int mathutils_matrix_vector_get(BaseMathObject *bmo, int subtype) { MatrixObject *self= (MatrixObject *)bmo->cb_user; int i; if(BaseMath_ReadCallback(self) == -1) return -1; for(i=0; i < self->col_size; i++) bmo->data[i]= self->matrix[subtype][i]; return 0; } static int mathutils_matrix_vector_set(BaseMathObject *bmo, int subtype) { MatrixObject *self= (MatrixObject *)bmo->cb_user; int i; if(BaseMath_ReadCallback(self) == -1) return -1; for(i=0; i < self->col_size; i++) self->matrix[subtype][i]= bmo->data[i]; (void)BaseMath_WriteCallback(self); return 0; } static int mathutils_matrix_vector_get_index(BaseMathObject *bmo, int subtype, int index) { MatrixObject *self= (MatrixObject *)bmo->cb_user; if(BaseMath_ReadCallback(self) == -1) return -1; bmo->data[index]= self->matrix[subtype][index]; return 0; } static int mathutils_matrix_vector_set_index(BaseMathObject *bmo, int subtype, int index) { MatrixObject *self= (MatrixObject *)bmo->cb_user; if(BaseMath_ReadCallback(self) == -1) return -1; self->matrix[subtype][index]= bmo->data[index]; (void)BaseMath_WriteCallback(self); return 0; } Mathutils_Callback mathutils_matrix_vector_cb = { mathutils_matrix_vector_check, mathutils_matrix_vector_get, mathutils_matrix_vector_set, mathutils_matrix_vector_get_index, mathutils_matrix_vector_set_index }; /* matrix vector callbacks, this is so you can do matrix[i][j] = val */ //----------------------------------mathutils.Matrix() ----------------- //mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. //create a new matrix type static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { if(kwds && PyDict_Size(kwds)) { PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): takes no keyword args"); return NULL; } switch(PyTuple_GET_SIZE(args)) { case 0: return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, type); case 1: { PyObject *arg= PyTuple_GET_ITEM(args, 0); const unsigned short row_size= PySequence_Size(arg); /* -1 is an error, size checks will accunt for this */ if(IN_RANGE_INCL(row_size, 2, 4)) { PyObject *item= PySequence_GetItem(arg, 0); const unsigned short col_size= PySequence_Size(item); Py_XDECREF(item); if(IN_RANGE_INCL(col_size, 2, 4)) { /* sane row & col size, new matrix and assign as slice */ PyObject *matrix= newMatrixObject(NULL, row_size, col_size, Py_NEW, type); if(Matrix_ass_slice((MatrixObject *)matrix, 0, INT_MAX, arg) == 0) { return matrix; } else { /* matrix ok, slice assignment not */ Py_DECREF(matrix); } } } } } /* will overwrite error */ PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): expects no args or 2-4 numeric sequences"); return NULL; } static PyObject *matrix__apply_to_copy(PyNoArgsFunction matrix_func, MatrixObject *self) { PyObject *ret= Matrix_copy(self); PyObject *ret_dummy= matrix_func(ret); if(ret_dummy) { Py_DECREF(ret_dummy); return (PyObject *)ret; } else { /* error */ Py_DECREF(ret); return NULL; } } /* when a matrix is 4x4 size but initialized as a 3x3, re-assign values for 4x4 */ static void matrix_3x3_as_4x4(float mat[16]) { mat[10] = mat[8]; mat[9] = mat[7]; mat[8] = mat[6]; mat[7] = 0.0f; mat[6] = mat[5]; mat[5] = mat[4]; mat[4] = mat[3]; mat[3] = 0.0f; } /*-----------------------CLASS-METHODS----------------------------*/ //mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. static char C_Matrix_Rotation_doc[] = ".. classmethod:: Rotation(angle, size, axis)\n" "\n" " Create a matrix representing a rotation.\n" "\n" " :arg angle: The angle of rotation desired, in radians.\n" " :type angle: float\n" " :arg size: The size of the rotation matrix to construct [2, 4].\n" " :type size: int\n" " :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n" " :type axis: string or :class:`Vector`\n" " :return: A new rotation matrix.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args) { PyObject *vec= NULL; const char *axis= NULL; int matSize; double angle; /* use double because of precision problems at high values */ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "di|O", &angle, &matSize, &vec)) { PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector"); return NULL; } if(vec && PyUnicode_Check(vec)) { axis= _PyUnicode_AsString((PyObject *)vec); if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') { PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'"); return NULL; } else { /* use the string */ vec= NULL; } } /* clamp angle between -360 and 360 in radians */ angle= fmod(angle + M_PI*2, M_PI*4) - M_PI*2; if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if(matSize == 2 && (vec != NULL)) { PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis"); return NULL; } if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) { PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): axis of rotation for 3d and 4d matrices is required"); return NULL; } /* check for valid vector/axis above */ if(vec) { float tvec[3]; if (mathutils_array_parse(tvec, 3, 3, vec, "mathutils.RotationMatrix(angle, size, axis), invalid 'axis' arg") == -1) return NULL; axis_angle_to_mat3((float (*)[3])mat, tvec, angle); } else if(matSize == 2) { //2D rotation matrix mat[0] = (float) cos (angle); mat[1] = (float) sin (angle); mat[2] = -((float) sin(angle)); mat[3] = (float) cos(angle); } else if(strcmp(axis, "X") == 0) { //rotation around X mat[0] = 1.0f; mat[4] = (float) cos(angle); mat[5] = (float) sin(angle); mat[7] = -((float) sin(angle)); mat[8] = (float) cos(angle); } else if(strcmp(axis, "Y") == 0) { //rotation around Y mat[0] = (float) cos(angle); mat[2] = -((float) sin(angle)); mat[4] = 1.0f; mat[6] = (float) sin(angle); mat[8] = (float) cos(angle); } else if(strcmp(axis, "Z") == 0) { //rotation around Z mat[0] = (float) cos(angle); mat[1] = (float) sin(angle); mat[3] = -((float) sin(angle)); mat[4] = (float) cos(angle); mat[8] = 1.0f; } else { /* should never get here */ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error"); return NULL; } if(matSize == 4) { matrix_3x3_as_4x4(mat); } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } static char C_Matrix_Translation_doc[] = ".. classmethod:: Translation(vector)\n" "\n" " Create a matrix representing a translation.