/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Michel Selten & Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "mathutils.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_utildefines.h" /* matrix vector callbacks */ int mathutils_matrix_vector_cb_index= -1; static int mathutils_matrix_vector_check(BaseMathObject *bmo) { MatrixObject *self= (MatrixObject *)bmo->cb_user; return BaseMath_ReadCallback(self); } static int mathutils_matrix_vector_get(BaseMathObject *bmo, int subtype) { MatrixObject *self= (MatrixObject *)bmo->cb_user; int i; if(!BaseMath_ReadCallback(self)) return 0; for(i=0; i < self->colSize; i++) bmo->data[i]= self->matrix[subtype][i]; return 1; } static int mathutils_matrix_vector_set(BaseMathObject *bmo, int subtype) { MatrixObject *self= (MatrixObject *)bmo->cb_user; int i; if(!BaseMath_ReadCallback(self)) return 0; for(i=0; i < self->colSize; i++) self->matrix[subtype][i]= bmo->data[i]; (void)BaseMath_WriteCallback(self); return 1; } static int mathutils_matrix_vector_get_index(BaseMathObject *bmo, int subtype, int index) { MatrixObject *self= (MatrixObject *)bmo->cb_user; if(!BaseMath_ReadCallback(self)) return 0; bmo->data[index]= self->matrix[subtype][index]; return 1; } static int mathutils_matrix_vector_set_index(BaseMathObject *bmo, int subtype, int index) { MatrixObject *self= (MatrixObject *)bmo->cb_user; if(!BaseMath_ReadCallback(self)) return 0; self->matrix[subtype][index]= bmo->data[index]; (void)BaseMath_WriteCallback(self); return 1; } Mathutils_Callback mathutils_matrix_vector_cb = { mathutils_matrix_vector_check, mathutils_matrix_vector_get, mathutils_matrix_vector_set, mathutils_matrix_vector_get_index, mathutils_matrix_vector_set_index }; /* matrix vector callbacks, this is so you can do matrix[i][j] = val */ //----------------------------------mathutils.Matrix() ----------------- //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc. //create a new matrix type static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *argObject, *m, *s; MatrixObject *mat; int argSize, seqSize = 0, i, j; float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; float scalar; if(kwds && PyDict_Size(kwds)) { PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): takes no keyword args"); return NULL; } argSize = PyTuple_GET_SIZE(args); if(argSize > MATRIX_MAX_DIM) { //bad arg nums PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size"); return NULL; } else if (argSize == 0) { //return empty 4D matrix return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, type); }else if (argSize == 1){ //copy constructor for matrix objects argObject = PyTuple_GET_ITEM(args, 0); if(MatrixObject_Check(argObject)){ mat = (MatrixObject*)argObject; if(!BaseMath_ReadCallback(mat)) return NULL; memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize); argSize = mat->rowSize; seqSize = mat->colSize; } }else{ //2-4 arguments (all seqs? all same size?) for(i =0; i < argSize; i++){ argObject = PyTuple_GET_ITEM(args, i); if (PySequence_Check(argObject)) { //seq? if(seqSize){ //0 at first if(PySequence_Length(argObject) != seqSize){ //seq size not same PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size"); return NULL; } } seqSize = PySequence_Length(argObject); }else{ //arg not a sequence PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size"); return NULL; } } //all is well... let's continue parsing for (i = 0; i < argSize; i++){ m = PyTuple_GET_ITEM(args, i); if (m == NULL) { // Failed to read sequence PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments"); return NULL; } for (j = 0; j < seqSize; j++) { s = PySequence_GetItem(m, j); if (s == NULL) { // Failed to read sequence PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments"); return NULL; } scalar= (float)PyFloat_AsDouble(s); Py_DECREF(s); if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size"); return NULL; } matrix[(seqSize*i)+j]= scalar; } } } return newMatrixObject(matrix, argSize, seqSize, Py_NEW, type); } /*-----------------------CLASS-METHODS----------------------------*/ //----------------------------------mathutils.RotationMatrix() ---------- //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc. static char C_Matrix_Rotation_doc[] = ".. classmethod:: Rotation(angle, size, axis)\n" "\n" " Create a matrix representing a rotation.\n" "\n" " :arg angle: The angle of rotation desired, in radians.\n" " :type angle: float\n" " :arg size: The size of the rotation matrix to construct [2, 4].\n" " :type size: int\n" " :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n" " :type axis: string or :class:`Vector`\n" " :return: A new rotation matrix.\n" " :rtype: :class:`Matrix`\n"; static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args) { VectorObject *vec= NULL; char *axis= NULL; int matSize; float angle = 0.0f; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) { PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector"); return NULL; } if(vec && !VectorObject_Check(vec)) { axis= _PyUnicode_AsString((PyObject *)vec); if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') { PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'"); return NULL; } else { /* use the string */ vec= NULL; } } while (angle<-(Py_PI*2)) angle+=(Py_PI*2); while (angle>(Py_PI*2)) angle-=(Py_PI*2); if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if(matSize == 2 && (vec != NULL)) { PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis"); return NULL; } if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) { PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices"); return NULL; } if(vec) { if(vec->size != 3) { PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector"); return NULL; } if(!BaseMath_ReadCallback(vec)) return NULL; } /* check for valid vector/axis above */ if(vec) { axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle); } else if(matSize == 2) { //2D rotation matrix mat[0] = (float) cos (angle); mat[1] = (float) sin (angle); mat[2] = -((float) sin(angle)); mat[3] = (float) cos(angle); } else if(strcmp(axis, "X") == 0) { //rotation around X mat[0] = 