/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Joseph Gilbert, Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/python/generic/mathutils_geometry.c * \ingroup pygen */ #include #include "mathutils_geometry.h" /* Used for PolyFill */ #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BLI_boxpack2d.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BKE_displist.h" #include "BKE_curve.h" #define SWAP_FLOAT(a, b, tmp) tmp=a; a=b; b=tmp #define eps 0.000001 /*-------------------------DOC STRINGS ---------------------------*/ static char M_Geometry_doc[]= "The Blender geometry module\n\n"; //---------------------------------INTERSECTION FUNCTIONS-------------------- static char M_Geometry_intersect_ray_tri_doc[] = ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n" "\n" " Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg ray: Direction of the projection\n" " :type ray: :class:`mathutils.Vector`\n" " :arg orig: Origin\n" " :type orig: :class:`mathutils.Vector`\n" " :arg clip: When False, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.\n" " :type clip: boolean\n" " :return: The point of intersection or None if no intersection is found\n" " :rtype: :class:`mathutils.Vector` or None\n" ; static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject* args) { VectorObject *ray, *ray_off, *vec1, *vec2, *vec3; float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3]; float det, inv_det, u, v, t; int clip= 1; if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i:intersect_ray_tri", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) { return NULL; } if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) { PyErr_SetString(PyExc_ValueError, "only 3D vectors for all parameters"); return NULL; } if(BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1 || BaseMath_ReadCallback(ray) == -1 || BaseMath_ReadCallback(ray_off) == -1) return NULL; VECCOPY(v1, vec1->vec); VECCOPY(v2, vec2->vec); VECCOPY(v3, vec3->vec); VECCOPY(dir, ray->vec); normalize_v3(dir); VECCOPY(orig, ray_off->vec); /* find vectors for two edges sharing v1 */ sub_v3_v3v3(e1, v2, v1); sub_v3_v3v3(e2, v3, v1); /* begin calculating determinant - also used to calculated U parameter */ cross_v3_v3v3(pvec, dir, e2); /* if determinant is near zero, ray lies in plane of triangle */ det= dot_v3v3(e1, pvec); if (det > -0.000001f && det < 0.000001f) { Py_RETURN_NONE; } inv_det= 1.0f / det; /* calculate distance from v1 to ray origin */ sub_v3_v3v3(tvec, orig, v1); /* calculate U parameter and test bounds */ u= dot_v3v3(tvec, pvec) * inv_det; if (clip && (u < 0.0f || u > 1.0f)) { Py_RETURN_NONE; } /* prepare to test the V parameter */ cross_v3_v3v3(qvec, tvec, e1); /* calculate V parameter and test bounds */ v= dot_v3v3(dir, qvec) * inv_det; if (clip && (v < 0.0f || u + v > 1.0f)) { Py_RETURN_NONE; } /* calculate t, ray intersects triangle */ t= dot_v3v3(e2, qvec) * inv_det; mul_v3_fl(dir, t); add_v3_v3v3(pvec, orig, dir); return newVectorObject(pvec, 3, Py_NEW, NULL); } /* Line-Line intersection using algorithm from mathworld.wolfram.com */ static char M_Geometry_intersect_line_line_doc[] = ".. function:: intersect_line_line(v1, v2, v3, v4)\n" "\n" " Returns a tuple with the points on each line respectively closest to the other.\n" "\n" " :arg v1: First point of the first line\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Second point of the first line\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: First point of the second line\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Second point of the second line\n" " :type v4: :class:`mathutils.Vector`\n" " :rtype: tuple of :class:`mathutils.Vector`'s\n" ; static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args) { PyObject * tuple; VectorObject *vec1, *vec2, *vec3, *vec4; float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3]; if(!