/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "mathutils.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BKE_utildefines.h" #define QUAT_SIZE 4 //-----------------------------METHODS------------------------------ /* note: BaseMath_ReadCallback must be called beforehand */ static PyObject *Quaternion_ToTupleExt(QuaternionObject *self, int ndigits) { PyObject *ret; int i; ret= PyTuple_New(QUAT_SIZE); if(ndigits >= 0) { for(i= 0; i < QUAT_SIZE; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits))); } } else { for(i= 0; i < QUAT_SIZE; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i])); } } return ret; } static char Quaternion_ToEuler_doc[] = ".. method:: to_euler(order, euler_compat)\n" "\n" " Return Euler representation of the quaternion.\n" "\n" " :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n" " :type order: string\n" " :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n" " :type euler_compat: :class:`Euler`\n" " :return: Euler representation of the quaternion.\n" " :rtype: :class:`Euler`\n"; static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args) { float tquat[4]; float eul[3]; char *order_str= NULL; short order= EULER_ORDER_XYZ; EulerObject *eul_compat = NULL; if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat)) return NULL; if(!BaseMath_ReadCallback(self)) return NULL; if(order_str) { order= euler_order_from_string(order_str, "Matrix.to_euler()"); if(order == -1) return NULL; } normalize_qt_qt(tquat, self->quat); if(eul_compat) { float mat[3][3]; if(!BaseMath_ReadCallback(eul_compat)) return NULL; quat_to_mat3(mat, tquat); if(order == EULER_ORDER_XYZ) mat3_to_compatible_eul(eul, eul_compat->eul, mat); else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat); } else { if(order == EULER_ORDER_XYZ) quat_to_eul(eul, tquat); else quat_to_eulO(eul, order, tquat); } return newEulerObject(eul, order, Py_NEW, NULL); } //----------------------------Quaternion.toMatrix()------------------ static char Quaternion_ToMatrix_doc[] = ".. method:: to_matrix()\n" "\n" " Return a matrix representation of the quaternion.\n" "\n" " :return: A 3x3 rotation matrix representation of the quaternion.\n" " :rtype: :class:`Matrix`\n"; static PyObject *Quaternion_ToMatrix(QuaternionObject * self) { float mat[9]; /* all values are set */ if(!BaseMath_ReadCallback(self)) return NULL; quat_to_mat3( (float (*)[3]) mat,self->quat); return newMatrixObject(mat, 3, 3, Py_NEW, NULL); } //----------------------------Quaternion.cross(other)------------------ static char Quaternion_Cross_doc[] = ".. method:: cross(other)\n" "\n" " Return the cross product of this quaternion and another.\n" "\n" " :arg other: The other quaternion to perform the cross product with.\n" " :type other: :class:`Quaternion`\n" " :return: The cross product.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Cross(QuaternionObject *self, QuaternionObject *value) { float quat[QUAT_SIZE]; if (!QuaternionObject_Check(value)) { PyErr_Format(PyExc_TypeError, "quat.cross(value): expected a quaternion argument, not %.200s", Py_TYPE(value)->tp_name); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; mul_qt_qtqt(quat, self->quat, value->quat); return newQuaternionObject(quat, Py_NEW, Py_TYPE(self)); } //----------------------------Quaternion.dot(other)------------------ static char Quaternion_Dot_doc[] = ".. method:: dot(other)\n" "\n" " Return the dot product of this quaternion and another.\n" "\n" " :arg other: The other quaternion to perform the dot product with.\n" " :type other: :class:`Quaternion`\n" " :return: The dot product.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value) { if (!QuaternionObject_Check(value)) { PyErr_Format(PyExc_TypeError, "quat.dot(value): expected a quaternion argument, not %.200s", Py_TYPE(value)->tp_name); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat)); } static char Quaternion_Difference_doc[] = ".. function:: difference(other)\n" "\n" " Returns a quaternion representing the rotational difference.\n" "\n" " :arg other: second quaternion.\n" " :type other: :class:`Quaternion`\n" " :return: the rotational difference between the two quat rotations.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value) { float quat[QUAT_SIZE]; if (!QuaternionObject_Check(value)) { PyErr_Format(PyExc_TypeError, "quat.difference(value): expected a quaternion argument, not %.200s", Py_TYPE(value)->tp_name); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; rotation_between_quats_to_quat(quat, self->quat, value->quat); return newQuaternionObject(quat, Py_NEW, Py_TYPE(self)); } static char Quaternion_Slerp_doc[] = ".. function:: slerp(other, factor)\n" "\n" " Returns the interpolation of two quaternions.