1.0f; mat[4] = (float) cos(angle); mat[5] = (float) sin(angle); mat[7] = -((float) sin(angle)); mat[8] = (float) cos(angle); } else if(strcmp(axis, "Y") == 0) { //rotation around Y mat[0] = (float) cos(angle); mat[2] = -((float) sin(angle)); mat[4] = 1.0f; mat[6] = (float) sin(angle); mat[8] = (float) cos(angle); } else if(strcmp(axis, "Z") == 0) { //rotation around Z mat[0] = (float) cos(angle); mat[1] = (float) sin(angle); mat[3] = -((float) sin(angle)); mat[4] = (float) cos(angle); mat[8] = 1.0f; } else { /* should never get here */ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error"); return NULL; } if(matSize == 4) { //resize matrix mat[10] = mat[8]; mat[9] = mat[7]; mat[8] = mat[6]; mat[7] = 0.0f; mat[6] = mat[5]; mat[5] = mat[4]; mat[4] = mat[3]; mat[3] = 0.0f; } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } static char C_Matrix_Translation_doc[] = ".. classmethod:: Translation(vector)\n" "\n" " Create a matrix representing a translation.\n" "\n" " :arg vector: The translation vector.\n" " :type vector: :class:`Vector`\n" " :return: An identity matrix with a translation.\n" " :rtype: :class:`Matrix`\n"; static PyObject *C_Matrix_Translation(PyObject *cls, VectorObject * vec) { float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!VectorObject_Check(vec)) { PyErr_SetString(PyExc_TypeError, "mathutils.Matrix.Translation(): expected vector"); return NULL; } if(vec->size != 3 && vec->size != 4) { PyErr_SetString(PyExc_TypeError, "mathutils.Matrix.Translation(): vector must be 3D or 4D"); return NULL; } if(!BaseMath_ReadCallback(vec)) return NULL; //create a identity matrix and add translation unit_m4((float(*)[4]) mat); mat[12] = vec->vec[0]; mat[13] = vec->vec[1]; mat[14] = vec->vec[2]; return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls); } //----------------------------------mathutils.Matrix.Scale() ------------- //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc. static char C_Matrix_Scale_doc[] = ".. classmethod:: Scale(factor, size, axis)\n" "\n" " Create a matrix representing a scaling.\n" "\n" " :arg factor: The factor of scaling to apply.\n" " :type factor: float\n" " :arg size: The size of the scale matrix to construct [2, 4].\n" " :type size: int\n" " :arg axis: Direction to influence scale. (optional).\n" " :type axis: :class:`Vector`\n" " :return: A new scale matrix.\n" " :rtype: :class:`Matrix`\n"; static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args) { VectorObject *vec = NULL; float norm = 0.0f, factor; int matSize, x; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) { PyErr_SetString(PyExc_TypeError, "mathutils.Matrix.Scale(): expected float int and optional vector"); return NULL; } if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.Scale(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if(vec) { if(vec->size > 2 && matSize == 2) { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.Scale(): please use 2D vectors when scaling in 2D"); return NULL; } if(!BaseMath_ReadCallback(vec)) return NULL; } if(vec == NULL) { //scaling along axis if(matSize == 2) { mat[0] = factor; mat[3] = factor; } else { mat[0] = factor; mat[4] = factor; mat[8] = factor; } } else { //scaling in arbitrary direction //normalize arbitrary axis for(x = 0; x < vec->size; x++) { norm += vec->vec[x] * vec->vec[x]; } norm = (float) sqrt(norm); for(x = 0; x < vec->size; x++) { vec->vec[x] /= norm; } if(matSize == 2) { mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0])); mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1])); mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1])); mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1])); } else { mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0])); mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1])); mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2])); mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1])); mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1])); mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2])); mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2])); mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2])); mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2])); } } if(matSize == 4) { //resize matrix mat[10] = mat[8]; mat[9] = mat[7]; mat[8] = mat[6]; mat[7] = 0.0f; mat[6] = mat[5]; mat[5] = mat[4]; mat[4] = mat[3]; mat[3] = 0.0f; } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } //----------------------------------mathutils.Matrix.OrthoProjection() --- //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc. static char C_Matrix_OrthoProjection_doc[] = ".. classmethod:: OrthoProjection(plane, size, axis)\n" "\n" " Create a matrix to represent an orthographic projection.\n" "\n" " :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n" " :type plane: string\n" " :arg size: The size of the projection matrix to construct [2, 4].\n" " :type size: int\n" " :arg axis: Arbitrary perpendicular plane vector (optional).\n" " :type axis: :class:`Vector`\n" " :return: A new projection matrix.\n" " :rtype: :class:`Matrix`\n"; static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args) { VectorObject *vec = NULL; char *plane; int matSize, x; float norm = 0.0f; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) { PyErr_SetString(PyExc_TypeError, "mathutils.Matrix.OrthoProjection(): expected string and int and optional vector"); return NULL; } if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError,"mathutils.Matrix.OrthoProjection(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if(vec) { if(vec->size > 2 && matSize == 2) { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.OrthoProjection(): please use 2D vectors when scaling in 2D"); return NULL; } if(!BaseMath_ReadCallback(vec)) return NULL; } if(vec == NULL) { //ortho projection onto cardinal plane if((strcmp(plane, "X") == 0) && matSize == 2) { mat[0] = 1.0f; } else if((strcmp(plane, "Y") == 0) && matSize == 2) { mat[3] = 1.0f; } else if((strcmp(plane, "XY") == 0) && matSize > 2) { mat[0] = 1.0f; mat[4] = 1.0f; } else if((strcmp(plane, "XZ") == 0) && matSize > 2) { mat[0] = 1.0f; mat[8] = 