\n" "\n" " :arg vector: The translation vector.\n" " :type vector: :class:`Vector`\n" " :return: An identity matrix with a translation.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *C_Matrix_Translation(PyObject *cls, PyObject *value) { float mat[16], tvec[3]; if (mathutils_array_parse(tvec, 3, 4, value, "mathutils.Matrix.Translation(vector), invalid vector arg") == -1) return NULL; /* create a identity matrix and add translation */ unit_m4((float(*)[4]) mat); copy_v3_v3(mat + 12, tvec); /* 12, 13, 14 */ return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls); } //----------------------------------mathutils.Matrix.Scale() ------------- //mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. static char C_Matrix_Scale_doc[] = ".. classmethod:: Scale(factor, size, axis)\n" "\n" " Create a matrix representing a scaling.\n" "\n" " :arg factor: The factor of scaling to apply.\n" " :type factor: float\n" " :arg size: The size of the scale matrix to construct [2, 4].\n" " :type size: int\n" " :arg axis: Direction to influence scale. (optional).\n" " :type axis: :class:`Vector`\n" " :return: A new scale matrix.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args) { PyObject *vec= NULL; int vec_size; float tvec[3]; float factor; int matSize; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "fi|O:Matrix.Scale", &factor, &matSize, &vec)) { return NULL; } if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError, "Matrix.Scale(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if(vec) { vec_size= (matSize == 2 ? 2 : 3); if(mathutils_array_parse(tvec, vec_size, vec_size, vec, "Matrix.Scale(factor, size, axis), invalid 'axis' arg") == -1) { return NULL; } } if(vec == NULL) { //scaling along axis if(matSize == 2) { mat[0] = factor; mat[3] = factor; } else { mat[0] = factor; mat[4] = factor; mat[8] = factor; } } else { //scaling in arbitrary direction //normalize arbitrary axis float norm = 0.0f; int x; for(x = 0; x < vec_size; x++) { norm += tvec[x] * tvec[x]; } norm = (float) sqrt(norm); for(x = 0; x < vec_size; x++) { tvec[x] /= norm; } if(matSize == 2) { mat[0] = 1 + ((factor - 1) *(tvec[0] * tvec[0])); mat[1] = ((factor - 1) *(tvec[0] * tvec[1])); mat[2] = ((factor - 1) *(tvec[0] * tvec[1])); mat[3] = 1 + ((factor - 1) *(tvec[1] * tvec[1])); } else { mat[0] = 1 + ((factor - 1) *(tvec[0] * tvec[0])); mat[1] = ((factor - 1) *(tvec[0] * tvec[1])); mat[2] = ((factor - 1) *(tvec[0] * tvec[2])); mat[3] = ((factor - 1) *(tvec[0] * tvec[1])); mat[4] = 1 + ((factor - 1) *(tvec[1] * tvec[1])); mat[5] = ((factor - 1) *(tvec[1] * tvec[2])); mat[6] = ((factor - 1) *(tvec[0] * tvec[2])); mat[7] = ((factor - 1) *(tvec[1] * tvec[2])); mat[8] = 1 + ((factor - 1) *(tvec[2] * tvec[2])); } } if(matSize == 4) { matrix_3x3_as_4x4(mat); } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } //----------------------------------mathutils.Matrix.OrthoProjection() --- //mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. static char C_Matrix_OrthoProjection_doc[] = ".. classmethod:: OrthoProjection(axis, size)\n" "\n" " Create a matrix to represent an orthographic projection.\n" "\n" " :arg axis: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix. Or a vector for an arbitrary axis\n" " :type axis: string or :class:`Vector`\n" " :arg size: The size of the projection matrix to construct [2, 4].\n" " :type size: int\n" " :return: A new projection matrix.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args) { PyObject *axis; int matSize, x; float norm = 0.0f; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "Oi:Matrix.OrthoProjection", &axis, &matSize)) { return NULL; } if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError,"mathutils.Matrix.OrthoProjection(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if(PyUnicode_Check(axis)) { //ortho projection onto cardinal plane Py_ssize_t plane_len; const char *plane= _PyUnicode_AsStringAndSize(axis, &plane_len); if(matSize == 2) { if(plane_len == 1 && plane[0]=='X') { mat[0]= 1.0f; } else if (plane_len == 1 && plane[0]=='Y') { mat[3]= 1.0f; } else { PyErr_Format(PyExc_ValueError, "mathutils.Matrix.OrthoProjection(): unknown plane, expected: X, Y, not '%.200s'", plane); return NULL; } } else { if(plane_len == 2 && plane[0]=='X' && plane[1]=='Y') { mat[0]= 1.0f; mat[4]= 1.0f; } else if (plane_len == 2 && plane[0]=='X' && plane[1]=='Z') { mat[0]= 1.0f; mat[8]= 1.0f; } else if (plane_len == 2 && plane[0]=='Y' && plane[1]=='Z') { mat[4]= 1.0f; mat[8]= 1.0f; } else { PyErr_Format(PyExc_ValueError, "mathutils.Matrix.OrthoProjection(): unknown plane, expected: XY, XZ, YZ, not '%.200s'", plane); return NULL; } } } else { //arbitrary plane int vec_size= (matSize == 2 ? 2 : 3); float tvec[4]; if(mathutils_array_parse(tvec, vec_size, vec_size, axis, "Matrix.OrthoProjection(axis, size), invalid 'axis' arg") == -1) { return NULL; } //normalize arbitrary axis for(x = 0; x < vec_size; x++) { norm += tvec[x] * tvec[x]; } norm = (float) sqrt(norm); for(x = 0; x < vec_size; x++) { tvec[x] /= norm; } if(matSize == 2) { mat[0] = 1 - (tvec[0] * tvec[0]); mat[1] = -(tvec[0] * tvec[1]); mat[2] = -(tvec[0] * tvec[1]); mat[3] = 1 - (tvec[1] * tvec[1]); } else if(matSize > 2) { mat[0] = 1 - (tvec[0] * tvec[0]); mat[1] = -(tvec[0] * tvec[1]); mat[2] = -(tvec[0] * tvec[2]); mat[3] = -(tvec[0] * tvec[1]); mat[4] = 1 - (tvec[1] * tvec[1]); mat[5] = -(tvec[1] * tvec[2]); mat[6] = -(tvec[0] * tvec[2]); mat[7] = -(tvec[1] * tvec[2]); mat[8] = 1 - (tvec[2] * tvec[2]); } } if(matSize == 4) { matrix_3x3_as_4x4(mat); } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } static char C_Matrix_Shear_doc[] = ".. classmethod:: Shear(plane, size, factor)\n" "\n" " Create a matrix to represent an shear transformation.\n" "\n" " :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix only.