/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Joseph Gilbert, Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ #include "mathutils_geometry.h" /* Used for PolyFill */ #include "BKE_displist.h" #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BKE_utildefines.h" #include "BKE_curve.h" #include "BLI_boxpack2d.h" #include "BLI_math.h" #define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp #define eps 0.000001 /*-------------------------DOC STRINGS ---------------------------*/ static char M_Geometry_doc[] = "The Blender geometry module\n\n"; static char M_Geometry_Intersect_doc[] = ".. function:: Intersect(v1, v2, v3, ray, orig, clip=True)\n" "\n" " Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n" "\n" " :rtype: boolean\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg ray: Direction of the projection\n" " :type ray: :class:`mathutils.Vector`\n" " :arg orig: Origin\n" " :type orig: :class:`mathutils.Vector`\n" " :arg clip: Clip by the ray length\n" " :type clip: boolean\n"; static char M_Geometry_TriangleArea_doc[] = ".. function:: TriangleArea(v1, v2, v3)\n" "\n" " Returns the area size of the 2D or 3D triangle defined.\n" "\n" " :rtype: float\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n"; static char M_Geometry_TriangleNormal_doc[] = ".. function:: TriangleNormal(v1, v2, v3)\n" "\n" " Returns the normal of the 3D triangle defined.\n" "\n" " :rtype: :class:`mathutils.Vector`\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n"; static char M_Geometry_QuadNormal_doc[] = ".. function:: QuadNormal(v1, v2, v3, v4)\n" "\n" " Returns the normal of the 3D quad defined.\n" "\n" " :rtype: :class:`mathutils.Vector`\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Point4\n" " :type v4: :class:`mathutils.Vector`\n"; static char M_Geometry_LineIntersect_doc[] = ".. function:: LineIntersect(v1, v2, v3, v4)\n" "\n" " Returns a tuple with the points on each line respectively closest to the other.\n" "\n" " :rtype: tuple with elements being of type :class:`mathutils.Vector`\n" " :arg v1: First point of the first line\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Second point of the first line\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: First point of the second line\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Second point of the second line\n" " :type v4: :class:`mathutils.Vector`\n"; static char M_Geometry_PolyFill_doc[] = ".. function:: PolyFill(veclist_list)\n" "\n" " Takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles.\n" "\n" " :rtype: list\n" " :arg veclist_list: list of polylines\n"; static char M_Geometry_LineIntersect2D_doc[] = ".. function:: LineIntersect2D(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n" "\n" " Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n" "\n" " :rtype: :class:`mathutils.Vector`\n" " :arg lineA_p1: First point of the first line\n" " :type lineA_p1: :class:`mathutils.Vector`\n" " :arg lineA_p2: Second point of the first line\n" " :type lineA_p2: :class:`mathutils.Vector`\n" " :arg lineB_p1: First point of the second line\n" " :type lineB_p1: :class:`mathutils.Vector`\n" " :arg lineB_p2: Second point of the second line\n" " :type lineB_p2: :class:`mathutils.Vector`\n"; static char M_Geometry_ClosestPointOnLine_doc[] = ".. function:: ClosestPointOnLine(pt, line_p1, line_p2)\n" "\n" " Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n" "\n" " :rtype: (:class:`mathutils.Vector`, float)\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg line_p1: First point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n" " :arg line_p1: Second point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n"; static char M_Geometry_PointInTriangle2D_doc[] = ".. function:: PointInTriangle2D(pt, tri_p1, tri_p2, tri_p3)\n" "\n" " Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n" "\n" " :rtype: int\n" " :arg pt: Point\n" " :type v1: :class:`mathutils.Vector`\n" " :arg tri_p1: First point of the triangle\n" " :type tri_p1: :class:`mathutils.Vector`\n" " :arg tri_p2: Second point of the triangle\n" " :type tri_p2: :class:`mathutils.Vector`\n" " :arg tri_p3: Third point of the triangle\n" " :type tri_p3: :class:`mathutils.Vector`\n"; static char M_Geometry_PointInQuad2D_doc[] = ".. function:: PointInQuad2D(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n" "\n" " Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n" "\n" " :rtype: int\n" " :arg pt: Point\n" " :type v1: :class:`mathutils.Vector`\n" " :arg quad_p1: First point of the quad\n" " :type quad_p1: :class:`mathutils.Vector`\n" " :arg quad_p2: Second point of the quad\n" " :type quad_p2: :class:`mathutils.Vector`\n" " :arg quad_p3: Third point of the quad\n" " :type quad_p3: :class:`mathutils.Vector`\n" " :arg quad_p4: Forth point of the quad\n" " :type quad_p4: :class:`mathutils.Vector`\n"; static char M_Geometry_BoxPack2D_doc[] = ""; static char M_Geometry_BezierInterp_doc[] = ""; static char M_Geometry_BarycentricTransform_doc[] = ""; //---------------------------------INTERSECTION FUNCTIONS-------------------- //----------------------------------geometry.Intersect() ------------------- static PyObject *M_Geometry_Intersect(PyObject *UNUSED(self), PyObject* args) { VectorObject *ray, *ray_off, *vec1, *vec2, *vec3; float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3]; float det, inv_det, u, v, t; int clip = 1; if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) { PyErr_SetString(PyExc_TypeError, "expected 5 vector types" ); return NULL; } if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) { PyErr_SetString(PyExc_TypeError, "only 3D vectors for all parameters"); return NULL; } if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(ray) || !BaseMath_ReadCallback(ray_off)) return NULL; VECCOPY(v1, vec1->vec); VECCOPY(v2, vec2->vec); VECCOPY(v3, vec3->vec); VECCOPY(dir, ray->vec); normalize_v3(dir); VECCOPY(orig, ray_off->vec); /* find vectors for two edges sharing v1 */ sub_v3_v3v3(e1, v2, v1); sub_v3_v3v3(e2, v3, v1); /* begin calculating determinant - also used to calculated U parameter */ cross_v3_v3v3(pvec, dir, e2); /* if determinant is near zero, ray lies in plane of triangle */ det = dot_v3v3(e1, pvec); if (det > -0.000001 && det < 0.000001) { Py_RETURN_NONE; } inv_det = 1.0f / det; /* calculate distance from v1 to ray origin */ sub_v3_v3v3(tvec, orig, v1); /* calculate U parameter and test bounds */ u = dot_v3v3(tvec, pvec) * inv_det; if (clip && (u < 0.0f || u > 1.0f)) { Py_RETURN_NONE; } /* prepare to test the V parameter */ cross_v3_v3v3(qvec, tvec, e1); /* calculate V parameter and test bounds */ v = dot_v3v3(dir, qvec) * inv_det; if (clip && (v < 0.0f || u + v > 1.0f)) { Py_RETURN_NONE; } /* calculate t, ray intersects triangle */ t = dot_v3v3(e2, qvec) * inv_det; mul_v3_fl(dir, t); add_v3_v3v3(pvec, orig, dir); return newVectorObject(pvec, 3, Py_NEW, NULL); } //----------------------------------geometry.LineIntersect() ------------------- /* Line-Line intersection using algorithm from mathworld.wolfram.com */ static PyObject *M_Geometry_LineIntersect(PyObject *UNUSED(self), PyObject* args) { PyObject * tuple; VectorObject *vec1, *vec2, *vec3, *vec4; float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3]; if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) { PyErr_SetString(PyExc_TypeError, "expected 4 vector types" ); return NULL; } if( vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) { PyErr_SetString(PyExc_TypeError,"vectors must be of the same size" ); return NULL; } if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4)) return