1.0f; } else if((strcmp(plane, "YZ") == 0) && matSize > 2) { mat[4] = 1.0f; mat[8] = 1.0f; } else { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.OrthoProjection(): unknown plane - expected: X, Y, XY, XZ, YZ"); return NULL; } } else { //arbitrary plane //normalize arbitrary axis for(x = 0; x < vec->size; x++) { norm += vec->vec[x] * vec->vec[x]; } norm = (float) sqrt(norm); for(x = 0; x < vec->size; x++) { vec->vec[x] /= norm; } if((strcmp(plane, "R") == 0) && matSize == 2) { mat[0] = 1 - (vec->vec[0] * vec->vec[0]); mat[1] = -(vec->vec[0] * vec->vec[1]); mat[2] = -(vec->vec[0] * vec->vec[1]); mat[3] = 1 - (vec->vec[1] * vec->vec[1]); } else if((strcmp(plane, "R") == 0) && matSize > 2) { mat[0] = 1 - (vec->vec[0] * vec->vec[0]); mat[1] = -(vec->vec[0] * vec->vec[1]); mat[2] = -(vec->vec[0] * vec->vec[2]); mat[3] = -(vec->vec[0] * vec->vec[1]); mat[4] = 1 - (vec->vec[1] * vec->vec[1]); mat[5] = -(vec->vec[1] * vec->vec[2]); mat[6] = -(vec->vec[0] * vec->vec[2]); mat[7] = -(vec->vec[1] * vec->vec[2]); mat[8] = 1 - (vec->vec[2] * vec->vec[2]); } else { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.OrthoProjection(): unknown plane - expected: 'r' expected for axis designation"); return NULL; } } if(matSize == 4) { //resize matrix mat[10] = mat[8]; mat[9] = mat[7]; mat[8] = mat[6]; mat[7] = 0.0f; mat[6] = mat[5]; mat[5] = mat[4]; mat[4] = mat[3]; mat[3] = 0.0f; } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } static char C_Matrix_Shear_doc[] = ".. classmethod:: Shear(plane, factor, size)\n" "\n" " Create a matrix to represent an shear transformation.\n" "\n" " :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n" " :type plane: string\n" " :arg factor: The factor of shear to apply.\n" " :type factor: float\n" " :arg size: The size of the shear matrix to construct [2, 4].\n" " :type size: int\n" " :return: A new shear matrix.\n" " :rtype: :class:`Matrix`\n"; static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args) { int matSize; char *plane; float factor; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) { PyErr_SetString(PyExc_TypeError,"mathutils.Matrix.Shear(): expected string float and int"); return NULL; } if(matSize != 2 && matSize != 3 && matSize != 4) { PyErr_SetString(PyExc_AttributeError,"mathutils.Matrix.Shear(): can only return a 2x2 3x3 or 4x4 matrix"); return NULL; } if((strcmp(plane, "X") == 0) && matSize == 2) { mat[0] = 1.0f; mat[2] = factor; mat[3] = 1.0f; } else if((strcmp(plane, "Y") == 0) && matSize == 2) { mat[0] = 1.0f; mat[1] = factor; mat[3] = 1.0f; } else if((strcmp(plane, "XY") == 0) && matSize > 2) { mat[0] = 1.0f; mat[4] = 1.0f; mat[6] = factor; mat[7] = factor; } else if((strcmp(plane, "XZ") == 0) && matSize > 2) { mat[0] = 1.0f; mat[3] = factor; mat[4] = 1.0f; mat[5] = factor; mat[8] = 1.0f; } else if((strcmp(plane, "YZ") == 0) && matSize > 2) { mat[0] = 1.0f; mat[1] = factor; mat[2] = factor; mat[4] = 1.0f; mat[8] = 1.0f; } else { PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix.Shear(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane"); return NULL; } if(matSize == 4) { //resize matrix mat[10] = mat[8]; mat[9] = mat[7]; mat[8] = mat[6]; mat[7] = 0.0f; mat[6] = mat[5]; mat[5] = mat[4]; mat[4] = mat[3]; mat[3] = 0.0f; } //pass to matrix creation return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls); } /* assumes rowsize == colsize is checked and the read callback has run */ static float matrix_determinant(MatrixObject * self) { if(self->rowSize == 2) { return determinant_m2(self->matrix[0][0], self->matrix[0][1], self->matrix[1][0], self->matrix[1][1]); } else if(self->rowSize == 3) { return determinant_m3(self->matrix[0][0], self->matrix[0][1], self->matrix[0][2], self->matrix[1][0], self->matrix[1][1], self->matrix[1][2], self->matrix[2][0], self->matrix[2][1], self->matrix[2][2]); } else { return determinant_m4((float (*)[4])self->contigPtr); } } /*-----------------------------METHODS----------------------------*/ static char Matrix_toQuat_doc[] = ".. method:: to_quat()\n" "\n" " Return a quaternion representation of the rotation matrix.\n" "\n" " :return: Quaternion representation of the rotation matrix.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Matrix_toQuat(MatrixObject * self) { float quat[4]; if(!BaseMath_ReadCallback(self)) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) { PyErr_SetString(PyExc_AttributeError, "Matrix.to_quat(): inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } if(self->colSize == 3){ mat3_to_quat( quat,(float (*)[3])self->contigPtr); }else{ mat4_to_quat( quat,(float (*)[4])self->contigPtr); } return newQuaternionObject(quat, Py_NEW, NULL); } /*---------------------------Matrix.toEuler() --------------------*/ static char Matrix_toEuler_doc[] = ".. method:: to_euler(order, euler_compat)\n" "\n" " Return an Euler representation of the rotation matrix (3x3 or 4x4 matrix only).\n" "\n" " :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n" " :type order: string\n" " :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n" " :type euler_compat: :class:`Euler`\n" " :return: Euler representation of the matrix.\n" " :rtype: :class:`Euler`\n"; PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args) { char *order_str= NULL; short order= EULER_ORDER_XYZ; float eul[3], eul_compatf[3]; EulerObject *eul_compat = NULL; float tmat[3][3]; float (*mat)[3]; if(!BaseMath_ReadCallback(self)) return NULL; if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat)) return NULL; if(eul_compat) { if(!BaseMath_ReadCallback(eul_compat)) return NULL; copy_v3_v3(eul_compatf, eul_compat->eul); } /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize ==3 && self->rowSize ==3) { mat= (float (*)[3])self->contigPtr; }else if (self->colSize ==4 && self->rowSize ==4) { copy_m3_m4(tmat, (float (*)[4])self->contigPtr); mat= tmat; }else { PyErr_SetString(PyExc_AttributeError, "Matrix.to_euler(): inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } if(order_str) { order= euler_order_from_string(order_str, "Matrix.to_euler()"); if(order == -1) return NULL; } if(eul_compat) { if(order == 1) mat3_to_compatible_eul( eul, eul_compatf, mat); else mat3_to_compatible_eulO(eul, eul_compatf, order, mat); } else { if(order == 1) mat3_to_eul(eul, mat); else mat3_to_eulO(eul, order, mat); } return newEulerObject(eul, order, Py_NEW, NULL); } /*---------------------------Matrix.resize4x4() ------------------*/ static char Matrix_Resize4x4_doc[] = ".. method:: resize4x4()\n" "\n" " Resize the matrix to 4x4.