\n" " :type plane: string\n" " :arg size: The size of the shear matrix to construct [2, 4].\n" " :type size: int\n" " :arg factor: The factor of shear to apply. For a 3 or 4 *size* matrix pass a pair of floats corrasponding with the *plane* axis.\n" " :type factor: float or float pair\n" " :return: A new shear matrix.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args) { int matSize; const char *plane; PyObject *fac; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "siO:Matrix.Shear", &plane, &matSize, &fac)) { return NULL; } if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError,"mathutils.Matrix.Shear(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if(matSize == 2) { float const factor= PyFloat_AsDouble(fac); if(factor==-1.0f && PyErr_Occurred()) { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.Shear(): the factor to be a float"); return NULL; } /* unit */ mat[0] = 1.0f; mat[3] = 1.0f; if(strcmp(plane, "X") == 0) { mat[2] = factor; } else if(strcmp(plane, "Y") == 0) { mat[1] = factor; } else { PyErr_SetString(PyExc_AttributeError, "Matrix.Shear(): expected: X, Y or wrong matrix size for shearing plane"); return NULL; } } else { /* 3 or 4, apply as 3x3, resize later if needed */ float factor[2]; if(mathutils_array_parse(factor, 2, 2, fac, "Matrix.Shear()") < 0) { return NULL; } /* unit */ mat[0] = 1.0f; mat[4] = 1.0f; mat[8] = 1.0f; if(strcmp(plane, "XY") == 0) { mat[6] = factor[0]; mat[7] = factor[1]; } else if(strcmp(plane, "XZ") == 0) { mat[3] = factor[0]; mat[5] = factor[1]; } else if(strcmp(plane, "YZ") == 0) { mat[1] = factor[0]; mat[2] = factor[1]; } else { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.Shear(): expected: X, Y, XY, XZ, YZ"); return NULL; } } if(matSize == 4) { matrix_3x3_as_4x4(mat); } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } void matrix_as_3x3(float mat[3][3], MatrixObject *self) { copy_v3_v3(mat[0], self->matrix[0]); copy_v3_v3(mat[1], self->matrix[1]); copy_v3_v3(mat[2], self->matrix[2]); } /* assumes rowsize == colsize is checked and the read callback has run */ static float matrix_determinant_internal(MatrixObject *self) { if(self->row_size == 2) { return determinant_m2(self->matrix[0][0], self->matrix[0][1], self->matrix[1][0], self->matrix[1][1]); } else if(self->row_size == 3) { return determinant_m3(self->matrix[0][0], self->matrix[0][1], self->matrix[0][2], self->matrix[1][0], self->matrix[1][1], self->matrix[1][2], self->matrix[2][0], self->matrix[2][1], self->matrix[2][2]); } else { return determinant_m4((float (*)[4])self->contigPtr); } } /*-----------------------------METHODS----------------------------*/ static char Matrix_to_quaternion_doc[] = ".. method:: to_quaternion()\n" "\n" " Return a quaternion representation of the rotation matrix.\n" "\n" " :return: Quaternion representation of the rotation matrix.\n" " :rtype: :class:`Quaternion`\n" ; static PyObject *Matrix_to_quaternion(MatrixObject *self) { float quat[4]; if(BaseMath_ReadCallback(self) == -1) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if((self->col_size < 3) || (self->row_size < 3) || (self->col_size != self->row_size)) { PyErr_SetString(PyExc_AttributeError, "Matrix.to_quat(): inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } if(self->col_size == 3){ mat3_to_quat(quat, (float (*)[3])self->contigPtr); } else { mat4_to_quat(quat, (float (*)[4])self->contigPtr); } return newQuaternionObject(quat, Py_NEW, NULL); } /*---------------------------Matrix.toEuler() --------------------*/ static char Matrix_to_euler_doc[] = ".. method:: to_euler(order, euler_compat)\n" "\n" " Return an Euler representation of the rotation matrix (3x3 or 4x4 matrix only).\n" "\n" " :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n" " :type order: string\n" " :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n" " :type euler_compat: :class:`Euler`\n" " :return: Euler representation of the matrix.\n" " :rtype: :class:`Euler`\n" ; static PyObject *Matrix_to_euler(MatrixObject *self, PyObject *args) { const char *order_str= NULL; short order= EULER_ORDER_XYZ; float eul[3], eul_compatf[3]; EulerObject *eul_compat = NULL; float tmat[3][3]; float (*mat)[3]; if(BaseMath_ReadCallback(self) == -1) return NULL; if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat)) return NULL; if(eul_compat) { if(BaseMath_ReadCallback(eul_compat) == -1) return NULL; copy_v3_v3(eul_compatf, eul_compat->eul); } /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->col_size ==3 && self->row_size ==3) { mat= (float (*)[3])self->contigPtr; } else if (self->col_size ==4 && self->row_size ==4) { copy_m3_m4(tmat, (float (*)[4])self->contigPtr); mat= tmat; } else { PyErr_SetString(PyExc_AttributeError, "Matrix.to_euler(): inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } if(order_str) { order= euler_order_from_string(order_str, "Matrix.to_euler()"); if(order == -1) return NULL; } if(eul_compat) { if(order == 1) mat3_to_compatible_eul(eul, eul_compatf, mat); else mat3_to_compatible_eulO(eul, eul_compatf, order, mat); } else { if(order == 1) mat3_to_eul(eul, mat); else mat3_to_eulO(eul, order, mat); } return newEulerObject(eul, order, Py_NEW, NULL); } static char Matrix_resize_4x4_doc[] = ".. method:: resize_4x4()\n" "\n" " Resize the matrix to 4x4.