/* * $Id$ * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Willian P. Germano, Joseph Gilbert, Ken Hughes, Alex Fraser, Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ #include "mathutils.h" #include "BLI_blenlib.h" #include "BLI_math.h" #include "BLI_utildefines.h" #define MAX_DIMENSIONS 4 /* Swizzle axes get packed into a single value that is used as a closure. Each axis uses SWIZZLE_BITS_PER_AXIS bits. The first bit (SWIZZLE_VALID_AXIS) is used as a sentinel: if it is unset, the axis is not valid. */ #define SWIZZLE_BITS_PER_AXIS 3 #define SWIZZLE_VALID_AXIS 0x4 #define SWIZZLE_AXIS 0x3 static PyObject *Vector_ToTupleExt(VectorObject *self, int ndigits); //----------------------------------mathutils.Vector() ------------------ // Supports 2D, 3D, and 4D vector objects both int and float values // accepted. Mixed float and int values accepted. Ints are parsed to float static PyObject *Vector_new(PyTypeObject *type, PyObject *args, PyObject *UNUSED(kwds)) { float vec[4]= {0.0f, 0.0f, 0.0f, 0.0f}; int size= 3; /* default to a 3D vector */ switch(PyTuple_GET_SIZE(args)) { case 0: break; case 1: if((size=mathutils_array_parse(vec, 2, 4, PyTuple_GET_ITEM(args, 0), "mathutils.Vector()")) == -1) return NULL; break; default: PyErr_SetString(PyExc_TypeError, "mathutils.Vector(): more then a single arg given"); return NULL; } return newVectorObject(vec, size, Py_NEW, type); } /*-----------------------------METHODS---------------------------- */ static char Vector_Zero_doc[] = ".. method:: zero()\n" "\n" " Set all values to zero.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Zero(VectorObject *self) { int i; for(i = 0; i < self->size; i++) { self->vec[i] = 0.0f; } (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } /*----------------------------Vector.normalize() ----------------- */ static char Vector_Normalize_doc[] = ".. method:: normalize()\n" "\n" " Normalize the vector, making the length of the vector always 1.0.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Vector`\n" "\n" " .. warning:: Normalizing a vector where all values are zero results in all axis having a nan value (not a number).\n" "\n" " .. note:: Normalize works for vectors of all sizes, however 4D Vectors w axis is left untouched.\n"; static PyObject *Vector_Normalize(VectorObject *self) { int i; float norm = 0.0f; if(!BaseMath_ReadCallback(self)) return NULL; for(i = 0; i < self->size; i++) { norm += self->vec[i] * self->vec[i]; } norm = (float) sqrt(norm); for(i = 0; i < self->size; i++) { self->vec[i] /= norm; } (void)BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } /*----------------------------Vector.resize2D() ------------------ */ static char Vector_Resize2D_doc[] = ".. method:: resize2D()\n" "\n" " Resize the vector to 2D (x, y).\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Resize2D(VectorObject *self) { if(self->wrapped==Py_WRAP) { PyErr_SetString(PyExc_TypeError, "vector.resize2D(): cannot resize wrapped data - only python vectors"); return NULL; } if(self->cb_user) { PyErr_SetString(PyExc_TypeError, "vector.resize2D(): cannot resize a vector that has an owner"); return NULL; } self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 2)); if(self->vec == NULL) { PyErr_SetString(PyExc_MemoryError, "vector.resize2D(): problem allocating pointer space"); return NULL; } self->size = 2; Py_INCREF(self); return (PyObject*)self; } /*----------------------------Vector.resize3D() ------------------ */ static char Vector_Resize3D_doc[] = ".. method:: resize3D()\n" "\n" " Resize the vector to 3D (x, y, z).