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Matrix`\n"; PyObject *Matrix_Resize4x4(MatrixObject * self) { int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index; if(self->wrapped==Py_WRAP){ PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that"); return NULL; } if(self->cb_user){ PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that"); return NULL; } self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16)); if(self->contigPtr == NULL) { PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space"); return NULL; } /*set row pointers*/ for(x = 0; x < 4; x++) { self->matrix[x] = self->contigPtr + (x * 4); } /*move data to new spot in array + clean*/ for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){ for(x = 0; x < 4; x++){ index = (4 * (self->rowSize + (blank_rows - 1))) + x; if (index == 10 || index == 15){ self->contigPtr[index] = 1.0f; }else{ self->contigPtr[index] = 0.0f; } } } for(x = 1; x <= self->rowSize; x++){ first_row_elem = (self->colSize * (self->rowSize - x)); curr_pos = (first_row_elem + (self->colSize -1)); new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem); for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){ self->contigPtr[new_pos + blank_columns] = 0.0f; } for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){ self->contigPtr[new_pos] = self->contigPtr[curr_pos]; new_pos--; } } self->rowSize = 4; self->colSize = 4; Py_INCREF(self); return (PyObject *)self; } static char Matrix_to_4x4_doc[] = ".. method:: to_4x4()\n" "\n" " Return a 4x4 copy of this matrix.\n" "\n" " :return: a new matrix.\n" " :rtype: :class:`Matrix`\n"; PyObject *Matrix_to_4x4(MatrixObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; if(self->colSize==4 && self->rowSize==4) { return (PyObject *)newMatrixObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self)); } else if(self->colSize==3 && self->rowSize==3) { float mat[4][4]; copy_m4_m3(mat, (float (*)[3])self->contigPtr); return (PyObject *)newMatrixObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self)); } /* TODO, 2x2 matrix */ PyErr_SetString(PyExc_TypeError, "Matrix.to_4x4(): inappropriate matrix size"); return NULL; } static char Matrix_to_3x3_doc[] = ".. method:: to_3x3()\n" "\n" " Return a 3x3 copy of this matrix.\n" "\n" " :return: a new matrix.\n" " :rtype: :class:`Matrix`\n"; PyObject *Matrix_to_3x3(MatrixObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; if(self->colSize==3 && self->rowSize==3) { return (PyObject *)newMatrixObject(self->contigPtr, 3, 3, Py_NEW, Py_TYPE(self)); } else if(self->colSize==4 && self->rowSize==4) { float mat[3][3]; copy_m3_m4(mat, (float (*)[4])self->contigPtr); return (PyObject *)newMatrixObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self)); } /* TODO, 2x2 matrix */ PyErr_SetString(PyExc_TypeError, "Matrix.to_3x3(): inappropriate matrix size"); return NULL; } /*---------------------------Matrix.translationPart() ------------*/ static char Matrix_TranslationPart_doc[] = ".. method:: translation_part()\n" "\n" " Return a the translation part of a 4 row matrix.\n" "\n" " :return: Return a the translation of a matrix.\n" " :rtype: :class:`Vector`\n" ; PyObject *Matrix_TranslationPart(MatrixObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; if(self->colSize < 3 || self->rowSize < 4){ PyErr_SetString(PyExc_AttributeError, "Matrix.translation_part(): inappropriate matrix size"); return NULL; } return newVectorObject(self->matrix[3], 3, Py_NEW, NULL); } /*---------------------------Matrix.rotationPart() ---------------*/ static char Matrix_RotationPart_doc[] = ".. method:: rotation_part()\n" "\n" " Return the 3d submatrix corresponding to the linear term of the embedded affine transformation in 3d. This matrix represents rotation and scale.\n" "\n" " :return: Return the 3d matrix for rotation and scale.\n" " :rtype: :class:`Matrix`\n" "\n" " .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n"; PyObject *Matrix_RotationPart(MatrixObject * self) { float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!BaseMath_ReadCallback(self)) return NULL; if(self->colSize < 3 || self->rowSize < 3){ PyErr_SetString(PyExc_AttributeError, "Matrix.rotation_part(): inappropriate matrix size"); return NULL; } mat[0] = self->matrix[0][0]; mat[1] = self->matrix[0][1]; mat[2] = self->matrix[0][2]; mat[3] = self->matrix[1][0]; mat[4] = self->matrix[1][1]; mat[5] = self->matrix[1][2]; mat[6] = self->matrix[2][0]; mat[7] = self->matrix[2][1]; mat[8] = self->matrix[2][2]; return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self)); } /*---------------------------Matrix.scalePart() --------------------*/ static char Matrix_scalePart_doc[] = ".. method:: scale_part()\n" "\n" " Return a the scale part of a 3x3 or 4x4 matrix.\n" "\n" " :return: Return a the scale of a matrix.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n"; PyObject *Matrix_scalePart(MatrixObject * self) { float scale[3], rot[3]; float mat[3][3], imat[3][3], tmat[3][3]; if(!BaseMath_ReadCallback(self)) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize == 4 && self->rowSize == 4) copy_m3_m4(mat, (float (*)[4])self->contigPtr); else if(self->colSize == 3 && self->rowSize == 3) copy_m3_m3(mat, (float (*)[3])self->contigPtr); else { PyErr_SetString(PyExc_AttributeError, "Matrix.scale_part(): inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } /* functionality copied from editobject.c apply_obmat */ mat3_to_eul( rot,mat); eul_to_mat3( tmat,rot); invert_m3_m3(imat, tmat); mul_m3_m3m3(tmat, imat, mat); scale[0]= tmat[0][0]; scale[1]= tmat[1][1]; scale[2]= tmat[2][2]; return newVectorObject(scale, 3, Py_NEW, NULL); } /*---------------------------Matrix.invert() ---------------------*/ static char Matrix_Invert_doc[] = ".. method:: invert()\n" "\n" " Set the matrix to its inverse.