NULL; if( vec1->size == 3 || vec1->size == 2) { int result; if (vec1->size == 3) { VECCOPY(v1, vec1->vec); VECCOPY(v2, vec2->vec); VECCOPY(v3, vec3->vec); VECCOPY(v4, vec4->vec); } else { v1[0] = vec1->vec[0]; v1[1] = vec1->vec[1]; v1[2] = 0.0f; v2[0] = vec2->vec[0]; v2[1] = vec2->vec[1]; v2[2] = 0.0f; v3[0] = vec3->vec[0]; v3[1] = vec3->vec[1]; v3[2] = 0.0f; v4[0] = vec4->vec[0]; v4[1] = vec4->vec[1]; v4[2] = 0.0f; } result = isect_line_line_v3(v1, v2, v3, v4, i1, i2); if (result == 0) { /* colinear */ Py_RETURN_NONE; } else { tuple = PyTuple_New( 2 ); PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL) ); PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL) ); return tuple; } } else { PyErr_SetString(PyExc_TypeError, "2D/3D vectors only" ); return NULL; } } //---------------------------------NORMALS FUNCTIONS-------------------- //----------------------------------geometry.QuadNormal() ------------------- static PyObject *M_Geometry_QuadNormal(PyObject *UNUSED(self), PyObject* args) { VectorObject *vec1; VectorObject *vec2; VectorObject *vec3; VectorObject *vec4; float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3]; if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) { PyErr_SetString(PyExc_TypeError, "expected 4 vector types" ); return NULL; } if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) { PyErr_SetString(PyExc_TypeError,"vectors must be of the same size" ); return NULL; } if( vec1->size != 3 ) { PyErr_SetString(PyExc_TypeError, "only 3D vectors" ); return NULL; } if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4)) return NULL; VECCOPY(v1, vec1->vec); VECCOPY(v2, vec2->vec); VECCOPY(v3, vec3->vec); VECCOPY(v4, vec4->vec); /* find vectors for two edges sharing v2 */ sub_v3_v3v3(e1, v1, v2); sub_v3_v3v3(e2, v3, v2); cross_v3_v3v3(n1, e2, e1); normalize_v3(n1); /* find vectors for two edges sharing v4 */ sub_v3_v3v3(e1, v3, v4); sub_v3_v3v3(e2, v1, v4); cross_v3_v3v3(n2, e2, e1); normalize_v3(n2); /* adding and averaging the normals of both triangles */ add_v3_v3v3(n1, n2, n1); normalize_v3(n1); return newVectorObject(n1, 3, Py_NEW, NULL); } //----------------------------geometry.TriangleNormal() ------------------- static PyObject *M_Geometry_TriangleNormal(PyObject *UNUSED(self), PyObject* args) { VectorObject *vec1, *vec2, *vec3; float v1[3], v2[3], v3[3], e1[3], e2[3], n[3]; if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) { PyErr_SetString(PyExc_TypeError, "expected 3 vector types" ); return NULL; } if( vec1->size != vec2->size || vec1->size != vec3->size ) { PyErr_SetString(PyExc_TypeError, "vectors must be of the same size" ); return NULL; } if( vec1->size != 3 ) { PyErr_SetString(PyExc_TypeError, "only 3D vectors" ); return NULL; } if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3)) return NULL; VECCOPY(v1, vec1->vec); VECCOPY(v2, vec2->vec); VECCOPY(v3, vec3->vec); /* find vectors for two edges sharing v2 */ sub_v3_v3v3(e1, v1, v2); sub_v3_v3v3(e2, v3, v2); cross_v3_v3v3(n, e2, e1); normalize_v3(n); return newVectorObject(n, 3, Py_NEW, NULL); } //--------------------------------- AREA FUNCTIONS-------------------- //----------------------------------geometry.TriangleArea() ------------------- static PyObject *M_Geometry_TriangleArea(PyObject *UNUSED(self), PyObject* args) { VectorObject *vec1, *vec2, *vec3; float v1[3], v2[3], v3[3]; if( !PyArg_ParseTuple ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2 , &vector_Type, &vec3 ) ) { PyErr_SetString(PyExc_TypeError, "expected 3 vector types"); return NULL; } if( vec1->size != vec2->size || vec1->size != vec3->size ) { PyErr_SetString(PyExc_TypeError, "vectors must be of the same size" ); return NULL; } if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3)) return NULL; if (vec1->size == 3) { VECCOPY(v1, vec1->vec); VECCOPY(v2, vec2->vec); VECCOPY(v3, vec3->vec); return PyFloat_FromDouble( area_tri_v3(v1, v2, v3) ); } else if (vec1->size == 2) { v1[0] = vec1->vec[0]; v1[1] = vec1->vec[1]; v2[0] = vec2->vec[0]; v2[1] = vec2->vec[1]; v3[0] = vec3->vec[0]; v3[1] = vec3->vec[1]; return PyFloat_FromDouble( area_tri_v2(v1, v2, v3) ); } else { PyErr_SetString(PyExc_TypeError, "only 2D,3D vectors are supported" ); return NULL; } } /*----------------------------------geometry.PolyFill() -------------------*/ /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */ static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLineSeq ) { PyObject *tri_list; /*return this list of tri's */ PyObject *polyLine, *polyVec; int i, len_polylines, len_polypoints, ls_error = 0; /* display listbase */ ListBase dispbase={NULL, NULL}; DispList *dl; float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */ int index, *dl_face, totpoints=0; dispbase.first= dispbase.last= NULL; if(!PySequence_Check(polyLineSeq)) { PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines" ); return NULL; } len_polylines = PySequence_Size( polyLineSeq ); for( i = 0; i < len_polylines; ++i ) { polyLine= PySequence_GetItem( polyLineSeq, i ); if (!PySequence_Check(polyLine)) { freedisplist(&dispbase); Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/ PyErr_SetString(PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's" ); return NULL; } len_polypoints= PySequence_Size( polyLine ); if (len_polypoints>0) { /* dont bother adding edges as polylines */ #if 0 if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) { freedisplist(&dispbase); Py_DECREF(polyLine); PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" ); return NULL; } #endif dl= MEM_callocN(sizeof(DispList), "poly disp"); BLI_addtail(&dispbase, dl); dl->type= DL_INDEX3; dl->nr= len_polypoints; dl->type= DL_POLY; dl->parts= 1; /* no faces, 1 edge loop */ dl->col= 0; /* no material */ dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts"); dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index"); for( index = 0; indexvec[0]; fp[1] = ((VectorObject *)polyVec)->vec[1]; if( ((VectorObject *)polyVec)->size > 2 ) fp[2] = ((VectorObject *)polyVec)->vec[2]; else fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */ } else { ls_error= 1; } totpoints++; Py_DECREF(polyVec); } } Py_DECREF(polyLine); } if(ls_error) { freedisplist(&dispbase); /* possible some dl was allocated */ PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" ); return NULL; } else if (totpoints) { /* now make the list to return */ filldisplist(&dispbase, &dispbase, 0); /* The faces are stored in a new DisplayList thats added to the head of the listbase */ dl= dispbase.first; tri_list= PyList_New(dl->parts); if( !tri_list ) { freedisplist(&dispbase); PyErr_SetString(PyExc_RuntimeError, "geometry.PolyFill failed to make a new list" ); return NULL; } index= 0; dl_face= dl->index; while(index < dl->parts) { PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) ); dl_face+= 3; index++; } freedisplist(&dispbase); } else { /* no points, do this so scripts dont barf */ freedisplist(&dispbase); /* possible some dl was allocated */ tri_list= PyList_New(0); } return tri_list; } static PyObject *M_Geometry_LineIntersect2D(PyObject *UNUSED(self), PyObject* args) { VectorObject *line_a1, *line_a2, *line_b1, *line_b2; float vi[2]; if( !PyArg_ParseTuple ( args, "O!O!O!O!", &vector_Type, &line_a1, &vector_Type, &line_a2, &vector_Type, &line_b1, &vector_Type, &line_b2) ) { PyErr_SetString(PyExc_TypeError, "expected 4 vector types" ); return NULL; } if(!BaseMath_ReadCallback(line_a1) || !BaseMath_ReadCallback(line_a2) || !BaseMath_ReadCallback(line_b1) || !BaseMath_ReadCallback(line_b2)) return