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4)) { return NULL; } if(vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) { PyErr_SetString(PyExc_ValueError,"vectors must be of the same size"); return NULL; } if(BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1 || BaseMath_ReadCallback(vec4) == -1) return NULL; if(vec1->size == 3 || vec1->size == 2) { int result; if (vec1->size == 3) { VECCOPY(v1, vec1->vec); VECCOPY(v2, vec2->vec); VECCOPY(v3, vec3->vec); VECCOPY(v4, vec4->vec); } else { v1[0]= vec1->vec[0]; v1[1]= vec1->vec[1]; v1[2]= 0.0f; v2[0]= vec2->vec[0]; v2[1]= vec2->vec[1]; v2[2]= 0.0f; v3[0]= vec3->vec[0]; v3[1]= vec3->vec[1]; v3[2]= 0.0f; v4[0]= vec4->vec[0]; v4[1]= vec4->vec[1]; v4[2]= 0.0f; } result= isect_line_line_v3(v1, v2, v3, v4, i1, i2); if (result == 0) { /* colinear */ Py_RETURN_NONE; } else { tuple= PyTuple_New(2); PyTuple_SET_ITEM(tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL)); PyTuple_SET_ITEM(tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL)); return tuple; } } else { PyErr_SetString(PyExc_ValueError, "2D/3D vectors only"); return NULL; } } //----------------------------geometry.normal() ------------------- static char M_Geometry_normal_doc[] = ".. function:: normal(v1, v2, v3, v4=None)\n" "\n" " Returns the normal of the 3D tri or quad.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Point4 (optional)\n" " :type v4: :class:`mathutils.Vector`\n" " :rtype: :class:`mathutils.Vector`\n" ; static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject* args) { VectorObject *vec1, *vec2, *vec3, *vec4; float n[3]; if(PyTuple_GET_SIZE(args) == 3) { if(!PyArg_ParseTuple(args, "O!O!O!:normal", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3)) { return NULL; } if(vec1->size != vec2->size || vec1->size != vec3->size) { PyErr_SetString(PyExc_ValueError, "vectors must be of the same size"); return NULL; } if(vec1->size < 3) { PyErr_SetString(PyExc_ValueError, "2D vectors unsupported"); return NULL; } if(BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1) return NULL; normal_tri_v3(n, vec1->vec, vec2->vec, vec3->vec); } else { if(!PyArg_ParseTuple(args, "O!O!O!O!:normal", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4)) { return NULL; } if(vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) { PyErr_SetString(PyExc_ValueError,"vectors must be of the same size"); return NULL; } if(vec1->size < 3) { PyErr_SetString(PyExc_ValueError, "2D vectors unsupported"); return NULL; } if(BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1 || BaseMath_ReadCallback(vec4) == -1) return NULL; normal_quad_v3(n, vec1->vec, vec2->vec, vec3->vec, vec4->vec); } return newVectorObject(n, 3, Py_NEW, NULL); } //--------------------------------- AREA FUNCTIONS-------------------- static char M_Geometry_area_tri_doc[] = ".. function:: area_tri(v1, v2, v3)\n" "\n" " Returns the area size of the 2D or 3D triangle defined.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :rtype: float\n" ; static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject* args) { VectorObject *vec1, *vec2, *vec3; if(!PyArg_ParseTuple(args, "O!O!O!:area_tri", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3)) { return NULL; } if(vec1->size != vec2->size || vec1->size != vec3->size) { PyErr_SetString(PyExc_ValueError, "vectors must be of the same size"); return NULL; } if(BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1 || BaseMath_ReadCallback(vec3) == -1) return NULL; if (vec1->size == 3) { return PyFloat_FromDouble(area_tri_v3(vec1->vec, vec2->vec, vec3->vec)); } else if (vec1->size == 2) { return PyFloat_FromDouble(area_tri_v2(vec1->vec, vec2->vec, vec3->vec)); } else { PyErr_SetString(PyExc_ValueError, "only 2D,3D vectors are supported"); return NULL; } } /*----------------------------------geometry.PolyFill() -------------------*/ static char M_Geometry_tesselate_polygon_doc[] = ".. function:: tesselate_polygon(veclist_list)\n" "\n" " Takes a list of polylines (each point a vector) and returns the point indices for a polyline filled with triangles.\n" "\n" " :arg veclist_list: list of polylines\n" " :rtype: list\n" ; /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */ static PyObject *M_Geometry_tesselate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq) { PyObject *tri_list; /*return this list of tri's */ PyObject *polyLine, *polyVec; int i, len_polylines, len_polypoints, ls_error= 0; /* display listbase */ ListBase dispbase={NULL, NULL}; DispList *dl; float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */ int index, *dl_face, totpoints=0; if(!PySequence_Check(polyLineSeq)) { PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines"); return NULL; } len_polylines= PySequence_Size(polyLineSeq); for(i= 0; i < len_polylines; ++i) { polyLine= PySequence_GetItem(polyLineSeq, i); if (!PySequence_Check(polyLine)) { freedisplist(&dispbase); Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/ PyErr_SetString(PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's"); return NULL; } len_polypoints= PySequence_Size(polyLine); if (len_polypoints>0) { /* dont bother adding edges as polylines */ #if 0 if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) { freedisplist(&dispbase); Py_DECREF(polyLine); PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type"); return NULL; } #endif dl= MEM_callocN(sizeof(DispList), "poly disp"); BLI_addtail(&dispbase, dl); dl->type= DL_INDEX3; dl->nr= len_polypoints; dl->type= DL_POLY; dl->parts= 1; /* no faces, 1 edge loop */ dl->col= 0; /* no material */ dl->verts= fp= MEM_callocN(sizeof(float)*3*len_polypoints, "dl verts"); dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index"); for(index= 0; indexvec[0]; fp[1]= ((VectorObject *)polyVec)->vec[1]; if(((VectorObject *)polyVec)->size > 2) fp[2]= ((VectorObject *)polyVec)->vec[2]; else fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */ } else { ls_error= 1; } totpoints++; Py_DECREF(polyVec); } } Py_DECREF(polyLine); } if(ls_error) { freedisplist(&dispbase); /* possible some dl was allocated */ PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type"); return NULL; } else if (totpoints) { /* now make the list to return */ filldisplist(&dispbase, &dispbase, 0); /* The faces are stored in a new DisplayList thats added to the head of the listbase */ dl= dispbase.first; tri_list= PyList_New(dl->parts); if(!tri_list) { freedisplist(&dispbase); PyErr_SetString(PyExc_RuntimeError, "geometry.PolyFill failed to make a new list"); return NULL; } index= 0; dl_face= dl->index; while(index < dl->parts) { PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2])); dl_face+= 3; index++; } freedisplist(&dispbase); } else { /* no points, do this so scripts dont barf */ freedisplist(&dispbase); /* possible some dl was allocated */ tri_list= PyList_New(0); } return tri_list; } static char M_Geometry_intersect_line_line_2d_doc[] = ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n" "\n" " Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n" "\n" " :arg lineA_p1: First point of the first line\n" " :type lineA_p1: :class:`mathutils.Vector`\n" " :arg lineA_p2: Second point of the first line\n" " :type lineA_p2: :class:`mathutils.Vector`\n" " :arg lineB_p1: First point of the second line\n" " :type lineB_p1: :class:`mathutils.Vector`\n" " :arg lineB_p2: Second point of the second line\n" " :type lineB_p2: :class:`mathutils.Vector`\n" " :return: The point of intersection or None when not found\n" " :rtype: :class:`mathutils.Vector` or None\n" ; static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject* args) { VectorObject *line_a1, *line_a2, *line_b1, *line_b2; float vi[2]; if(!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line_2d", &vector_Type, &line_a1, &vector_Type, &line_a2, &vector_Type, &line_b1, &vector_Type, &line_b2) ) { return NULL; } if(BaseMath_ReadCallback(line_a1) == -1 || BaseMath_ReadCallback(line_a2) == -1 || BaseMath_ReadCallback(line_b1) == -1 || BaseMath_ReadCallback(line_b2) == -1) return NULL; if(isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) { return newVectorObject(vi, 2, Py_NEW, NULL); } else { Py_RETURN_NONE; } } static char M_Geometry_intersect_point_line_doc[] = ".. function:: intersect_point_line(pt, line_p1, line_p2)\n" "\n" " Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg line_p1: First point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n" " :arg line_p1: Second point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n" " :rtype: (:class:`mathutils.Vector`, float)\n" ; static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject* args) { VectorObject *pt, *line_1, *line_2; float pt_in[3], pt_out[3], l1[3], l2[3]; float lambda; PyObject *ret; if(!PyArg_ParseTuple(args, "O!O!O!:intersect_point_line", &vector_Type, &pt, &vector_Type, &line_1, &vector_Type, &line_2) ) { return NULL; } if(BaseMath_ReadCallback(pt) == -1 || BaseMath_ReadCallback(line_1) == -1 || BaseMath_ReadCallback(line_2) == -1) return NULL; /* accept 2d verts */ if (pt->size==3) { VECCOPY(pt_in, pt->vec);} else { pt_in[2]=0.0; VECCOPY2D(pt_in, pt->vec) } if (line_1->size==3) { VECCOPY(l1, line_1->vec);} else { l1[2]=0.0; VECCOPY2D(l1, line_1->vec) } if (line_2->size==3) { VECCOPY(l2, line_2->vec);} else { l2[2]=0.0; VECCOPY2D(l2, line_2->vec) } /* do the calculation */ lambda= closest_to_line_v3(pt_out, pt_in, l1, l2); ret= PyTuple_New(2); PyTuple_SET_ITEM(ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(lambda)); return ret; } static char M_Geometry_intersect_point_tri_2d_doc[] = ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n" "\n" " Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n" "\n" " :arg pt: Point\n" " :type v1: :class:`mathutils.Vector`\n" " :arg tri_p1: First point of the triangle\n" " :type tri_p1: :class:`mathutils.Vector`\n" " :arg tri_p2: Second point of the triangle\n" " :type tri_p2: :class:`mathutils.Vector`\n" " :arg tri_p3: Third point of the triangle\n" " :type tri_p3: :class:`mathutils.Vector`\n" " :rtype: int\n" ; static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject* args) { VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3; if(!PyArg_ParseTuple(args, "O!O!O!O!:intersect_point_tri_2d", &vector_Type, &pt_vec, &vector_Type, &tri_p1, &vector_Type, &tri_p2, &vector_Type, &tri_p3) ) { return NULL; } if(BaseMath_ReadCallback(pt_vec) == -1 || BaseMath_ReadCallback(tri_p1) == -1 || BaseMath_ReadCallback(tri_p2) == -1 || BaseMath_ReadCallback(tri_p3) == -1) return NULL; return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec)); } static char M_Geometry_intersect_point_quad_2d_doc[] = ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n" "\n" " Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n" "\n" " :arg pt: Point\n" " :type v1: :class:`mathutils.Vector`\n" " :arg quad_p1: First point of the quad\n" " :type quad_p1: :class:`mathutils.Vector`\n" " :arg quad_p2: Second point of the quad\n" " :type quad_p2: :class:`mathutils.Vector`\n" " :arg quad_p3: Third point of the quad\n" " :type quad_p3: :class:`mathutils.Vector`\n" " :arg quad_p4: Forth point of the quad\n" " :type quad_p4: :class:`mathutils.Vector`\n" " :rtype: int\n" ; static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject* args) { VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4; if(!PyArg_ParseTuple(args, "O!O!O!O!O!:intersect_point_quad_2d", &vector_Type, &pt_vec, &vector_Type, &quad_p1, &vector_Type, &quad_p2, &vector_Type, &quad_p3, &vector_Type, &quad_p4) ) { return NULL; } if(BaseMath_ReadCallback(pt_vec) == -1 || BaseMath_ReadCallback(quad_p1) == -1 || BaseMath_ReadCallback(quad_p2) == -1 || BaseMath_ReadCallback(quad_p3) == -1 || BaseMath_ReadCallback(quad_p4) == -1) return NULL; return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec)); } static int boxPack_FromPyObject(PyObject *value, boxPack **boxarray) { int len, i; PyObject *list_item, *item_1, *item_2; boxPack *box; /* Error checking must already be done */ if(!PyList_Check(value)) { PyErr_SetString(PyExc_TypeError, "can only back a list of [x, y, w, h]"); return -1; } len= PyList_Size(value); (*boxarray)= MEM_mallocN(len*sizeof(boxPack), "boxPack box"); for(i= 0; i < len; i++) { list_item= PyList_GET_ITEM(value, i); if(!PyList_Check(list_item) || PyList_Size(list_item) < 4) { MEM_freeN(*boxarray); PyErr_SetString(PyExc_TypeError, "can only pack a list of [x, y, w, h]"); return -1; } box= (*boxarray)+i; item_1= PyList_GET_ITEM(list_item, 2); item_2= PyList_GET_ITEM(list_item, 3); box->w= (float)PyFloat_AsDouble(item_1); box->h= (float)PyFloat_AsDouble(item_2); box->index= i; if (box->w < 0.0f || box->h < 0.0f) { MEM_freeN(*boxarray); PyErr_SetString(PyExc_TypeError, "error parsing width and height values from list: [x, y, w, h], not numbers or below zero"); return -1; } /* verts will be added later */ } return 0; } static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray) { int len, i; PyObject *list_item; boxPack *box; len= PyList_Size(value); for(i= 0; i < len; i++) { box= (*boxarray)+i; list_item= PyList_GET_ITEM(value, box->index); PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x)); PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y)); } MEM_freeN(*boxarray); } static char M_Geometry_box_pack_2d_doc[] = ".. function:: box_pack_2d(boxes)\n" "\n" " Returns the normal of the 3D tri or quad.\n" "\n" " :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, width, height, ...] other items are ignored.