\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Quaternion`\n" " :arg factor: The interpolation value in [0.0, 1.0].\n" " :type factor: float\n" " :return: The interpolated rotation.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args) { QuaternionObject *value; float quat[QUAT_SIZE], fac; if(!PyArg_ParseTuple(args, "O!f:slerp", &quaternion_Type, &value, &fac)) { PyErr_SetString(PyExc_TypeError, "quat.slerp(): expected Quaternion types and float"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; if(fac > 1.0f || fac < 0.0f) { PyErr_SetString(PyExc_AttributeError, "quat.slerp(): interpolation factor must be between 0.0 and 1.0"); return NULL; } interp_qt_qtqt(quat, self->quat, value->quat, fac); return newQuaternionObject(quat, Py_NEW, Py_TYPE(self)); } //----------------------------Quaternion.normalize()---------------- //normalize the axis of rotation of [theta,vector] static char Quaternion_Normalize_doc[] = ".. function:: normalize()\n" "\n" " Normalize the quaternion.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Normalize(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; normalize_qt(self->quat); (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.inverse()------------------ static char Quaternion_Inverse_doc[] = ".. function:: inverse()\n" "\n" " Set the quaternion to its inverse.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Inverse(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; invert_qt(self->quat); (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.identity()----------------- static char Quaternion_Identity_doc[] = ".. function:: identity()\n" "\n" " Set the quaternion to an identity quaternion.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Identity(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; unit_qt(self->quat); (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.negate()------------------- static char Quaternion_Negate_doc[] = ".. function:: negate()\n" "\n" " Set the quaternion to its negative.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Negate(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; mul_qt_fl(self->quat, -1.0f); (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.conjugate()---------------- static char Quaternion_Conjugate_doc[] = ".. function:: conjugate()\n" "\n" " Set the quaternion to its conjugate (negate x, y, z).\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Conjugate(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; conjugate_qt(self->quat); (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.copy()---------------- static char Quaternion_copy_doc[] = ".. function:: copy()\n" "\n" " Returns a copy of this quaternion.\n" "\n" " :return: A copy of the quaternion.\n" " :rtype: :class:`Quaternion`\n" "\n" " .. note:: use this to get a copy of a wrapped quaternion with no reference to the original data.\n"; static PyObject *Quaternion_copy(QuaternionObject *self) { if(!BaseMath_ReadCallback(self)) return NULL; return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self)); } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Quaternion_repr(QuaternionObject * self) { PyObject *ret, *tuple; if(!BaseMath_ReadCallback(self)) return NULL; tuple= Quaternion_ToTupleExt(self, -1); ret= PyUnicode_FromFormat("Quaternion(%R)", tuple); Py_DECREF(tuple); return ret; } //------------------------tp_richcmpr //returns -1 execption, 0 false, 1 true static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { QuaternionObject *quatA = NULL, *quatB = NULL; int result = 0; if(QuaternionObject_Check(objectA)) { quatA = (QuaternionObject*)objectA; if(!BaseMath_ReadCallback(quatA)) return NULL; } if(QuaternionObject_Check(objectB)) { quatB = (QuaternionObject*)objectB; if(!BaseMath_ReadCallback(quatB)) return NULL; } if (!quatA || !quatB){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } switch (comparison_type){ case Py_EQ: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1); break; case Py_NE: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1); if (result == 0){ result = 1; }else{ result = 0; } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Quaternion_len(QuaternionObject *UNUSED(self)) { return QUAT_SIZE; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Quaternion_item(QuaternionObject * self, int i) { if(i<0) i= QUAT_SIZE-i; if(i < 0 || i >= QUAT_SIZE) { PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range"); return NULL; } if(!BaseMath_ReadIndexCallback(self, i)) return NULL; return PyFloat_FromDouble(self->quat[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob) { float