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Matrix`\n" "\n" " .. note:: :exc:`ValueError` exception is raised.\n" "\n" " .. seealso:: \n"; PyObject *Matrix_Invert(MatrixObject * self) { int x, y, z = 0; float det = 0.0f; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; if(!BaseMath_ReadCallback(self)) return NULL; if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported"); return NULL; } /*calculate the determinant*/ det = matrix_determinant(self); if(det != 0) { /*calculate the classical adjoint*/ if(self->rowSize == 2) { mat[0] = self->matrix[1][1]; mat[1] = -self->matrix[0][1]; mat[2] = -self->matrix[1][0]; mat[3] = self->matrix[0][0]; } else if(self->rowSize == 3) { adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr); } else if(self->rowSize == 4) { adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr); } /*divide by determinate*/ for(x = 0; x < (self->rowSize * self->colSize); x++) { mat[x] /= det; } /*set values*/ for(x = 0; x < self->rowSize; x++) { for(y = 0; y < self->colSize; y++) { self->matrix[x][y] = mat[z]; z++; } } /*transpose Matrix_Transpose(self);*/ } else { PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse"); return NULL; } (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.decompose() ---------------------*/ static char Matrix_decompose_doc[] = ".. method:: decompose()\n" "\n" " Return the location, rotaion and scale components of this matrix.\n" "\n" " :return: loc, rot, scale triple.\n" " :rtype: (:class:`Vector`, :class:`Quaternion`, :class:`Vector`)"; static PyObject *Matrix_decompose(MatrixObject * self) { PyObject *ret; float loc[3]; float rot[3][3]; float quat[4]; float size[3]; if(self->colSize != 4 || self->rowSize != 4) { PyErr_SetString(PyExc_AttributeError, "Matrix.decompose(): inappropriate matrix size - expects 4x4 matrix"); return NULL; } if(!BaseMath_ReadCallback(self)) return NULL; mat4_to_loc_rot_size(loc, rot, size, (float (*)[4])self->contigPtr); mat3_to_quat(quat, rot); ret= PyTuple_New(3); PyTuple_SET_ITEM(ret, 0, newVectorObject(loc, 3, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 1, newQuaternionObject(quat, Py_NEW, NULL)); PyTuple_SET_ITEM(ret, 2, newVectorObject(size, 3, Py_NEW, NULL)); return ret; } static char Matrix_Lerp_doc[] = ".. function:: lerp(other, factor)\n" "\n" " Returns the interpolation of two matricies.\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Matrix`\n" " :arg factor: The interpolation value in [0.0, 1.0].\n" " :type factor: float\n" " :return: The interpolated rotation.\n" " :rtype: :class:`Matrix`\n"; static PyObject *Matrix_Lerp(MatrixObject *self, PyObject *args) { MatrixObject *mat2 = NULL; float fac, mat[MATRIX_MAX_DIM*MATRIX_MAX_DIM]; if(!PyArg_ParseTuple(args, "O!f:lerp", &matrix_Type, &mat2, &fac)) return NULL; if(self->rowSize != mat2->rowSize || self->colSize != mat2->colSize) { PyErr_SetString(PyExc_AttributeError, "matrix.lerp(): expects both matrix objects of the same dimensions"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(mat2)) return NULL; /* TODO, different sized matrix */ if(self->rowSize==4 && self->colSize==4) { blend_m4_m4m4((float (*)[4])mat, (float (*)[4])self->contigPtr, (float (*)[4])mat2->contigPtr, fac); } else if (self->rowSize==3 && self->colSize==3) { blend_m3_m3m3((float (*)[3])mat, (float (*)[3])self->contigPtr, (float (*)[3])mat2->contigPtr, fac); } else { PyErr_SetString(PyExc_AttributeError, "matrix.lerp(): only 3x3 and 4x4 matrices supported"); return NULL; } return (PyObject*)newMatrixObject(mat, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self)); } /*---------------------------Matrix.determinant() ----------------*/ static char Matrix_Determinant_doc[] = ".. method:: determinant()\n" "\n" " Return the determinant of a matrix.\n" "\n" " :return: Return a the determinant of a matrix.\n" " :rtype: float\n" "\n" " .. seealso:: \n"; PyObject *Matrix_Determinant(MatrixObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported"); return NULL; } return PyFloat_FromDouble((double)matrix_determinant(self)); } /*---------------------------Matrix.transpose() ------------------*/ static char Matrix_Transpose_doc[] = ".. method:: transpose()\n" "\n" " Set the matrix to its transpose.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Matrix`\n" "\n" " .. seealso:: \n"; PyObject *Matrix_Transpose(MatrixObject * self) { float t = 0.0f; if(!BaseMath_ReadCallback(self)) return NULL; if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported"); return NULL; } if(self->rowSize == 2) { t = self->matrix[1][0]; self->matrix[1][0] = self->matrix[0][1]; self->matrix[0][1] = t; } else if(self->rowSize == 3) { transpose_m3((float (*)[3])self->contigPtr); } else { transpose_m4((float (*)[4])self->contigPtr); } (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.zero() -----------------------*/ static char Matrix_Zero_doc[] = ".. method:: zero()\n" "\n" " Set all the matrix values to zero.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Matrix`\n"; PyObject *Matrix_Zero(MatrixObject * self) { int row, col; for(row = 0; row < self->rowSize; row++) { for(col = 0; col < self->colSize; col++) { self->matrix[row][col] = 0.0f; } } if(!BaseMath_WriteCallback(self)) return NULL; Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.identity(() ------------------*/ static char Matrix_Identity_doc[] = ".. method:: identity()\n" "\n" " Set the matrix to the identity matrix.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Matrix`\n" "\n" " .. note:: An object with zero location and rotation, a scale of one, will have an identity matrix.\n" "\n" " .. seealso:: \n"; PyObject *Matrix_Identity(MatrixObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; if(self->rowSize != self->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported"); return NULL; } if(self->rowSize == 2) { self->matrix[0][0] = 1.0f; self->matrix[0][1] = 0.0f; self->matrix[1][0] = 0.0f; self->matrix[1][1] = 1.0f; } else if(self->rowSize == 3) { unit_m3((float (*)[3])self->contigPtr); } else { unit_m4((float (*)[4])self->contigPtr); } if(!BaseMath_WriteCallback(self)) return NULL; Py_INCREF(self); return (PyObject *)self; } /*---------------------------Matrix.copy() ------------------*/ static char Matrix_copy_doc[] = ".. method:: copy()\n" "\n" " Returns a copy of this matrix.