\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Resize3D(VectorObject *self) { if (self->wrapped==Py_WRAP) { PyErr_SetString(PyExc_TypeError, "vector.resize3D(): cannot resize wrapped data - only python vectors"); return NULL; } if(self->cb_user) { PyErr_SetString(PyExc_TypeError, "vector.resize3D(): cannot resize a vector that has an owner"); return NULL; } self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 3)); if(self->vec == NULL) { PyErr_SetString(PyExc_MemoryError, "vector.resize3D(): problem allocating pointer space"); return NULL; } if(self->size == 2) self->vec[2] = 0.0f; self->size = 3; Py_INCREF(self); return (PyObject*)self; } /*----------------------------Vector.resize4D() ------------------ */ static char Vector_Resize4D_doc[] = ".. method:: resize4D()\n" "\n" " Resize the vector to 4D (x, y, z, w).\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Resize4D(VectorObject *self) { if(self->wrapped==Py_WRAP) { PyErr_SetString(PyExc_TypeError, "vector.resize4D(): cannot resize wrapped data - only python vectors"); return NULL; } if(self->cb_user) { PyErr_SetString(PyExc_TypeError, "vector.resize4D(): cannot resize a vector that has an owner"); return NULL; } self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 4)); if(self->vec == NULL) { PyErr_SetString(PyExc_MemoryError, "vector.resize4D(): problem allocating pointer space"); return NULL; } if(self->size == 2){ self->vec[2] = 0.0f; self->vec[3] = 1.0f; }else if(self->size == 3){ self->vec[3] = 1.0f; } self->size = 4; Py_INCREF(self); return (PyObject*)self; } /*----------------------------Vector.toTuple() ------------------ */ static char Vector_ToTuple_doc[] = ".. method:: to_tuple(precision=-1)\n" "\n" " Return this vector as a tuple with.\n" "\n" " :arg precision: The number to round the value to in [-1, 21].\n" " :type precision: int\n" " :return: the values of the vector rounded by *precision*\n" " :rtype: tuple\n"; /* note: BaseMath_ReadCallback must be called beforehand */ static PyObject *Vector_ToTupleExt(VectorObject *self, int ndigits) { PyObject *ret; int i; ret= PyTuple_New(self->size); if(ndigits >= 0) { for(i = 0; i < self->size; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->vec[i], ndigits))); } } else { for(i = 0; i < self->size; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->vec[i])); } } return ret; } static PyObject *Vector_ToTuple(VectorObject *self, PyObject *args) { int ndigits= 0; if(!PyArg_ParseTuple(args, "|i:to_tuple", &ndigits)) return NULL; if(ndigits > 22 || ndigits < 0) { PyErr_SetString(PyExc_ValueError, "vector.to_tuple(ndigits): ndigits must be between 0 and 21"); return NULL; } if(PyTuple_GET_SIZE(args)==0) ndigits= -1; if(!BaseMath_ReadCallback(self)) return NULL; return Vector_ToTupleExt(self, ndigits); } /*----------------------------Vector.toTrackQuat(track, up) ---------------------- */ static char Vector_ToTrackQuat_doc[] = ".. method:: to_track_quat(track, up)\n" "\n" " Return a quaternion rotation from the vector and the track and up axis.\n" "\n" " :arg track: Track axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z'].\n" " :type track: string\n" " :arg up: Up axis in ['X', 'Y', 'Z'].\n" " :type up: string\n" " :return: rotation from the vector and the track and up axis.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Vector_ToTrackQuat(VectorObject *self, PyObject *args ) { float vec[3], quat[4]; char *strack, *sup; short track = 2, up = 1; if(!PyArg_ParseTuple( args, "|ss:to_track_quat", &strack, &sup)) return NULL; if (self->size != 3) { PyErr_SetString(PyExc_TypeError, "only for 3D vectors"); return NULL; } if(!BaseMath_ReadCallback(self)) return NULL; if (strack) { if (strlen(strack) == 2) { if (strack[0] == '-') { switch(strack[1]) { case 'X': track = 3; break; case 'Y': track = 4; break; case 'Z': track = 5; break; default: PyErr_SetString(PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis"); return NULL; } } else { PyErr_SetString(PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis"); return NULL; } } else if (strlen(strack) == 1) { switch(strack[0]) { case '-': case 'X': track = 0; break; case 'Y': track = 1; break; case 'Z': track = 2; break; default: PyErr_SetString(PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis"); return