\n" ; static PyObject *Matrix_resize_4x4(MatrixObject *self) { int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index; if(self->wrapped==Py_WRAP){ PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that"); return NULL; } if(self->cb_user){ PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that"); return NULL; } self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16)); if(self->contigPtr == NULL) { PyErr_SetString(PyExc_MemoryError, "matrix.resize_4x4(): problem allocating pointer space"); return NULL; } /*set row pointers*/ for(x = 0; x < 4; x++) { self->matrix[x] = self->contigPtr + (x * 4); } /*move data to new spot in array + clean*/ for(blank_rows = (4 - self->row_size); blank_rows > 0; blank_rows--){ for(x = 0; x < 4; x++){ index = (4 * (self->row_size + (blank_rows - 1))) + x; if (index == 10 || index == 15){ self->contigPtr[index] = 1.0f; } else { self->contigPtr[index] = 0.0f; } } } for(x = 1; x <= self->row_size; x++){ first_row_elem = (self->col_size * (self->row_size - x)); curr_pos = (first_row_elem + (self->col_size -1)); new_pos = (4 * (self->row_size - x)) + (curr_pos - first_row_elem); for(blank_columns = (4 - self->col_size); blank_columns > 0; blank_columns--){ self->contigPtr[new_pos + blank_columns] = 0.0f; } for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){ self->contigPtr[new_pos] = self->contigPtr[curr_pos]; new_pos--; } } self->row_size = 4; self->col_size = 4; Py_RETURN_NONE; } static char Matrix_to_4x4_doc[] = ".. method:: to_4x4()\n" "\n" " Return a 4x4 copy of this matrix.\n" "\n" " :return: a new matrix.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *Matrix_to_4x4(MatrixObject *self) { if(BaseMath_ReadCallback(self) == -1) return NULL; if(self->col_size==4 && self->row_size==4) { return (PyObject *)newMatrixObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self)); } else if(self->col_size==3 && self->row_size==3) { float mat[4][4]; copy_m4_m3(mat, (float (*)[3])self->contigPtr); return (PyObject *)newMatrixObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self)); } /* TODO, 2x2 matrix */ PyErr_SetString(PyExc_TypeError, "Matrix.to_4x4(): inappropriate matrix size"); return NULL; } static char Matrix_to_3x3_doc[] = ".. method:: to_3x3()\n" "\n" " Return a 3x3 copy of this matrix.\n" "\n" " :return: a new matrix.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *Matrix_to_3x3(MatrixObject *self) { float mat[3][3]; if(BaseMath_ReadCallback(self) == -1) return NULL; if((self->col_size < 3) || (self->row_size < 3)) { PyErr_SetString(PyExc_AttributeError, "Matrix.to_3x3(): inappropriate matrix size"); return NULL; } matrix_as_3x3(mat, self); return newMatrixObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self)); } static char Matrix_to_translation_doc[] = ".. method:: to_translation()\n" "\n" " Return a the translation part of a 4 row matrix.\n" "\n" " :return: Return a the translation of a matrix.\n" " :rtype: :class:`Vector`\n" ; static PyObject *Matrix_to_translation(MatrixObject *self) { if(BaseMath_ReadCallback(self) == -1) return NULL; if((self->col_size < 3) || self->row_size < 4){ PyErr_SetString(PyExc_AttributeError, "Matrix.to_translation(): inappropriate matrix size"); return NULL; } return newVectorObject(self->matrix[3], 3, Py_NEW, NULL); } static char Matrix_to_scale_doc[] = ".. method:: to_scale()\n" "\n" " Return a the scale part of a 3x3 or 4x4 matrix.\n" "\n" " :return: Return a the scale of a matrix.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n" ; static PyObject *Matrix_to_scale(MatrixObject *self) { float rot[3][3]; float mat[3][3]; float size[3]; if(BaseMath_ReadCallback(self) == -1) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if((self->col_size < 3) || (self->row_size < 3)) { PyErr_SetString(PyExc_AttributeError, "Matrix.to_scale(): inappropriate matrix size, 3x3 minimum size"); return NULL; } matrix_as_3x3(mat, self); /* compatible mat4_to_loc_rot_size */ mat3_to_rot_size(rot, size, mat); return newVectorObject(size, 3, Py_NEW, NULL); } /*---------------------------Matrix.invert() ---------------------*/ static char Matrix_invert_doc[] = ".. method:: invert()\n" "\n" " Set the matrix to its inverse.\n" "\n" " .. note:: :exc:`ValueError` exception is raised.\n" "\n" " .. seealso:: \n" ; static PyObject *Matrix_invert(MatrixObject *self) { int x, y, z = 0; float det = 0.0f; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(BaseMath_ReadCallback(self) == -1) return NULL; if(self->row_size != self->col_size){ PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported"); return NULL; } /*calculate the determinant*/ det = matrix_determinant_internal(self); if(det != 0) { /*calculate the classical adjoint*/ if(self->row_size == 2) { mat[0] = self->matrix[1][1]; mat[1] = -self->matrix[0][1]; mat[2] = -self->matrix[1][0]; mat[3] = self->matrix[0][0]; } else if(self->row_size == 3) { adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr); } else if(self->row_size == 4) { adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr); } /*divide by determinate*/ for(x = 0; x < (self->row_size * self->col_size); x++) { mat[x] /= det; } /*set values*/ for(x = 0; x < self->row_size; x++) { for(y = 0; y < self->col_size; y++) { self->matrix[x][y] = mat[z]; z++; } } /*transpose Matrix_transpose(self);*/ } else { PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse"); return NULL; } (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } static char Matrix_inverted_doc[] = ".. method:: inverted()\n" "\n" " Return an inverted copy of the matrix.\n" "\n" " :return: the inverted matrix.\n" " :rtype: :class:`Matrix`\n" "\n" " .. note:: :exc:`ValueError` exception is raised.\n" ; static PyObject *Matrix_inverted(MatrixObject *self) { return matrix__apply_to_copy((PyNoArgsFunction)Matrix_invert, self); } static char Matrix_rotate_doc[] = ".. method:: rotate(other)\n" "\n" " Rotates the matrix a by another mathutils value.\n" "\n" " :arg other: rotation component of mathutils value\n" " :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n" "\n" " .. note:: If any of the columns are not unit length this may not have desired results.\n" ; static PyObject *Matrix_rotate(MatrixObject *self, PyObject *value) { float self_rmat[3][3], other_rmat[3][3], rmat[3][3]; if(BaseMath_ReadCallback(self) == -1) return NULL; if(mathutils_any_to_rotmat(other_rmat, value, "matrix.rotate(value)") == -1) return NULL; if(self->col_size != 3 || self->row_size != 3) { PyErr_SetString(PyExc_ValueError, "Matrix must have 3x3 dimensions"); return NULL; } matrix_as_3x3(self_rmat, self); mul_m3_m3m3(rmat, self_rmat, other_rmat); copy_m3_m3((float (*)[3])(self->contigPtr), rmat); (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } /*---------------------------Matrix.decompose() ---------------------*/ static char Matrix_decompose_doc[] = ".. method:: decompose()\n" "\n" " Return the location, rotaion and scale components of this matrix.