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Matrix`\n"; PyObject *Matrix_copy(MatrixObject *self) { if(!BaseMath_ReadCallback(self)) return NULL; return (PyObject*)newMatrixObject((float (*))self->contigPtr, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self)); } /*----------------------------print object (internal)-------------*/ /*print the object to screen*/ static PyObject *Matrix_repr(MatrixObject * self) { int x, y; PyObject *rows[MATRIX_MAX_DIM]= {0}; if(!BaseMath_ReadCallback(self)) return NULL; for(x = 0; x < self->rowSize; x++){ rows[x]= PyTuple_New(self->rowSize); for(y = 0; y < self->colSize; y++) { PyTuple_SET_ITEM(rows[x], y, PyFloat_FromDouble(self->matrix[x][y])); } } switch(self->rowSize) { case 2: return PyUnicode_FromFormat("Matrix(%R,\n" " %R)", rows[0], rows[1]); case 3: return PyUnicode_FromFormat("Matrix(%R,\n" " %R,\n" " %R)", rows[0], rows[1], rows[2]); case 4: return PyUnicode_FromFormat("Matrix(%R,\n" " %R,\n" " %R,\n" " %R)", rows[0], rows[1], rows[2], rows[3]); } PyErr_SetString(PyExc_RuntimeError, "invalid matrix size"); return NULL; } /*------------------------tp_richcmpr*/ /*returns -1 execption, 0 false, 1 true*/ static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { MatrixObject *matA = NULL, *matB = NULL; int result = 0; if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } matA = (MatrixObject*)objectA; matB = (MatrixObject*)objectB; if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB)) return NULL; if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } switch (comparison_type){ case Py_EQ: /*contigPtr is basically a really long vector*/ result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr, (matA->rowSize * matA->colSize), 1); break; case Py_NE: result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr, (matA->rowSize * matA->colSize), 1); if (result == 0){ result = 1; }else{ result = 0; } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } /*---------------------SEQUENCE PROTOCOLS------------------------ ----------------------------len(object)------------------------ sequence length*/ static int Matrix_len(MatrixObject * self) { return (self->rowSize); } /*----------------------------object[]--------------------------- sequence accessor (get) the wrapped vector gives direct access to the matrix data*/ static PyObject *Matrix_item(MatrixObject * self, int i) { if(!BaseMath_ReadCallback(self)) return NULL; if(i < 0 || i >= self->rowSize) { PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range"); return NULL; } return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i); } /*----------------------------object[]------------------------- sequence accessor (set)*/ static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob) { int y, x, size = 0; float vec[4]; PyObject *m, *f; if(!BaseMath_ReadCallback(self)) return -1; if(i >= self->rowSize || i < 0){ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad column"); return -1; } if(PySequence_Check(ob)){ size = PySequence_Length(ob); if(size != self->colSize){ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size"); return -1; } for (x = 0; x < size; x++) { m = PySequence_GetItem(ob, x); if (m == NULL) { /*Failed to read sequence*/ PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence"); return -1; } f = PyNumber_Float(m); if(f == NULL) { /*parsed item not a number*/ Py_DECREF(m); PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number"); return -1; } vec[x] = (float)PyFloat_AS_DOUBLE(f); Py_DECREF(m); Py_DECREF(f); } /*parsed well - now set in matrix*/ for(y = 0; y < size; y++){ self->matrix[i][y] = vec[y]; } (void)BaseMath_WriteCallback(self); return 0; }else{ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size"); return -1; } } /*----------------------------object[z:y]------------------------ sequence slice (get)*/ static PyObject *Matrix_slice(MatrixObject * self, int begin, int end) { PyObject *tuple; int count; if(!BaseMath_ReadCallback(self)) return NULL; CLAMP(begin, 0, self->rowSize); CLAMP(end, 0, self->rowSize); begin= MIN2(begin,end); tuple= PyTuple_New(end - begin); for(count= begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count)); } return tuple; } /*----------------------------object[z:y]------------------------ sequence slice (set)*/ static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq) { int i, x, y, size, sub_size = 0; float mat[16], f; PyObject *subseq; PyObject *m; if(!BaseMath_ReadCallback(self)) return -1; CLAMP(begin, 0, self->rowSize); CLAMP(end, 0, self->rowSize); begin = MIN2(begin,end); if(PySequence_Check(seq)){ size = PySequence_Length(seq); if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment"); return -1; } /*parse sub items*/ for (i = 0; i < size; i++) { /*parse each sub sequence*/ subseq = PySequence_GetItem(seq, i); if (subseq == NULL) { /*Failed to read sequence*/ PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence"); return -1; } if(PySequence_Check(subseq)){ /*subsequence is also a sequence*/ sub_size = PySequence_Length(subseq); if(sub_size != self->colSize){ Py_DECREF(subseq); PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment"); return -1; } for (y = 0; y < sub_size; y++) { m = PySequence_GetItem(subseq, y); if (m == NULL) { /*Failed to read sequence*/ Py_DECREF(subseq); PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence"); return -1; } f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */ if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/ Py_DECREF(m); Py_DECREF(subseq); PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number"); return -1; } mat[(i * self->colSize) + y] = f; Py_DECREF(m); } }else{ Py_DECREF(subseq); PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation"); return -1; } Py_DECREF(subseq); } /*parsed well - now set in matrix*/ for(x = 0; x < (size * sub_size); x++){ self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x]; } (void)BaseMath_WriteCallback(self); return 0; }else{ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation"); return -1; } } /*------------------------NUMERIC PROTOCOLS---------------------- ------------------------obj + obj------------------------------*/ static PyObject *Matrix_add(PyObject * m1, PyObject * m2) { int x, y; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) { PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation"); return NULL; } if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2)) return NULL; if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation"); return NULL; } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL); } /*------------------------obj - obj------------------------------ subtraction*/ static PyObject *Matrix_sub(PyObject * m1, PyObject * m2) { int x, y; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; MatrixObject *mat1 = NULL, *mat2 = NULL; mat1 = (MatrixObject*)m1; mat2 = (MatrixObject*)m2; if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) { PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation"); return NULL; } if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2)) return NULL; if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation"); return NULL; } for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL); } /*------------------------obj * obj------------------------------ mulplication*/ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2) { int x, y, z; float scalar; float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; double dot = 0.0f; MatrixObject *mat1 = NULL, *mat2 = NULL; if(MatrixObject_Check(m1)) { mat1 = (MatrixObject*)m1; if(!BaseMath_ReadCallback(mat1)) return NULL; } if(MatrixObject_Check(m2)) { mat2 = (MatrixObject*)m2; if(!BaseMath_ReadCallback(mat2)) return NULL; } if(mat1 && mat2) { /*MATRIX * MATRIX*/ if(mat1->rowSize != mat2->colSize){ PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize"); return NULL; } for(x = 0; x < mat2->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { for(z = 0; z < mat1->rowSize; z++) { dot += (mat1->matrix[z][y] * mat2->matrix[x][z]); } mat[((x * mat1->colSize) + y)] = (float)dot; dot = 0.0f; } } return newMatrixObject(mat, mat2->rowSize, mat1->colSize, Py_NEW, Py_TYPE(mat1)); } if(mat1==NULL){ scalar=PyFloat_AsDouble(m1); // may not be a float if ((scalar == -1.0 && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX, this line annoys theeth, lets see if he finds it */ for(x = 0; x < mat2->rowSize; x++) { for(y = 0; y < mat2->colSize; y++) { mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y]; } } return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, Py_TYPE(mat2)); } PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation"); return NULL; } else /* if(mat1) { */ { if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */ PyErr_SetString(PyExc_TypeError, "Matrix multiplication: Only 'vec * matrix' is supported, not the reverse"); return NULL; } else { scalar= PyFloat_AsDouble(m2); if ((scalar == -1.0 && PyErr_Occurred())==0) { /* MATRIX*FLOAT/INT */ for(x = 0; x < mat1->rowSize; x++) { for(y = 0; y < mat1->colSize; y++) { mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y]; } } return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, Py_TYPE(mat1)); } } PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation"); return NULL; } PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation"); return NULL; } static PyObject* Matrix_inv(MatrixObject *self) { if(!BaseMath_ReadCallback(self)) return NULL; return Matrix_Invert(self); } /*-----------------PROTOCOL DECLARATIONS--------------------------*/ static PySequenceMethods Matrix_SeqMethods = { (lenfunc) Matrix_len, /* sq_length */ (binaryfunc) NULL, /* sq_concat */ (ssizeargfunc) NULL, /* sq_repeat */ (ssizeargfunc) Matrix_item, /* sq_item */ (ssizessizeargfunc) Matrix_slice, /* sq_slice, deprecated TODO, replace */ (ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice, deprecated TODO, replace */ (objobjproc) NULL, /* sq_contains */ (binaryfunc) NULL, /* sq_inplace_concat */ (ssizeargfunc) NULL, /* sq_inplace_repeat */ }; static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += self->rowSize; return Matrix_item(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0) return NULL; if (slicelength <= 0) { return PyList_New(0); } else if (step == 1) { return Matrix_slice(self, start, stop); } else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies"); return NULL; } } else { PyErr_Format(PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) i += self->rowSize; return Matrix_ass_item(self, i, value); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0) return -1; if (step == 1) return Matrix_ass_slice(self, start, stop, value); else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies"); return -1; } } else { PyErr_Format(PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } } static PyMappingMethods Matrix_AsMapping = { (lenfunc)Matrix_len, (binaryfunc)Matrix_subscript, (objobjargproc)Matrix_ass_subscript }; static PyNumberMethods Matrix_NumMethods = { (binaryfunc) Matrix_add, /*nb_add*/ (binaryfunc) Matrix_sub, /*nb_subtract*/ (binaryfunc) Matrix_mul, /*nb_multiply*/ 0, /*nb_remainder*/ 0, /*nb_divmod*/ 0, /*nb_power*/ (unaryfunc) 0, /*nb_negative*/ (unaryfunc) 0, /*tp_positive*/ (unaryfunc) 0, /*tp_absolute*/ (inquiry) 0, /*tp_bool*/ (unaryfunc) Matrix_inv, /*nb_invert*/ 0, /*nb_lshift*/ (binaryfunc)0, /*nb_rshift*/ 0, /*nb_and*/ 0, /*nb_xor*/ 0, /*nb_or*/ 0, /*nb_int*/ 0, /*nb_reserved*/ 0, /*nb_float*/ 0, /* nb_inplace_add */ 0, /* nb_inplace_subtract */ 0, /* nb_inplace_multiply */ 0, /* nb_inplace_remainder */ 0, /* nb_inplace_power */ 0, /* nb_inplace_lshift */ 0, /* nb_inplace_rshift */ 0, /* nb_inplace_and */ 0, /* nb_inplace_xor */ 0, /* nb_inplace_or */ 0, /* nb_floor_divide */ 0, /* nb_true_divide */ 0, /* nb_inplace_floor_divide */ 0, /* nb_inplace_true_divide */ 0, /* nb_index */ }; static PyObject *Matrix_getRowSize(MatrixObject *self, void *UNUSED(closure)) { return PyLong_FromLong((long) self->rowSize); } static