NULL; } } else { PyErr_SetString(PyExc_ValueError, "only X, -X, Y, -Y, Z or -Z for track axis"); return NULL; } } if (sup) { if (strlen(sup) == 1) { switch(*sup) { case 'X': up = 0; break; case 'Y': up = 1; break; case 'Z': up = 2; break; default: PyErr_SetString(PyExc_ValueError, "only X, Y or Z for up axis"); return NULL; } } else { PyErr_SetString(PyExc_ValueError, "only X, Y or Z for up axis"); return NULL; } } if (track == up) { PyErr_SetString(PyExc_ValueError, "Can't have the same axis for track and up"); return NULL; } /* flip vector around, since vectoquat expect a vector from target to tracking object and the python function expects the inverse (a vector to the target). */ negate_v3_v3(vec, self->vec); vec_to_quat( quat,vec, track, up); return newQuaternionObject(quat, Py_NEW, NULL); } /*----------------------------Vector.reflect(mirror) ---------------------- return a reflected vector on the mirror normal vec - ((2 * DotVecs(vec, mirror)) * mirror) */ static char Vector_Reflect_doc[] = ".. method:: reflect(mirror)\n" "\n" " Return the reflection vector from the *mirror* argument.\n" "\n" " :arg mirror: This vector could be a normal from the reflecting surface.\n" " :type mirror: :class:`Vector`\n" " :return: The reflected vector matching the size of this vector.\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Reflect(VectorObject *self, VectorObject *value ) { float mirror[3], vec[3]; float reflect[3] = {0.0f, 0.0f, 0.0f}; if (!VectorObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "vec.reflect(value): expected a vector argument"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; mirror[0] = value->vec[0]; mirror[1] = value->vec[1]; if (value->size > 2) mirror[2] = value->vec[2]; else mirror[2] = 0.0; vec[0] = self->vec[0]; vec[1] = self->vec[1]; if (self->size > 2) vec[2] = self->vec[2]; else vec[2] = 0.0; normalize_v3(mirror); reflect_v3_v3v3(reflect, vec, mirror); return newVectorObject(reflect, self->size, Py_NEW, Py_TYPE(self)); } static char Vector_Cross_doc[] = ".. method:: cross(other)\n" "\n" " Return the cross product of this vector and another.\n" "\n" " :arg other: The other vector to perform the cross product with.\n" " :type other: :class:`Vector`\n" " :return: The cross product.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: both vectors must be 3D\n"; static PyObject *Vector_Cross(VectorObject *self, VectorObject *value ) { VectorObject *vecCross = NULL; if (!VectorObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "vec.cross(value): expected a vector argument"); return NULL; } if(self->size != 3 || value->size != 3) { PyErr_SetString(PyExc_AttributeError, "vec.cross(value): expects both vectors to be 3D"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; vecCross = (VectorObject *)newVectorObject(NULL, 3, Py_NEW, Py_TYPE(self)); cross_v3_v3v3(vecCross->vec, self->vec, value->vec); return (PyObject *)vecCross; } static char Vector_Dot_doc[] = ".. method:: dot(other)\n" "\n" " Return the dot product of this vector and another.\n" "\n" " :arg other: The other vector to perform the dot product with.\n" " :type other: :class:`Vector`\n" " :return: The dot product.\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Dot(VectorObject *self, VectorObject *value ) { double dot = 0.0; int x; if (!VectorObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "vec.dot(value): expected a vector argument"); return NULL; } if(self->size != value->size) { PyErr_SetString(PyExc_AttributeError, "vec.dot(value): expects both vectors to have the same size"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; for(x = 0; x < self->size; x++) { dot += self->vec[x] * value->vec[x]; } return PyFloat_FromDouble(dot); } static char Vector_angle_doc[] = ".. function:: angle(other, fallback)\n" "\n" " Return the angle between two vectors.