scalar= (float)PyFloat_AsDouble(ob); if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number"); return -1; } if(i<0) i= QUAT_SIZE-i; if(i < 0 || i >= QUAT_SIZE){ PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range"); return -1; } self->quat[i] = scalar; if(!BaseMath_WriteIndexCallback(self, i)) return -1; return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end) { PyObject *tuple; int count; if(!BaseMath_ReadCallback(self)) return NULL; CLAMP(begin, 0, QUAT_SIZE); if (end<0) end= (QUAT_SIZE + 1) + end; CLAMP(end, 0, QUAT_SIZE); begin= MIN2(begin, end); tuple= PyTuple_New(end - begin); for(count= begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->quat[count])); } return tuple; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq) { int i, size; float quat[QUAT_SIZE]; if(!BaseMath_ReadCallback(self)) return -1; CLAMP(begin, 0, QUAT_SIZE); if (end<0) end= (QUAT_SIZE + 1) + end; CLAMP(end, 0, QUAT_SIZE); begin = MIN2(begin,end); if((size=mathutils_array_parse(quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1) return -1; if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment"); return -1; } /* parsed well - now set in vector */ for(i= 0; i < size; i++) self->quat[begin + i] = quat[i]; (void)BaseMath_WriteCallback(self); return 0; } static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += QUAT_SIZE; return Quaternion_item(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0) return NULL; if (slicelength <= 0) { return PyList_New(0); } else if (step == 1) { return Quaternion_slice(self, start, stop); } else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternions"); return NULL; } } else { PyErr_Format(PyExc_TypeError, "quaternion indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) i += QUAT_SIZE; return Quaternion_ass_item(self, i, value); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0) return -1; if (step == 1) return Quaternion_ass_slice(self, start, stop, value); else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternion"); return -1; } } else { PyErr_Format(PyExc_TypeError, "quaternion indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } } //------------------------NUMERIC PROTOCOLS---------------------- //------------------------obj + obj------------------------------ //addition static PyObject *Quaternion_add(PyObject * q1, PyObject * q2) { float quat[QUAT_SIZE]; QuaternionObject *quat1 = NULL, *quat2 = NULL; if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) { PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation"); return NULL; } quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2)) return NULL; add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f); return newQuaternionObject(quat, Py_NEW, Py_TYPE(q1)); } //------------------------obj - obj------------------------------ //subtraction static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2) { int x; float quat[QUAT_SIZE]; QuaternionObject *quat1 = NULL, *quat2 = NULL; if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) { PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation"); return NULL; } quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2)) return NULL; for(x = 0; x < QUAT_SIZE; x++) { quat[x] = quat1->quat[x] - quat2->quat[x]; } return newQuaternionObject(quat, Py_NEW, Py_TYPE(q1)); } //------------------------obj * obj------------------------------ //mulplication static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2) { float quat[QUAT_SIZE], scalar; QuaternionObject *quat1 = NULL, *quat2 = NULL; if(QuaternionObject_Check(q1)) { quat1 = (QuaternionObject*)q1; if(!BaseMath_ReadCallback(quat1)) return NULL; } if(QuaternionObject_Check(q2)) { quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat2)) return NULL; } if(quat1 && quat2) { /* QUAT*QUAT (cross product) */ mul_qt_qtqt(quat, quat1->quat, quat2->quat); return newQuaternionObject(quat, Py_NEW, Py_TYPE(q1)); } /* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */ if(!QuaternionObject_Check(q1)) { scalar= PyFloat_AsDouble(q1); if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */ QUATCOPY(quat, quat2->quat); mul_qt_fl(quat, scalar); return newQuaternionObject(quat, Py_NEW, Py_TYPE(q2)); } PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type"); return NULL; } else { /* QUAT*SOMETHING */ if(VectorObject_Check(q2)){ /* QUAT*VEC */ PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: Only 'vector * quaternion' is supported, not the reverse"); return NULL; } scalar= PyFloat_AsDouble(q2); if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */ QUATCOPY(quat, quat1->quat); mul_qt_fl(quat, scalar); return