PyObject *Matrix_getColSize(MatrixObject *self, void *UNUSED(closure)) { return PyLong_FromLong((long) self->colSize); } static PyObject *Matrix_getMedianScale(MatrixObject *self, void *UNUSED(closure)) { float mat[3][3]; if(!BaseMath_ReadCallback(self)) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize == 4 && self->rowSize == 4) copy_m3_m4(mat, (float (*)[4])self->contigPtr); else if(self->colSize == 3 && self->rowSize == 3) copy_m3_m3(mat, (float (*)[3])self->contigPtr); else { PyErr_SetString(PyExc_AttributeError, "Matrix.median_scale: inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } return PyFloat_FromDouble(mat3_to_scale(mat)); } static PyObject *Matrix_getIsNegative(MatrixObject *self, void *UNUSED(closure)) { if(!BaseMath_ReadCallback(self)) return NULL; /*must be 3-4 cols, 3-4 rows, square matrix*/ if(self->colSize == 4 && self->rowSize == 4) return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr)); else if(self->colSize == 3 && self->rowSize == 3) return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr)); else { PyErr_SetString(PyExc_AttributeError, "Matrix.is_negative: inappropriate matrix size - expects 3x3 or 4x4 matrix"); return NULL; } } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Matrix_getseters[] = { {(char *)"row_size", (getter)Matrix_getRowSize, (setter)NULL, (char *)"The row size of the matrix (readonly).\n\n:type: int", NULL}, {(char *)"col_size", (getter)Matrix_getColSize, (setter)NULL, (char *)"The column size of the matrix (readonly).\n\n:type: int", NULL}, {(char *)"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, (char *)"The average scale applied to each axis (readonly).\n\n:type: float", NULL}, {(char *)"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, (char *)"True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly).\n\n:type: bool", NULL}, {(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL}, {(char *)"owner",(getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; /*-----------------------METHOD DEFINITIONS ----------------------*/ static struct PyMethodDef Matrix_methods[] = { {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc}, {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc}, {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc}, {"lerp", (PyCFunction) Matrix_Lerp, METH_VARARGS, Matrix_Lerp_doc}, {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc}, {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc}, {"translation_part", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc}, {"rotation_part", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc}, {"scale_part", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc}, {"decompose", (PyCFunction) Matrix_decompose, METH_NOARGS, Matrix_decompose_doc}, {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc}, {"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc}, {"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc}, {"to_euler", (PyCFunction) Matrix_toEuler, METH_VARARGS, Matrix_toEuler_doc}, {"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc}, {"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc}, {"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc}, /* class methods */ {"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc}, {"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc}, {"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc}, {"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc}, {"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc}, {NULL, NULL, 0, NULL} }; /*------------------PY_OBECT DEFINITION--------------------------*/ static char matrix_doc[] = "This object gives access to Matrices in Blender."; PyTypeObject matrix_Type = { PyVarObject_HEAD_INIT(NULL, 0) "mathutils.Matrix", /*tp_name*/ sizeof(MatrixObject), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)BaseMathObject_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ (reprfunc) Matrix_repr, /*tp_repr*/ &Matrix_NumMethods, /*tp_as_number*/ &Matrix_SeqMethods, /*tp_as_sequence*/ &Matrix_AsMapping, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ matrix_doc, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ (richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ Matrix_methods, /*tp_methods*/ 0, /*tp_members*/ Matrix_getseters, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ Matrix_new, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0 /*tp_del*/ }; /*------------------------newMatrixObject (internal)------------- creates a new matrix object self->matrix self->contiguous_ptr (reference to data.xxx) [0]------------->[0] [1] [2] [1]------------->[3] [4] [5] self->matrix[1][1] = self->contigPtr[4] */ /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type) { MatrixObject *self; int x, row, col; /*matrix objects can be any 2-4row x 2-4col matrix*/ if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){ PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4"); return NULL; } if(base_type) self = (MatrixObject *)base_type->tp_alloc(base_type, 0); else self = PyObject_NEW(MatrixObject, &matrix_Type); self->rowSize = rowSize; self->colSize = colSize; /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP){ self->contigPtr = mat; /*pointer array points to contigous memory*/ for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float)); if(self->contigPtr == NULL) { /*allocation failure*/ PyErr_SetString(PyExc_MemoryError, "matrix(): problem allocating pointer space"); return NULL; } /*pointer array points to contigous memory*/ for(x = 0; x < rowSize; x++) { self->matrix[x] = self->contigPtr + (x * colSize); } /*parse*/ if(mat) { /*if a float array passed*/ for(row = 0; row < rowSize; row++) { for(col = 0; col < colSize; col++) { self->matrix[row][col] = mat[(row * colSize) + col]; } } } else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */ Matrix_Identity(self); Py_DECREF(self); } self->wrapped = Py_NEW; }else{ /*bad type*/ return NULL; } return (PyObject *) self; } PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype) { MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; } return (PyObject *) self; }