\n" "\n" " :return: loc, rot, scale triple.\n" " :rtype: (:class:`Vector`, :class:`Quaternion`, :class:`Vector`)" ; static PyObject *Matrix_decompose(MatrixObject *self) { PyObject *ret; float loc[3]; float rot[3][3]; float quat[4]; float size[3]; if(self->col_size != 4 || self->row_size != 4) { PyErr_SetString(PyExc_AttributeError, "Matrix.decompose(): inappropriate matrix size - expects 4x4 matrix"); return NULL; } if(BaseMath_ReadCallback(self) == -1) return NULL; mat4_to_loc_rot_size(loc, rot, size, (float (*)[4])self->contigPtr); mat3_to_quat(quat, rot); ret= PyTuple_New(3); PyTuple_SET_ITEM(ret, 0, newVectorObject(loc, 3, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 1, newQuaternionObject(quat, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 2, newVectorObject(size, 3, Py_NEW, NULL)); return ret; } static char Matrix_lerp_doc[] = ".. function:: lerp(other, factor)\n" "\n" " Returns the interpolation of two matricies.\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Matrix`\n" " :arg factor: The interpolation value in [0.0, 1.0].\n" " :type factor: float\n" " :return: The interpolated rotation.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *Matrix_lerp(MatrixObject *self, PyObject *args) { MatrixObject *mat2 = NULL; float fac, mat[MATRIX_MAX_DIM*MATRIX_MAX_DIM]; if(!PyArg_ParseTuple(args, "O!f:lerp", &matrix_Type, &mat2, &fac)) return NULL; if(self->row_size != mat2->row_size || self->col_size != mat2->col_size) { PyErr_SetString(PyExc_AttributeError, "matrix.lerp(): expects both matrix objects of the same dimensions"); return NULL; } if(BaseMath_ReadCallback(self) == -1 || BaseMath_ReadCallback(mat2) == -1) return NULL; /* TODO, different sized matrix */ if(self->row_size==4 && self->col_size==4) { blend_m4_m4m4((float (*)[4])mat, (float (*)[4])self->contigPtr, (float (*)[4])mat2->contigPtr, fac); } else if (self->row_size==3 && self->col_size==3) { blend_m3_m3m3((float (*)[3])mat, (float (*)[3])self->contigPtr, (float (*)[3])mat2->contigPtr, fac); } else { PyErr_SetString(PyExc_AttributeError, "matrix.lerp(): only 3x3 and 4x4 matrices supported"); return NULL; } return (PyObject*)newMatrixObject(mat, self->row_size, self->col_size, Py_NEW, Py_TYPE(self)); } /*---------------------------Matrix.determinant() ----------------*/ static char Matrix_determinant_doc[] = ".. method:: determinant()\n" "\n" " Return the determinant of a matrix.\n" "\n" " :return: Return a the determinant of a matrix.\n" " :rtype: float\n" "\n" " .. seealso:: \n" ; static PyObject *Matrix_determinant(MatrixObject *self) { if(BaseMath_ReadCallback(self) == -1) return NULL; if(self->row_size != self->col_size){ PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported"); return NULL; } return PyFloat_FromDouble((double)matrix_determinant_internal(self)); } /*---------------------------Matrix.transpose() ------------------*/ static char Matrix_transpose_doc[] = ".. method:: transpose()\n" "\n" " Set the matrix to its transpose.\n" "\n" " .. seealso:: \n" ; static PyObject *Matrix_transpose(MatrixObject *self) { float t = 0.0f; if(BaseMath_ReadCallback(self) == -1) return NULL; if(self->row_size != self->col_size){ PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported"); return NULL; } if(self->row_size == 2) { t = self->matrix[1][0]; self->matrix[1][0] = self->matrix[0][1]; self->matrix[0][1] = t; } else if(self->row_size == 3) { transpose_m3((float (*)[3])self->contigPtr); } else { transpose_m4((float (*)[4])self->contigPtr); } (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } static char Matrix_transposed_doc[] = ".. method:: transposed()\n" "\n" " Return a new, transposed matrix.\n" "\n" " :return: a transposed matrix\n" " :rtype: :class:`Matrix`\n" ; static PyObject *Matrix_transposed(MatrixObject *self) { return matrix__apply_to_copy((PyNoArgsFunction)Matrix_transpose, self); } /*---------------------------Matrix.zero() -----------------------*/ static char Matrix_zero_doc[] = ".. method:: zero()\n" "\n" " Set all the matrix values to zero.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Matrix`\n" ; static PyObject *Matrix_zero(MatrixObject *self) { fill_vn(self->contigPtr, self->row_size * self->col_size, 0.0f); if(BaseMath_WriteCallback(self) == -1) return NULL; Py_RETURN_NONE; } /*---------------------------Matrix.identity(() ------------------*/ static char Matrix_identity_doc[] = ".. method:: identity()\n" "\n" " Set the matrix to the identity matrix.\n" "\n" " .. note:: An object with zero location and rotation, a scale of one, will have an identity matrix.\n" "\n" " .. seealso:: \n" ; static PyObject *Matrix_identity(MatrixObject *self) { if(BaseMath_ReadCallback(self) == -1) return NULL; if(self->row_size != self->col_size){ PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported"); return NULL; } if(self->row_size == 2) { self->matrix[0][0] = 1.0f; self->matrix[0][1] = 0.0f; self->matrix[1][0] = 0.0f; self->matrix[1][1] = 1.0f; } else if(self->row_size == 3) { unit_m3((float (*)[3])self->contigPtr); } else { unit_m4((float (*)[4])self->contigPtr); } if(BaseMath_WriteCallback(self) == -1) return NULL; Py_RETURN_NONE; } /*---------------------------Matrix.copy() ------------------*/ static char Matrix_copy_doc[] = ".. method:: copy()\n" "\n" " Returns a copy of this matrix.