newQuaternionObject(quat, Py_NEW, Py_TYPE(q1)); } } PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation"); return NULL; } //-----------------PROTOCOL DECLARATIONS-------------------------- static PySequenceMethods Quaternion_SeqMethods = { (lenfunc) Quaternion_len, /* sq_length */ (binaryfunc) NULL, /* sq_concat */ (ssizeargfunc) NULL, /* sq_repeat */ (ssizeargfunc) Quaternion_item, /* sq_item */ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */ (ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */ (objobjproc) NULL, /* sq_contains */ (binaryfunc) NULL, /* sq_inplace_concat */ (ssizeargfunc) NULL, /* sq_inplace_repeat */ }; static PyMappingMethods Quaternion_AsMapping = { (lenfunc)Quaternion_len, (binaryfunc)Quaternion_subscript, (objobjargproc)Quaternion_ass_subscript }; static PyNumberMethods Quaternion_NumMethods = { (binaryfunc) Quaternion_add, /*nb_add*/ (binaryfunc) Quaternion_sub, /*nb_subtract*/ (binaryfunc) Quaternion_mul, /*nb_multiply*/ 0, /*nb_remainder*/ 0, /*nb_divmod*/ 0, /*nb_power*/ (unaryfunc) 0, /*nb_negative*/ (unaryfunc) 0, /*tp_positive*/ (unaryfunc) 0, /*tp_absolute*/ (inquiry) 0, /*tp_bool*/ (unaryfunc) 0, /*nb_invert*/ 0, /*nb_lshift*/ (binaryfunc)0, /*nb_rshift*/ 0, /*nb_and*/ 0, /*nb_xor*/ 0, /*nb_or*/ 0, /*nb_int*/ 0, /*nb_reserved*/ 0, /*nb_float*/ 0, /* nb_inplace_add */ 0, /* nb_inplace_subtract */ 0, /* nb_inplace_multiply */ 0, /* nb_inplace_remainder */ 0, /* nb_inplace_power */ 0, /* nb_inplace_lshift */ 0, /* nb_inplace_rshift */ 0, /* nb_inplace_and */ 0, /* nb_inplace_xor */ 0, /* nb_inplace_or */ 0, /* nb_floor_divide */ 0, /* nb_true_divide */ 0, /* nb_inplace_floor_divide */ 0, /* nb_inplace_true_divide */ 0, /* nb_index */ }; static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type ) { return Quaternion_item(self, GET_INT_FROM_POINTER(type)); } static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type ) { return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value); } static PyObject *Quaternion_getMagnitude(QuaternionObject * self, void *UNUSED(closure)) { if(!BaseMath_ReadCallback(self)) return NULL; return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat))); } static PyObject *Quaternion_getAngle(QuaternionObject * self, void *UNUSED(closure)) { float tquat[4]; if(!BaseMath_ReadCallback(self)) return NULL; normalize_qt_qt(tquat, self->quat); return PyFloat_FromDouble(2.0 * (saacos(tquat[0]))); } static int Quaternion_setAngle(QuaternionObject * self, PyObject * value, void *UNUSED(closure)) { float tquat[4]; float len; float axis[3]; float angle; if(!BaseMath_ReadCallback(self)) return -1; len= normalize_qt_qt(tquat, self->quat); quat_to_axis_angle(axis, &angle, tquat); angle = PyFloat_AsDouble(value); if(angle==-1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "quaternion.angle = value: float expected"); return -1; } /* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */ if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) && EXPP_FloatsAreEqual(axis[1], 0.0f, 10) && EXPP_FloatsAreEqual(axis[2], 0.0f, 10) ) { axis[0] = 1.0f; } axis_angle_to_quat(self->quat, axis, angle); mul_qt_fl(self->quat, len); if(!BaseMath_WriteCallback(self)) return -1; return 0; } static PyObject *Quaternion_getAxisVec(QuaternionObject *self, void *UNUSED(closure)) { float tquat[4]; float axis[3]; float angle; if(!BaseMath_ReadCallback(self)) return NULL; normalize_qt_qt(tquat, self->quat); quat_to_axis_angle(axis, &angle, tquat); /* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */ if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) && EXPP_FloatsAreEqual(axis[1], 0.0f, 10) && EXPP_FloatsAreEqual(axis[2], 0.0f, 10) ) { axis[0] = 1.0f; } return (PyObject *) newVectorObject(axis, 3, Py_NEW, NULL); } static int Quaternion_setAxisVec(QuaternionObject *self, PyObject *value, void *UNUSED(closure)) { float tquat[4]; float len; float axis[3]; float angle; VectorObject *vec; if(!BaseMath_ReadCallback(self)) return -1; len= normalize_qt_qt(tquat, self->quat); quat_to_axis_angle(axis, &angle, tquat); if(!VectorObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "quaternion.axis = value: expected a 3D Vector"); return -1; } vec= (VectorObject *)value; if(!BaseMath_ReadCallback(vec)) return -1; axis_angle_to_quat(self->quat, vec->vec, angle); mul_qt_fl(self->quat, len); if(!BaseMath_WriteCallback(self)) return -1; return 0; } //----------------------------------mathutils.Quaternion() -------------- static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *seq= NULL; float angle = 0.0f; float quat[QUAT_SIZE]= {0.0f, 0.0f, 0.0f, 0.0f}; if(kwds && PyDict_Size(kwds)) { PyErr_SetString(PyExc_TypeError, "mathutils.Quaternion(): takes