\n" " :type boxes: list\n" " :return: the width and height of the packed bounding box\n" " :rtype: tuple, pair of floats\n" ; static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist) { float tot_width= 0.0f, tot_height= 0.0f; int len; PyObject *ret; if(!PyList_Check(boxlist)) { PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x, y, w, h], ... ]"); return NULL; } len= PyList_GET_SIZE(boxlist); if (len) { boxPack *boxarray= NULL; if(boxPack_FromPyObject(boxlist, &boxarray) == -1) { return NULL; /* exception set */ } /* Non Python function */ boxPack2D(boxarray, len, &tot_width, &tot_height); boxPack_ToPyObject(boxlist, &boxarray); } ret= PyTuple_New(2); PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(tot_width)); PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(tot_width)); return ret; } static char M_Geometry_interpolate_bezier_doc[] = ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n" "\n" " Interpolate a bezier spline segment.\n" "\n" " :arg knot1: First bezier spline point.\n" " :type knot1: :class:`mathutils.Vector`\n" " :arg handle1: First bezier spline handle.\n" " :type handle1: :class:`mathutils.Vector`\n" " :arg handle2: Second bezier spline handle.\n" " :type handle2: :class:`mathutils.Vector`\n" " :arg knot2: Second bezier spline point.\n" " :type knot2: :class:`mathutils.Vector`\n" " :arg resolution: Number of points to return.\n" " :type resolution: int\n" " :return: The interpolated points\n" " :rtype: list of :class:`mathutils.Vector`'s\n" ; static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject* args) { VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2; int resolu; int dims; int i; float *coord_array, *fp; PyObject *list; float k1[4]= {0.0, 0.0, 0.0, 0.0}; float h1[4]= {0.0, 0.0, 0.0, 0.0}; float k2[4]= {0.0, 0.0, 0.0, 0.0}; float h2[4]= {0.0, 0.0, 0.0, 0.0}; if(!PyArg_ParseTuple(args, "O!O!O!O!i:interpolate_bezier", &vector_Type, &vec_k1, &vector_Type, &vec_h1, &vector_Type, &vec_h2, &vector_Type, &vec_k2, &resolu) ) { return NULL; } if(resolu <= 1) { PyErr_SetString(PyExc_ValueError, "resolution must be 2 or over"); return NULL; } if(BaseMath_ReadCallback(vec_k1) == -1 || BaseMath_ReadCallback(vec_h1) == -1 || BaseMath_ReadCallback(vec_k2) == -1 || BaseMath_ReadCallback(vec_h2) == -1) return NULL; dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size); for(i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i]; for(i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i]; for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i]; for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i]; coord_array= MEM_callocN(dims * (resolu) * sizeof(float), "interpolate_bezier"); for(i=0; isize != 3 || vec_t1_src->size != 3 || vec_t2_src->size != 3 || vec_t3_src->size != 3 || vec_t1_tar->size != 3 || vec_t2_tar->size != 3 || vec_t3_tar->size != 3) { PyErr_SetString(PyExc_ValueError, "One of more of the vector arguments wasnt a 3D vector"); return NULL; } barycentric_transform(vec, vec_pt->vec, vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec, vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec); return newVectorObject(vec, 3, Py_NEW, NULL); } static PyMethodDef M_Geometry_methods[]= { {"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc}, {"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc}, {"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc}, {"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc}, {"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc}, {"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc}, {"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc}, {"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc}, {"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc}, {"tesselate_polygon", (PyCFunction) M_Geometry_tesselate_polygon, METH_O, M_Geometry_tesselate_polygon_doc}, {"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc}, {"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc}, {NULL, NULL, 0, NULL} }; static struct PyModuleDef M_Geometry_module_def= { PyModuleDef_HEAD_INIT, "mathutils.geometry", /* m_name */ M_Geometry_doc, /* m_doc */ 0, /* m_size */ M_Geometry_methods, /* m_methods */ NULL, /* m_reload */ NULL, /* m_traverse */ NULL, /* m_clear */ NULL, /* m_free */ }; /*----------------------------MODULE INIT-------------------------*/ PyMODINIT_FUNC BPyInit_mathutils_geometry(void) { PyObject *submodule= PyModule_Create(&M_Geometry_module_def); return submodule; }