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Matrix`\n" ; static PyObject *Matrix_copy(MatrixObject *self) { if(BaseMath_ReadCallback(self) == -1) return NULL; return (PyObject*)newMatrixObject((float (*))self->contigPtr, self->row_size, self->col_size, Py_NEW, Py_TYPE(self)); } /*----------------------------print object (internal)-------------*/ /*print the object to screen*/ static PyObject *Matrix_repr(MatrixObject *self) { int x, y; PyObject *rows[MATRIX_MAX_DIM]= {NULL}; if(BaseMath_ReadCallback(self) == -1) return NULL; for(x = 0; x < self->row_size; x++){ rows[x]= PyTuple_New(self->col_size); for(y = 0; y < self->col_size; y++) { PyTuple_SET_ITEM(rows[x], y, PyFloat_FromDouble(self->matrix[x][y])); } } switch(self->row_size) { case 2: return PyUnicode_FromFormat("Matrix(%R,\n" " %R)", rows[0], rows[1]); case 3: return PyUnicode_FromFormat("Matrix(%R,\n" " %R,\n" " %R)", rows[0], rows[1], rows[2]); case 4: return PyUnicode_FromFormat("Matrix(%R,\n" " %R,\n" " %R,\n" " %R)", rows[0], rows[1], rows[2], rows[3]); } PyErr_SetString(PyExc_RuntimeError, "invalid matrix size"); return NULL; } static PyObject* Matrix_richcmpr(PyObject *a, PyObject *b, int op) { PyObject *res; int ok= -1; /* zero is true */ if (MatrixObject_Check(a) && MatrixObject_Check(b)) { MatrixObject *matA= (MatrixObject*)a; MatrixObject *matB= (MatrixObject*)b; if(BaseMath_ReadCallback(matA) == -1 || BaseMath_ReadCallback(matB) == -1) return NULL; ok= ( (matA->col_size == matB->col_size) && (matA->row_size == matB->row_size) && EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr, (matA->row_size * matA->col_size), 1) ) ? 0 : -1; } switch (op) { case Py_NE: ok = !ok; /* pass through */ case Py_EQ: res = ok ? Py_False : Py_True; break; case Py_LT: case Py_LE: case Py_GT: case Py_GE: res = Py_NotImplemented; break; default: PyErr_BadArgument(); return NULL; } return Py_INCREF(res), res; } /*---------------------SEQUENCE PROTOCOLS------------------------ ----------------------------len(object)------------------------ sequence length*/ static int Matrix_len(MatrixObject *self) { return (self->row_size); } /*----------------------------object[]--------------------------- sequence accessor (get) the wrapped vector gives direct access to the matrix data*/ static PyObject *Matrix_item(MatrixObject *self, int i) { if(BaseMath_ReadCallback(self) == -1) return NULL; if(i < 0 || i >= self->row_size) { PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range"); return NULL; } return newVectorObject_cb((PyObject *)self, self->col_size, mathutils_matrix_vector_cb_index, i); } /*----------------------------object[]------------------------- sequence accessor (set) */ static int Matrix_ass_item(MatrixObject *self, int i, PyObject *value) { float vec[4]; if(BaseMath_ReadCallback(self) == -1) return -1; if(i >= self->row_size || i < 0){ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad column"); return -1; } if(mathutils_array_parse(vec, self->col_size, self->col_size, value, "matrix[i] = value assignment") < 0) { return -1; } memcpy(self->matrix[i], vec, self->col_size *sizeof(float)); (void)BaseMath_WriteCallback(self); return 0; } /*----------------------------object[z:y]------------------------ sequence slice (get)*/ static PyObject *Matrix_slice(MatrixObject *self, int begin, int end) { PyObject *tuple; int count; if(BaseMath_ReadCallback(self) == -1) return NULL; CLAMP(begin, 0, self->row_size); CLAMP(end, 0, self->row_size); begin= MIN2(begin, end); tuple= PyTuple_New(end - begin); for(count= begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, newVectorObject_cb((PyObject *)self, self->col_size, mathutils_matrix_vector_cb_index, count)); } return tuple; } /*----------------------------object[z:y]------------------------ sequence slice (set)*/ static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *value) { PyObject *value_fast= NULL; if(BaseMath_ReadCallback(self) == -1) return -1; CLAMP(begin, 0, self->row_size); CLAMP(end, 0, self->row_size); begin = MIN2(begin, end); /* non list/tuple cases */ if(!(value_fast=PySequence_Fast(value, "matrix[begin:end] = value"))) { /* PySequence_Fast sets the error */ return -1; } else { const int size= end - begin; int i; float mat[16]; if(PySequence_Fast_GET_SIZE(value_fast) != size) { Py_DECREF(value_fast); PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment"); return -1; } /*parse sub items*/ for (i = 0; i < size; i++) { /*parse each sub sequence*/ PyObject *item= PySequence_Fast_GET_ITEM(value_fast, i); if(mathutils_array_parse(&mat[i * self->col_size], self->col_size, self->col_size, item, "matrix[begin:end] = value assignment") < 0) { return -1; } } Py_DECREF(value_fast); /*parsed well - now set in matrix*/ memcpy(self->contigPtr + (begin * self->col_size), mat, sizeof(float) * (size * self->col_size)); (void)BaseMath_WriteCallback(self); return 0; } } /*------------------------NUMERIC PROTOCOLS---------------------- ------------------------obj + obj------------------------------*/ static PyObject *Matrix_add(PyObject *m1, PyObject *m2) { float mat[16]; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) { PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation"); return NULL; } if(BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1) return NULL; if(mat1->row_size != mat2->row_size || mat1->col_size != mat2->col_size){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation"); return NULL; } add_vn_vnvn(mat, mat1->contigPtr, mat2->contigPtr, mat1->row_size * mat1->col_size); return newMatrixObject(mat, mat1->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1)); } /*------------------------obj - obj------------------------------ subtraction*/ static PyObject *Matrix_sub(PyObject *m1, PyObject *m2) { float mat[16]; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) { PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation"); return NULL; } if(BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1) return NULL; if(mat1->row_size != mat2->row_size || mat1->col_size != mat2->col_size){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation"); return NULL; } sub_vn_vnvn(mat, mat1->contigPtr, mat2->contigPtr, mat1->row_size * mat1->col_size); return newMatrixObject(mat, mat1->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1)); } /*------------------------obj * obj------------------------------ mulplication*/ static PyObject *matrix_mul_float(MatrixObject *mat, const float scalar) { float tmat[16]; mul_vn_vn_fl(tmat, mat->contigPtr, mat->row_size * mat->col_size, scalar); return newMatrixObject(tmat, mat->row_size, mat->col_size, Py_NEW, Py_TYPE(mat)); } static PyObject *Matrix_mul(PyObject * m1, PyObject * m2) { float scalar; MatrixObject *mat1 = NULL, *mat2 = NULL; if(MatrixObject_Check(m1)) { mat1 = (MatrixObject*)m1; if(BaseMath_ReadCallback(mat1) == -1) return NULL; } if(MatrixObject_Check(m2)) { mat2 = (MatrixObject*)m2; if(BaseMath_ReadCallback(mat2) == -1) return NULL; } if(mat1 && mat2) { /*MATRIX * MATRIX*/ if(mat1->row_size != mat2->col_size){ PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize"); return NULL; } else { float mat[16]= {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; double dot = 0.0f; int x, y, z; for(x = 0; x < mat2->row_size; x++) { for(y = 0; y < mat1->col_size; y++) { for(z = 0; z < mat1->row_size; z++) { dot += (mat1->matrix[z][y] * mat2->matrix[x][z]); } mat[((x * mat1->col_size) + y)] = (float)dot; dot = 0.0f; } } return newMatrixObject(mat, mat2->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1)); } } else if(mat2) { if (((scalar= PyFloat_AsDouble(m1)) == -1.0f && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX */ return matrix_mul_float(mat2, scalar); } } else if(mat1) { if (((scalar= PyFloat_AsDouble(m2)) == -1.0f && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX */ return matrix_mul_float(mat1, scalar); } } else { BLI_assert(!"internal error"); } PyErr_Format(PyExc_TypeError, "Matrix multiplication: not supported between '%.200s' and '%.200s' types", Py_TYPE(m1)->tp_name, Py_TYPE(m2)->tp_name); return NULL; } static PyObject* Matrix_inv(MatrixObject *self) { if(BaseMath_ReadCallback(self) == -1) return NULL; return Matrix_invert(self); } /*-----------------PROTOCOL DECLARATIONS--------------------------*/ static PySequenceMethods Matrix_SeqMethods = { (lenfunc) Matrix_len, /* sq_length */ (binaryfunc) NULL, /* sq_concat */ (ssizeargfunc) NULL, /* sq_repeat */ (ssizeargfunc) Matrix_item, /* sq_item */ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */ (ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */ (objobjproc) NULL, /* sq_contains */ (binaryfunc) NULL, /* sq_inplace_concat */ (ssizeargfunc) NULL, /* sq_inplace_repeat */ }; static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += self->row_size; return Matrix_item(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((void *)item, self->row_size, &start, &stop, &step, &slicelength) < 0) return NULL; if (slicelength <= 0) { return PyTuple_New(0); } else if (step == 1) { return Matrix_slice(self, start, stop); } else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies"); return NULL; } } else { PyErr_Format(PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) i += self->row_size; return Matrix_ass_item(self, i, value); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((void *)item, self->row_size, &start, &stop, &step, &slicelength) < 0) return -1; if (step == 1) return Matrix_ass_slice(self, start, stop, value); else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies"); return -1; } } else { PyErr_Format(PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } } static PyMappingMethods Matrix_AsMapping = { (lenfunc)Matrix_len, (binaryfunc)Matrix_subscript, (objobjargproc)Matrix_ass_subscript }; static PyNumberMethods Matrix_NumMethods = { (binaryfunc) Matrix_add, /*nb_add*/ (binaryfunc) Matrix_sub, /*nb_subtract*/ (binaryfunc) Matrix_mul, /*nb_multiply*/ NULL, /*nb_remainder*/ NULL, /*nb_divmod*/ NULL, /*nb_power*/ (unaryfunc) 0, /*nb_negative*/ (unaryfunc) 0, /*tp_positive*/ (unaryfunc) 0, /*tp_absolute*/ (inquiry) 0, /*tp_bool*/ (unaryfunc) Matrix_inv, /*nb_invert*/ NULL, /*nb_lshift*/ (binaryfunc)0, /*nb_rshift*/ NULL, /*nb_and*/ NULL, /*nb_xor*/ NULL, /*nb_or*/ NULL, /*nb_int*/ NULL, /*nb_reserved*/ NULL, /*nb_float*/ NULL, /* nb_inplace_add */ NULL, /* nb_inplace_subtract */ NULL, /* nb_inplace_multiply */ NULL, /* nb_inplace_remainder */ NULL, /* nb_inplace_power */ NULL, /* nb_inplace_lshift */ NULL, /* nb_inplace_rshift */ NULL, /* nb_inplace_and */ NULL, /* nb_inplace_xor */ NULL, /* nb_inplace_or */ NULL, /* nb_floor_divide */ NULL, /* nb_true_divide */ NULL, /* nb_inplace_floor_divide */ NULL, /* nb_inplace_true_divide */ NULL, /* nb_index */ }; static PyObject *Matrix_getRowSize(MatrixObject *self, void *UNUSED(closure)) { return PyLong_FromLong((long) self->row_size); } static PyObject *Matrix_getColSize(MatrixObject *self, void *UNUSED(closure)) { return PyLong_FromLong((long) self->col_size); } static PyObject *Matrix_getMedianScale(MatrixObject *self, void *UNUSED(closure)) { float mat[3][3]; if(BaseMath_ReadCallback(self) == -1) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if((self->col_size < 3) || (self->row_size < 3)) { PyErr_SetString(PyExc_AttributeError, "Matrix.median_scale: inappropriate matrix size, 3x3 minimum"); return NULL; } matrix_as_3x3(mat, self); return PyFloat_FromDouble(mat3_to_scale(mat)); } static PyObject *Matrix_getIsNegative(MatrixObject *self, void *UNUSED(closure)) { if(BaseMath_ReadCallback(self) == -1) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->col_size == 4 && self->row_size == 4) return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr)); else if(self->col_size == 3 && self->row_size == 3) return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr)); else { PyErr_SetString(PyExc_AttributeError, "Matrix.is_negative: inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Matrix_getseters[] = { {(char *)"row_size", (getter)Matrix_getRowSize, (setter)NULL, (char *)"The row size of the matrix (readonly).\n\n:type: int", NULL}, {(char *)"col_size", (getter)Matrix_getColSize, (setter)NULL, (char *)"The column size of the matrix (readonly).\n\n:type: int", NULL}, {(char *)"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, (char *)"The average scale applied to each axis (readonly).