no keyword args"); return NULL; } if(!PyArg_ParseTuple(args, "|Of:mathutils.Quaternion", &seq, &angle)) return NULL; switch(PyTuple_GET_SIZE(args)) { case 0: break; case 1: if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1) return NULL; break; case 2: if (mathutils_array_parse(quat, 3, 3, seq, "mathutils.Quaternion()") == -1) return NULL; axis_angle_to_quat(quat, quat, angle); break; /* PyArg_ParseTuple assures no more then 2 */ } return newQuaternionObject(quat, Py_NEW, type); } //-----------------------METHOD DEFINITIONS ---------------------- static struct PyMethodDef Quaternion_methods[] = { {"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc}, {"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc}, {"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc}, {"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc}, {"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc}, {"to_euler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, Quaternion_ToEuler_doc}, {"to_matrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc}, {"cross", (PyCFunction) Quaternion_Cross, METH_O, Quaternion_Cross_doc}, {"dot", (PyCFunction) Quaternion_Dot, METH_O, Quaternion_Dot_doc}, {"difference", (PyCFunction) Quaternion_Difference, METH_O, Quaternion_Difference_doc}, {"slerp", (PyCFunction) Quaternion_Slerp, METH_VARARGS, Quaternion_Slerp_doc}, {"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc}, {"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc}, {NULL, NULL, 0, NULL} }; /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Quaternion_getseters[] = { {(char *)"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion W value.\n\n:type: float", (void *)0}, {(char *)"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion X axis.\n\n:type: float", (void *)1}, {(char *)"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion Y axis.\n\n:type: float", (void *)2}, {(char *)"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion Z axis.\n\n:type: float", (void *)3}, {(char *)"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, (char *)"Size of the quaternion (readonly).\n\n:type: float", NULL}, {(char *)"angle", (getter)Quaternion_getAngle, (setter)Quaternion_setAngle, (char *)"angle of the quaternion.\n\n:type: float", NULL}, {(char *)"axis",(getter)Quaternion_getAxisVec, (setter)Quaternion_setAxisVec, (char *)"quaternion axis as a vector.\n\n:type: :class:`Vector`", NULL}, {(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL}, {(char *)"owner", (getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; //------------------PY_OBECT DEFINITION-------------------------- static char quaternion_doc[] = "This object gives access to Quaternions in Blender."; PyTypeObject quaternion_Type = { PyVarObject_HEAD_INIT(NULL, 0) "mathutils.Quaternion", //tp_name sizeof(QuaternionObject), //tp_basicsize 0, //tp_itemsize (destructor)BaseMathObject_dealloc, //tp_dealloc 0, //tp_print 0, //tp_getattr 0, //tp_setattr 0, //tp_compare (reprfunc) Quaternion_repr, //tp_repr &Quaternion_NumMethods, //tp_as_number &Quaternion_SeqMethods, //tp_as_sequence &Quaternion_AsMapping, //tp_as_mapping 0, //tp_hash 0, //tp_call 0, //tp_str 0, //tp_getattro 0, //tp_setattro 0, //tp_as_buffer Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags quaternion_doc, //tp_doc 0, //tp_traverse 0, //tp_clear (richcmpfunc)Quaternion_richcmpr, //tp_richcompare 0, //tp_weaklistoffset 0, //tp_iter 0, //tp_iternext Quaternion_methods, //tp_methods 0, //tp_members Quaternion_getseters, //tp_getset 0, //tp_base 0, //tp_dict 0, //tp_descr_get 0, //tp_descr_set 0, //tp_dictoffset 0, //tp_init 0, //tp_alloc Quaternion_new, //tp_new 0, //tp_free 0, //tp_is_gc 0, //tp_bases 0, //tp_mro 0, //tp_cache 0, //tp_subclasses 0, //tp_weaklist 0 //tp_del }; //------------------------newQuaternionObject (internal)------------- //creates a new quaternion object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type) { QuaternionObject *self; if(base_type) self = (QuaternionObject *)base_type->tp_alloc(base_type, 0); else self = PyObject_NEW(QuaternionObject, &quaternion_Type); /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP){ self->quat = quat; self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->quat = PyMem_Malloc(QUAT_SIZE * sizeof(float)); if(!quat) { //new empty unit_qt(self->quat); }else{ QUATCOPY(self->quat, quat); } self->wrapped = Py_NEW; }else{ //bad type return NULL; } return (PyObject *) self; } PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype) { QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; } return (PyObject *)self; }