NULL; if(isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) { return newVectorObject(vi, 2, Py_NEW, NULL); } else { Py_RETURN_NONE; } } static PyObject *M_Geometry_ClosestPointOnLine(PyObject *UNUSED(self), PyObject* args) { VectorObject *pt, *line_1, *line_2; float pt_in[3], pt_out[3], l1[3], l2[3]; float lambda; PyObject *ret; if( !PyArg_ParseTuple ( args, "O!O!O!", &vector_Type, &pt, &vector_Type, &line_1, &vector_Type, &line_2) ) { PyErr_SetString(PyExc_TypeError, "expected 3 vector types" ); return NULL; } if(!BaseMath_ReadCallback(pt) || !BaseMath_ReadCallback(line_1) || !BaseMath_ReadCallback(line_2)) return NULL; /* accept 2d verts */ if (pt->size==3) { VECCOPY(pt_in, pt->vec);} else { pt_in[2]=0.0; VECCOPY2D(pt_in, pt->vec) } if (line_1->size==3) { VECCOPY(l1, line_1->vec);} else { l1[2]=0.0; VECCOPY2D(l1, line_1->vec) } if (line_2->size==3) { VECCOPY(l2, line_2->vec);} else { l2[2]=0.0; VECCOPY2D(l2, line_2->vec) } /* do the calculation */ lambda = closest_to_line_v3( pt_out,pt_in, l1, l2); ret = PyTuple_New(2); PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL) ); PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) ); return ret; } static PyObject *M_Geometry_PointInTriangle2D(PyObject *UNUSED(self), PyObject* args) { VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3; if( !PyArg_ParseTuple ( args, "O!O!O!O!", &vector_Type, &pt_vec, &vector_Type, &tri_p1, &vector_Type, &tri_p2, &vector_Type, &tri_p3) ) { PyErr_SetString(PyExc_TypeError, "expected 4 vector types" ); return NULL; } if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(tri_p1) || !BaseMath_ReadCallback(tri_p2) || !BaseMath_ReadCallback(tri_p3)) return NULL; return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec)); } static PyObject *M_Geometry_PointInQuad2D(PyObject *UNUSED(self), PyObject* args) { VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4; if( !PyArg_ParseTuple ( args, "O!O!O!O!O!", &vector_Type, &pt_vec, &vector_Type, &quad_p1, &vector_Type, &quad_p2, &vector_Type, &quad_p3, &vector_Type, &quad_p4) ) { PyErr_SetString(PyExc_TypeError, "expected 5 vector types" ); return NULL; } if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(quad_p1) || !BaseMath_ReadCallback(quad_p2) || !BaseMath_ReadCallback(quad_p3) || !BaseMath_ReadCallback(quad_p4)) return NULL; return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec)); } static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray ) { int len, i; PyObject *list_item, *item_1, *item_2; boxPack *box; /* Error checking must already be done */ if( !PyList_Check( value ) ) { PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]" ); return -1; } len = PyList_Size( value ); (*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box"); for( i = 0; i < len; i++ ) { list_item = PyList_GET_ITEM( value, i ); if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) { MEM_freeN(*boxarray); PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]" ); return -1; } box = (*boxarray)+i; item_1 = PyList_GET_ITEM(list_item, 2); item_2 = PyList_GET_ITEM(list_item, 3); if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) { MEM_freeN(*boxarray); PyErr_SetString(PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" ); return -1; } box->w = (float)PyFloat_AsDouble( item_1 ); box->h = (float)PyFloat_AsDouble( item_2 ); box->index = i; /* verts will be added later */ } return 0; } static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray) { int len, i; PyObject *list_item; boxPack *box; len = PyList_Size( value ); for( i = 0; i < len; i++ ) { box = (*boxarray)+i; list_item = PyList_GET_ITEM( value, box->index ); PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x )); PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y )); } MEM_freeN(*boxarray); } static PyObject *M_Geometry_BoxPack2D(PyObject *UNUSED(self), PyObject * boxlist ) { boxPack *boxarray = NULL; float tot_width, tot_height; int len; int error; if(!PyList_Check(boxlist)) { PyErr_SetString(PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" ); return NULL; } len = PyList_Size( boxlist ); if (!len) return Py_BuildValue( "ff", 0.0, 0.0); error = boxPack_FromPyObject(boxlist, &boxarray); if (error!