/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "mathutils.h" #include "BLI_math.h" #include "BLI_utildefines.h" #ifndef int32_t #include "BLO_sys_types.h" #endif #define EULER_SIZE 3 //----------------------------------mathutils.Euler() ------------------- //makes a new euler for you to play with static PyObject *Euler_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *seq= NULL; const char *order_str= NULL; float eul[EULER_SIZE]= {0.0f, 0.0f, 0.0f}; short order= EULER_ORDER_XYZ; if(kwds && PyDict_Size(kwds)) { PyErr_SetString(PyExc_TypeError, "mathutils.Euler(): takes no keyword args"); return NULL; } if(!PyArg_ParseTuple(args, "|Os:mathutils.Euler", &seq, &order_str)) return NULL; switch(PyTuple_GET_SIZE(args)) { case 0: break; case 2: if((order=euler_order_from_string(order_str, "mathutils.Euler()")) == -1) return NULL; /* intentionally pass through */ case 1: if (mathutils_array_parse(eul, EULER_SIZE, EULER_SIZE, seq, "mathutils.Euler()") == -1) return NULL; break; } return newEulerObject(eul, order, Py_NEW, type); } /* internal use, assuem read callback is done */ static const char *euler_order_str(EulerObject *self) { static const char order[][4] = {"XYZ", "XZY", "YXZ", "YZX", "ZXY", "ZYX"}; return order[self->order-EULER_ORDER_XYZ]; } short euler_order_from_string(const char *str, const char *error_prefix) { if((str[0] && str[1] && str[2] && str[3]=='\0')) { switch(*((int32_t *)str)) { case 'X'|'Y'<<8|'Z'<<16: return EULER_ORDER_XYZ; case 'X'|'Z'<<8|'Y'<<16: return EULER_ORDER_XZY; case 'Y'|'X'<<8|'Z'<<16: return EULER_ORDER_YXZ; case 'Y'|'Z'<<8|'X'<<16: return EULER_ORDER_YZX; case 'Z'|'X'<<8|'Y'<<16: return EULER_ORDER_ZXY; case 'Z'|'Y'<<8|'X'<<16: return EULER_ORDER_ZYX; } } PyErr_Format(PyExc_TypeError, "%s: invalid euler order '%s'", error_prefix, str); return -1; } /* note: BaseMath_ReadCallback must be called beforehand */ static PyObject *Euler_ToTupleExt(EulerObject *self, int ndigits) { PyObject *ret; int i; ret= PyTuple_New(EULER_SIZE); if(ndigits >= 0) { for(i= 0; i < EULER_SIZE; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->eul[i], ndigits))); } } else { for(i= 0; i < EULER_SIZE; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->eul[i])); } } return ret; } //-----------------------------METHODS---------------------------- //return a quaternion representation of the euler static char Euler_to_quaternion_doc[] = ".. method:: to_quaternion()\n" "\n" " Return a quaternion representation of the euler.\n" "\n" " :return: Quaternion representation of the euler.\n" " :rtype: :class:`Quaternion`\n" ; static PyObject *Euler_to_quaternion(EulerObject * self) { float quat[4]; if(!BaseMath_ReadCallback(self)) return NULL; eulO_to_quat(quat, self->eul, self->order); return newQuaternionObject(quat, Py_NEW, NULL); } //return a matrix representation of the euler static char Euler_to_matrix_doc[] = ".. method:: to_matrix()\n" "\n" " Return a matrix representation of the euler.\n" "\n" " :return: A 3x3 roation matrix representation of the euler.\n" " :rtype: :class:`Matrix`\n" ; static PyObject *Euler_to_matrix(EulerObject * self) { float mat[9]; if(!BaseMath_ReadCallback(self)) return NULL; eulO_to_mat3((float (*)[3])mat, self->eul, self->order); return newMatrixObject(mat, 3, 3 , Py_NEW, NULL); } //sets the euler to 0,0,0 static char Euler_zero_doc[] = ".. method:: zero()\n" "\n" " Set all values to zero.\n" ; static PyObject *Euler_zero(EulerObject * self) { zero_v3(self->eul); (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } static char Euler_rotate_axis_doc[] = ".. method:: rotate_axis(axis, angle)\n" "\n" " Rotates the euler a certain amount and returning a unique euler rotation (no 720 degree pitches).\n" "\n" " :arg axis: single character in ['X, 'Y', 'Z'].\n" " :type axis: string\n" " :arg angle: angle in radians.