\n" "\n" " :arg other: another vector to compare the angle with\n" " :type other: :class:`Vector`\n" " :arg fallback: return this value when the angle cant be calculated (zero length vector)\n" " :type fallback: any\n" " :return: angle in radians or fallback when given\n" " :rtype: float\n" "\n" " .. note:: Zero length vectors raise an :exc:`AttributeError`.\n"; static PyObject *Vector_angle(VectorObject *self, PyObject *args) { VectorObject *value; double dot = 0.0f, angleRads, test_v1 = 0.0f, test_v2 = 0.0f; int x, size; PyObject *fallback= NULL; if(!PyArg_ParseTuple(args, "O!|O:angle", &vector_Type, &value, &fallback)) return NULL; if (!VectorObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "vec.angle(value): expected a vector argument"); return NULL; } if(self->size != value->size) { PyErr_SetString(PyExc_AttributeError, "vec.angle(value): expects both vectors to have the same size"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; //since size is the same size = self->size; for(x = 0; x < size; x++) { test_v1 += self->vec[x] * self->vec[x]; test_v2 += value->vec[x] * value->vec[x]; } if (!test_v1 || !test_v2){ /* avoid exception */ if(fallback) { Py_INCREF(fallback); return fallback; } else { PyErr_SetString(PyExc_ValueError, "vector.angle(other): zero length vectors have no valid angle"); return NULL; } } //dot product for(x = 0; x < size; x++) { dot += self->vec[x] * value->vec[x]; } dot /= (sqrt(test_v1) * sqrt(test_v2)); angleRads = (double)saacos(dot); return PyFloat_FromDouble(angleRads); } static char Vector_Difference_doc[] = ".. function:: difference(other)\n" "\n" " Returns a quaternion representing the rotational difference between this vector and another.\n" "\n" " :arg other: second vector.\n" " :type other: :class:`Vector`\n" " :return: the rotational difference between the two vectors.\n" " :rtype: :class:`Quaternion`\n" "\n" " .. note:: 2D vectors raise an :exc:`AttributeError`.\n"; static PyObject *Vector_Difference(VectorObject *self, VectorObject *value ) { float quat[4], vec_a[3], vec_b[3]; if (!VectorObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "vec.difference(value): expected a vector argument"); return NULL; } if(self->size < 3 || value->size < 3) { PyErr_SetString(PyExc_AttributeError, "vec.difference(value): expects both vectors to be size 3 or 4"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; normalize_v3_v3(vec_a, self->vec); normalize_v3_v3(vec_b, value->vec); rotation_between_vecs_to_quat(quat, vec_a, vec_b); return newQuaternionObject(quat, Py_NEW, NULL); } static char Vector_Project_doc[] = ".. function:: project(other)\n" "\n" " Return the projection of this vector onto the *other*.\n" "\n" " :arg other: second vector.\n" " :type other: :class:`Vector`\n" " :return: the parallel projection vector\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Project(VectorObject *self, VectorObject *value) { float vec[4]; double dot = 0.0f, dot2 = 0.0f; int x, size; if (!VectorObject_Check(value)) { PyErr_SetString(PyExc_TypeError, "vec.project(value): expected a vector argument"); return NULL; } if(self->size != value->size) { PyErr_SetString(PyExc_AttributeError, "vec.project(value): expects both vectors to have the same size"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; //since they are the same size size = self->size; //get dot products for(x = 0; x < size; x++) { dot += self->vec[x] * value->vec[x]; dot2 += value->vec[x] * value->vec[x]; } //projection dot /= dot2; for(x = 0; x < size; x++) { vec[x] = (float)(dot * value->vec[x]); } return newVectorObject(vec, size, Py_NEW, Py_TYPE(self)); } static char Vector_Lerp_doc[] = ".. function:: lerp(other, factor)\n" "\n" " Returns the interpolation of two vectors.\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Vector`\n" " :arg factor: The interpolation value in [0.0, 1.0].\n" " :type factor: float\n" " :return: The interpolated rotation.