=0) return NULL; /* Non Python function */ boxPack2D(boxarray, len, &tot_width, &tot_height); boxPack_ToPyObject(boxlist, &boxarray); return Py_BuildValue( "ff", tot_width, tot_height); } static PyObject *M_Geometry_BezierInterp(PyObject *UNUSED(self), PyObject* args) { VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2; int resolu; int dims; int i; float *coord_array, *fp; PyObject *list; float k1[4] = {0.0, 0.0, 0.0, 0.0}; float h1[4] = {0.0, 0.0, 0.0, 0.0}; float k2[4] = {0.0, 0.0, 0.0, 0.0}; float h2[4] = {0.0, 0.0, 0.0, 0.0}; if( !PyArg_ParseTuple ( args, "O!O!O!O!i", &vector_Type, &vec_k1, &vector_Type, &vec_h1, &vector_Type, &vec_h2, &vector_Type, &vec_k2, &resolu) || (resolu<=1) ) { PyErr_SetString(PyExc_TypeError, "expected 4 vector types and an int greater then 1" ); return NULL; } if(!BaseMath_ReadCallback(vec_k1) || !BaseMath_ReadCallback(vec_h1) || !BaseMath_ReadCallback(vec_k2) || !BaseMath_ReadCallback(vec_h2)) return NULL; dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size); for(i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i]; for(i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i]; for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i]; for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i]; coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "BezierInterp"); for(i=0; isize != 3 || vec_t1_src->size != 3 || vec_t2_src->size != 3 || vec_t3_src->size != 3 || vec_t1_tar->size != 3 || vec_t2_tar->size != 3 || vec_t3_tar->size != 3) ) { PyErr_SetString(PyExc_TypeError, "expected 7, 3D vector types" ); return NULL; } barycentric_transform(vec, vec_pt->vec, vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec, vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec); return newVectorObject(vec, 3, Py_NEW, NULL); } struct PyMethodDef M_Geometry_methods[] = { {"Intersect", ( PyCFunction ) M_Geometry_Intersect, METH_VARARGS, M_Geometry_Intersect_doc}, {"TriangleArea", ( PyCFunction ) M_Geometry_TriangleArea, METH_VARARGS, M_Geometry_TriangleArea_doc}, {"TriangleNormal", ( PyCFunction ) M_Geometry_TriangleNormal, METH_VARARGS, M_Geometry_TriangleNormal_doc}, {"QuadNormal", ( PyCFunction ) M_Geometry_QuadNormal, METH_VARARGS, M_Geometry_QuadNormal_doc}, {"LineIntersect", ( PyCFunction ) M_Geometry_LineIntersect, METH_VARARGS, M_Geometry_LineIntersect_doc}, {"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc}, {"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc}, {"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc}, {"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc}, {"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc}, {"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc}, {"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc}, {"BarycentricTransform", ( PyCFunction ) M_Geometry_BarycentricTransform, METH_VARARGS, M_Geometry_BarycentricTransform_doc}, {NULL, NULL, 0, NULL} }; static struct PyModuleDef M_Geometry_module_def = { PyModuleDef_HEAD_INIT, "mathutils.geometry", /* m_name */ M_Geometry_doc, /* m_doc */ 0, /* m_size */ M_Geometry_methods, /* m_methods */ 0, /* m_reload */ 0, /* m_traverse */ 0, /* m_clear */ 0, /* m_free */ }; /*----------------------------MODULE INIT-------------------------*/ PyMODINIT_FUNC BPyInit_mathutils_geometry(void) { PyObject *submodule= PyModule_Create(&M_Geometry_module_def); return submodule; }