\n\n:type: float", NULL}, {(char *)"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, (char *)"True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly).\n\n:type: bool", NULL}, {(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL}, {(char *)"owner",(getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL}, {NULL, NULL, NULL, NULL, NULL} /* Sentinel */ }; /*-----------------------METHOD DEFINITIONS ----------------------*/ static struct PyMethodDef Matrix_methods[] = { /* derived values */ {"determinant", (PyCFunction) Matrix_determinant, METH_NOARGS, Matrix_determinant_doc}, {"decompose", (PyCFunction) Matrix_decompose, METH_NOARGS, Matrix_decompose_doc}, /* in place only */ {"zero", (PyCFunction) Matrix_zero, METH_NOARGS, Matrix_zero_doc}, {"identity", (PyCFunction) Matrix_identity, METH_NOARGS, Matrix_identity_doc}, /* operate on original or copy */ {"transpose", (PyCFunction) Matrix_transpose, METH_NOARGS, Matrix_transpose_doc}, {"transposed", (PyCFunction) Matrix_transposed, METH_NOARGS, Matrix_transposed_doc}, {"invert", (PyCFunction) Matrix_invert, METH_NOARGS, Matrix_invert_doc}, {"inverted", (PyCFunction) Matrix_inverted, METH_NOARGS, Matrix_inverted_doc}, {"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc}, // TODO. {"resize_3x3", (PyCFunction) Matrix_resize3x3, METH_NOARGS, Matrix_resize3x3_doc}, {"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc}, {"resize_4x4", (PyCFunction) Matrix_resize_4x4, METH_NOARGS, Matrix_resize_4x4_doc}, {"rotate", (PyCFunction) Matrix_rotate, METH_O, Matrix_rotate_doc}, /* return converted representation */ {"to_euler", (PyCFunction) Matrix_to_euler, METH_VARARGS, Matrix_to_euler_doc}, {"to_quaternion", (PyCFunction) Matrix_to_quaternion, METH_NOARGS, Matrix_to_quaternion_doc}, {"to_scale", (PyCFunction) Matrix_to_scale, METH_NOARGS, Matrix_to_scale_doc}, {"to_translation", (PyCFunction) Matrix_to_translation, METH_NOARGS, Matrix_to_translation_doc}, /* operation between 2 or more types */ {"lerp", (PyCFunction) Matrix_lerp, METH_VARARGS, Matrix_lerp_doc}, {"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc}, {"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc}, /* class methods */ {"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc}, {"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc}, {"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc}, {"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc}, {"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc}, {NULL, NULL, 0, NULL} }; /*------------------PY_OBECT DEFINITION--------------------------*/ static char matrix_doc[] = "This object gives access to Matrices in Blender." ; PyTypeObject matrix_Type = { PyVarObject_HEAD_INIT(NULL, 0) "mathutils.Matrix", /*tp_name*/ sizeof(MatrixObject), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)BaseMathObject_dealloc, /*tp_dealloc*/ NULL, /*tp_print*/ NULL, /*tp_getattr*/ NULL, /*tp_setattr*/ NULL, /*tp_compare*/ (reprfunc) Matrix_repr, /*tp_repr*/ &Matrix_NumMethods, /*tp_as_number*/ &Matrix_SeqMethods, /*tp_as_sequence*/ &Matrix_AsMapping, /*tp_as_mapping*/ NULL, /*tp_hash*/ NULL, /*tp_call*/ NULL, /*tp_str*/ NULL, /*tp_getattro*/ NULL, /*tp_setattro*/ NULL, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/ matrix_doc, /*tp_doc*/ (traverseproc)BaseMathObject_traverse, //tp_traverse (inquiry)BaseMathObject_clear, //tp_clear (richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ NULL, /*tp_iter*/ NULL, /*tp_iternext*/ Matrix_methods, /*tp_methods*/ NULL, /*tp_members*/ Matrix_getseters, /*tp_getset*/ NULL, /*tp_base*/ NULL, /*tp_dict*/ NULL, /*tp_descr_get*/ NULL, /*tp_descr_set*/ 0, /*tp_dictoffset*/ NULL, /*tp_init*/ NULL, /*tp_alloc*/ Matrix_new, /*tp_new*/ NULL, /*tp_free*/ NULL, /*tp_is_gc*/ NULL, /*tp_bases*/ NULL, /*tp_mro*/ NULL, /*tp_cache*/ NULL, /*tp_subclasses*/ NULL, /*tp_weaklist*/ NULL /*tp_del*/ }; /*------------------------newMatrixObject (internal)------------- creates a new matrix object self->matrix self->contiguous_ptr (reference to data.xxx) [0]------------->[0] [1] [2] [1]------------->[3] [4] [5] self->matrix[1][1] = self->contigPtr[4] */ /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newMatrixObject(float *mat, const unsigned short rowSize, const unsigned short colSize, int type, PyTypeObject *base_type) { MatrixObject *self; int x, row, col; /*matrix objects can be any 2-4row x 2-4col matrix*/ if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4) { PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4"); return NULL; } self= base_type ? (MatrixObject *)base_type->tp_alloc(base_type, 0) : (MatrixObject *)PyObject_GC_New(MatrixObject, &matrix_Type); if(self) { self->row_size = rowSize; self->col_size = colSize; /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP){ self->contigPtr = mat; /*pointer array points to contigous memory*/ for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } self->wrapped = Py_WRAP; } else if (type == Py_NEW){ self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float)); if(self->contigPtr == NULL) { /*allocation failure*/ PyErr_SetString(PyExc_MemoryError, "matrix(): problem allocating pointer space"); return NULL; } /*pointer array points to contigous memory*/ for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } /*parse*/ if(mat) { /*if a float array passed*/ for(row = 0; row < rowSize; row++) { for(col = 0; col < colSize; col++) { self->matrix[row][col] = mat[(row * colSize) + col]; } } } else if (rowSize == colSize) { /*or if no arguments are passed return identity matrix for square matrices */ PyObject *ret_dummy= Matrix_identity(self); Py_DECREF(ret_dummy); } self->wrapped = Py_NEW; } else { PyErr_SetString(PyExc_RuntimeError, "Matrix(): invalid type"); return NULL; } } return (PyObject *) self; } PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype) { MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; PyObject_GC_Track(self); } return (PyObject *) self; }