\n" " :type angle: float\n" ; static PyObject *Euler_rotate_axis(EulerObject * self, PyObject *args) { float angle = 0.0f; const char *axis; if(!PyArg_ParseTuple(args, "sf:rotate", &axis, &angle)){ PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected angle (float) and axis (x,y,z)"); return NULL; } if(!(ELEM3(*axis, 'X', 'Y', 'Z') && axis[1]=='\0')){ PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'X', 'Y' or 'Z'"); return NULL; } if(!BaseMath_ReadCallback(self)) return NULL; rotate_eulO(self->eul, self->order, *axis, angle); (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } static char Euler_rotate_doc[] = ".. method:: rotate(other)\n" "\n" " Rotates the euler a by another mathutils value.\n" "\n" " :arg other: rotation component of mathutils value\n" " :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n" ; static PyObject *Euler_rotate(EulerObject * self, PyObject *value) { float self_rmat[3][3], other_rmat[3][3], rmat[3][3]; if(!BaseMath_ReadCallback(self)) return NULL; if(mathutils_any_to_rotmat(other_rmat, value, "euler.rotate(value)") == -1) return NULL; eulO_to_mat3(self_rmat, self->eul, self->order); mul_m3_m3m3(rmat, self_rmat, other_rmat); mat3_to_compatible_eulO(self->eul, self->eul, self->order, rmat); (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } static char Euler_make_compatible_doc[] = ".. method:: make_compatible(other)\n" "\n" " Make this euler compatible with another, so interpolating between them works as intended.\n" "\n" " :arg other: make compatible with this rotation.\n" " :type other: :class:`Euler`\n" "\n" " .. note:: the rotation order is not taken into account for this function.\n" ; static PyObject *Euler_make_compatible(EulerObject * self, PyObject *value) { float teul[EULER_SIZE]; if(!BaseMath_ReadCallback(self)) return NULL; if(mathutils_array_parse(teul, EULER_SIZE, EULER_SIZE, value, "euler.make_compatible(other), invalid 'other' arg") == -1) return NULL; compatible_eul(self->eul, teul); (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } //----------------------------Euler.rotate()----------------------- // return a copy of the euler static char Euler_copy_doc[] = ".. function:: copy()\n" "\n" " Returns a copy of this euler.\n" "\n" " :return: A copy of the euler.\n" " :rtype: :class:`Euler`\n" "\n" " .. note:: use this to get a copy of a wrapped euler with no reference to the original data.\n" ; static PyObject *Euler_copy(EulerObject *self) { if(!BaseMath_ReadCallback(self)) return NULL; return newEulerObject(self->eul, self->order, Py_NEW, Py_TYPE(self)); } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Euler_repr(EulerObject * self) { PyObject *ret, *tuple; if(!BaseMath_ReadCallback(self)) return NULL; tuple= Euler_ToTupleExt(self, -1); ret= PyUnicode_FromFormat("Euler(%R, '%s')", tuple, euler_order_str(self)); Py_DECREF(tuple); return ret; } static PyObject* Euler_richcmpr(PyObject *a, PyObject *b, int op) { PyObject *res; int ok= -1; /* zero is true */ if (EulerObject_Check(a) && EulerObject_Check(b)) { EulerObject *eulA= (EulerObject*)a; EulerObject *eulB= (EulerObject*)b; if(!BaseMath_ReadCallback(eulA) || !BaseMath_ReadCallback(eulB)) return NULL; ok= ((eulA->order == eulB->order) && EXPP_VectorsAreEqual(eulA->eul, eulB->eul, EULER_SIZE, 1)) ? 0 : -1; } switch (op) { case Py_NE: ok = !ok; /* pass through */ case Py_EQ: res = ok ? Py_False : Py_True; break; case Py_LT: case Py_LE: case Py_GT: case Py_GE: res = Py_NotImplemented; break; default: PyErr_BadArgument(); return NULL; } return Py_INCREF(res), res; } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Euler_len(EulerObject *UNUSED(self)) { return EULER_SIZE; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Euler_item(EulerObject * self, int i) { if(i<0) i= EULER_SIZE-i; if(i < 0 || i >= EULER_SIZE) { PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range"); return NULL; } if(!BaseMath_ReadIndexCallback(self, i)) return NULL; return PyFloat_FromDouble(self->eul[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Euler_ass_item(EulerObject * self, int i, PyObject *value) { float f = PyFloat_AsDouble(value); if(f == -1 && PyErr_Occurred()) { // parsed item not a number PyErr_SetString(PyExc_TypeError, "euler[attribute] = x: argument not a number"); return -1; } if(i<0) i= EULER_SIZE-i; if(i < 0 || i >= EULER_SIZE){ PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range"); return -1; } self->eul[i] = f; if(!BaseMath_WriteIndexCallback(self, i)) return -1; return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Euler_slice(EulerObject * self, int begin, int end) { PyObject *tuple; int count; if(!BaseMath_ReadCallback(self)) return NULL; CLAMP(begin, 0, EULER_SIZE); if (end<0) end= (EULER_SIZE + 1) + end; CLAMP(end, 0, EULER_SIZE); begin= MIN2(begin, end); tuple= PyTuple_New(end - begin); for(count = begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->eul[count])); } return tuple; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Euler_ass_slice(EulerObject * self, int begin, int end, PyObject * seq) { int i, size; float eul[EULER_SIZE]; if(!BaseMath_ReadCallback(self)) return -1; CLAMP(begin, 0, EULER_SIZE); if (end<0) end= (EULER_SIZE + 1) + end; CLAMP(end, 0, EULER_SIZE); begin = MIN2(begin,end); if((size=mathutils_array_parse(eul, 0, EULER_SIZE, seq, "mathutils.Euler[begin:end] = []")) == -1) return -1; if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment"); return -1; } for(i= 0; i < EULER_SIZE; i++) self->eul[begin + i] = eul[i]; (void)BaseMath_WriteCallback(self); return 0; } static PyObject *Euler_subscript(EulerObject *self, PyObject *item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += EULER_SIZE; return Euler_item(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((void *)item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0) return NULL; if (slicelength <= 0) { return PyTuple_New(0); } else if (step == 1) { return Euler_slice(self, start, stop); } else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with eulers"); return NULL; } } else { PyErr_Format(PyExc_TypeError, "euler indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } static int Euler_ass_subscript(EulerObject *self, PyObject *item, PyObject *value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) i += EULER_SIZE; return Euler_ass_item(self, i, value); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((void *)item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0) return -1; if (step == 1) return Euler_ass_slice(self, start, stop, value); else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with euler"); return -1; } } else { PyErr_Format(PyExc_TypeError, "euler indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } } //-----------------PROTCOL DECLARATIONS-------------------------- static PySequenceMethods Euler_SeqMethods = { (lenfunc) Euler_len, /* sq_length */ (binaryfunc) NULL, /* sq_concat */ (ssizeargfunc) NULL, /* sq_repeat */ (ssizeargfunc) Euler_item, /* sq_item */ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */ (ssizeobjargproc) Euler_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */ (objobjproc) NULL, /* sq_contains */ (binaryfunc) NULL, /* sq_inplace_concat */ (ssizeargfunc) NULL, /* sq_inplace_repeat */ }; static PyMappingMethods Euler_AsMapping = { (lenfunc)Euler_len, (binaryfunc)Euler_subscript, (objobjargproc)Euler_ass_subscript }; /* * euler axis, euler.x/y/z */ static PyObject *Euler_getAxis(EulerObject *self, void *type ) { return Euler_item(self, GET_INT_FROM_POINTER(type)); } static int Euler_setAxis(EulerObject *self, PyObject *value, void *type) { return Euler_ass_item(self, GET_INT_FROM_POINTER(type), value); } /* rotation order */ static PyObject *Euler_getOrder(EulerObject *self, void *UNUSED(closure)) { if(!BaseMath_ReadCallback(self)) /* can read order too */ return NULL; return PyUnicode_FromString(euler_order_str(self)); } static int Euler_setOrder(EulerObject *self, PyObject *value, void *UNUSED(closure)) { const char *order_str= _PyUnicode_AsString(value); short order= euler_order_from_string(order_str, "euler.order"); if(order == -1) return -1; self->order= order; (void)BaseMath_WriteCallback(self); /* order can be written back */ return 0; } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Euler_getseters[] = { {(char *)"x", (getter)Euler_getAxis, (setter)Euler_setAxis, (char *)"Euler X axis in radians.\n\n:type: float", (void *)0}, {(char *)"y", (getter)Euler_getAxis, (setter)Euler_setAxis, (char *)"Euler Y axis in radians.\n\n:type: float", (void *)1}, {(char *)"z", (getter)Euler_getAxis, (setter)Euler_setAxis, (char *)"Euler Z axis in radians.\n\n:type: float", (void *)2}, {(char *)"order", (getter)Euler_getOrder, (setter)Euler_setOrder, (char *)"Euler rotation order.\n\n:type: string in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']", (void *)NULL}, {(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL}, {(char *)"owner", (getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; //-----------------------METHOD DEFINITIONS ---------------------- static struct PyMethodDef Euler_methods[] = { {"zero", (PyCFunction) Euler_zero, METH_NOARGS, Euler_zero_doc}, {"to_matrix", (PyCFunction) Euler_to_matrix, METH_NOARGS, Euler_to_matrix_doc}, {"to_quaternion", (PyCFunction) Euler_to_quaternion, METH_NOARGS, Euler_to_quaternion_doc}, {"rotate_axis", (PyCFunction) Euler_rotate_axis, METH_VARARGS, Euler_rotate_axis_doc}, {"rotate", (PyCFunction) Euler_rotate, METH_O, Euler_rotate_doc}, {"make_compatible", (PyCFunction) Euler_make_compatible, METH_O, Euler_make_compatible_doc}, {"__copy__", (PyCFunction) Euler_copy, METH_NOARGS, Euler_copy_doc}, {"copy", (PyCFunction) Euler_copy, METH_NOARGS, Euler_copy_doc}, {NULL, NULL, 0, NULL} }; //------------------PY_OBECT DEFINITION-------------------------- static char euler_doc[] = "This object gives access to Eulers in Blender." ; PyTypeObject euler_Type = { PyVarObject_HEAD_INIT(NULL, 0) "mathutils.Euler", //tp_name sizeof(EulerObject), //tp_basicsize 0, //tp_itemsize (destructor)BaseMathObject_dealloc, //tp_dealloc NULL, //tp_print NULL, //tp_getattr NULL, //tp_setattr NULL, //tp_compare (reprfunc) Euler_repr, //tp_repr NULL, //tp_as_number &Euler_SeqMethods, //tp_as_sequence &Euler_AsMapping, //tp_as_mapping NULL, //tp_hash NULL, //tp_call NULL, //tp_str NULL, //tp_getattro NULL, //tp_setattro NULL, //tp_as_buffer Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags euler_doc, //tp_doc NULL, //tp_traverse NULL, //tp_clear (richcmpfunc)Euler_richcmpr, //tp_richcompare 0, //tp_weaklistoffset NULL, //tp_iter NULL, //tp_iternext Euler_methods, //tp_methods NULL, //tp_members Euler_getseters, //tp_getset NULL, //tp_base NULL, //tp_dict NULL, //tp_descr_get NULL, //tp_descr_set 0, //tp_dictoffset NULL, //tp_init NULL, //tp_alloc Euler_new, //tp_new NULL, //tp_free NULL, //tp_is_gc NULL, //tp_bases NULL, //tp_mro NULL, //tp_cache NULL, //tp_subclasses NULL, //tp_weaklist NULL //tp_del }; //------------------------newEulerObject (internal)------------- //creates a new euler object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newEulerObject(float *eul, short order, int type, PyTypeObject *base_type) { EulerObject *self; if(base_type) self = (EulerObject *)base_type->tp_alloc(base_type, 0); else self = PyObject_NEW(EulerObject, &euler_Type); /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP) { self->eul = eul; self->wrapped = Py_WRAP; } else if (type == Py_NEW){ self->eul = PyMem_Malloc(EULER_SIZE * sizeof(float)); if(eul) copy_v3_v3(self->eul, eul); else zero_v3(self->eul); self->wrapped = Py_NEW; } else{ return NULL; } self->order= order; return (PyObject *)self; } PyObject *newEulerObject_cb(PyObject *cb_user, short order, int cb_type, int cb_subtype) { EulerObject *self= (EulerObject *)newEulerObject(NULL, order, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; } return (PyObject *)self; }