\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Lerp(VectorObject *self, PyObject *args) { VectorObject *vec2 = NULL; float fac, ifac, vec[4]; int x; if(!PyArg_ParseTuple(args, "O!f:lerp", &vector_Type, &vec2, &fac)) return NULL; if(self->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "vector.lerp(): expects both vector objects to have the same size"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(vec2)) return NULL; ifac= 1.0 - fac; for(x = 0; x < self->size; x++) { vec[x] = (ifac * self->vec[x]) + (fac * vec2->vec[x]); } return newVectorObject(vec, self->size, Py_NEW, Py_TYPE(self)); } /*---------------------------- Vector.rotate(angle, axis) ----------------------*/ static char Vector_Rotate_doc[] = ".. function:: rotate(axis, angle)\n" "\n" " Return vector rotated around axis by angle.\n" "\n" " :arg axis: rotation axis.\n" " :type axis: :class:`Vector`\n" " :arg angle: angle in radians.\n" " :type angle: float\n" " :return: an instance of itself\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Rotate(VectorObject *self, PyObject *args) { VectorObject *axis_vec = NULL; float angle, vec[3]; if(!PyArg_ParseTuple(args, "O!f", &vector_Type, &axis_vec, &angle)){ PyErr_SetString(PyExc_TypeError, "vec.rotate(axis, angle): expected 3D axis (Vector) and angle (float)"); return NULL; } if(self->size != 3 || axis_vec->size != 3) { PyErr_SetString(PyExc_AttributeError, "vec.rotate(axis, angle): expects both vectors to be 3D"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(axis_vec)) return NULL; rotate_v3_v3v3fl(vec, self->vec, axis_vec->vec, angle); copy_v3_v3(self->vec, vec); Py_INCREF(self); return (PyObject *)self; } /*----------------------------Vector.copy() -------------------------------------- */ static char Vector_copy_doc[] = ".. function:: copy()\n" "\n" " Returns a copy of this vector.\n" "\n" " :return: A copy of the vector.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: use this to get a copy of a wrapped vector with no reference to the original data.\n"; static PyObject *Vector_copy(VectorObject *self) { if(!BaseMath_ReadCallback(self)) return NULL; return newVectorObject(self->vec, self->size, Py_NEW, Py_TYPE(self)); } /*----------------------------print object (internal)------------- print the object to screen */ static PyObject *Vector_repr(VectorObject *self) { PyObject *ret, *tuple; if(!BaseMath_ReadCallback(self)) return NULL; tuple= Vector_ToTupleExt(self, -1); ret= PyUnicode_FromFormat("Vector(%R)", tuple); Py_DECREF(tuple); return ret; } /*---------------------SEQUENCE PROTOCOLS------------------------ ----------------------------len(object)------------------------ sequence length*/ static int Vector_len(VectorObject *self) { return self->size; } /*----------------------------object[]--------------------------- sequence accessor (get)*/ static PyObject *Vector_item(VectorObject *self, int i) { if(i<0) i= self->size-i; if(i < 0 || i >= self->size) { PyErr_SetString(PyExc_IndexError,"vector[index]: out of range"); return NULL; } if(!BaseMath_ReadIndexCallback(self, i)) return NULL; return PyFloat_FromDouble(self->vec[i]); } /*----------------------------object[]------------------------- sequence accessor (set)*/ static int Vector_ass_item(VectorObject *self, int i, PyObject * ob) { float scalar; if((scalar=PyFloat_AsDouble(ob))==-1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "vector[index] = x: index argument not a number"); return -1; } if(i<0) i= self->size-i; if(i < 0 || i >= self->size){ PyErr_SetString(PyExc_IndexError, "vector[index] = x: assignment index out of range"); return -1; } self->vec[i] = scalar; if(!BaseMath_WriteIndexCallback(self, i)) return -1; return 0; } /*----------------------------object[z:y]------------------------ sequence slice (get) */ static PyObject *Vector_slice(VectorObject *self, int begin, int end) { PyObject *tuple; int count; if(!BaseMath_ReadCallback(self)) return NULL; CLAMP(begin, 0, self->size); if (end<0) end= self->size+end+1; CLAMP(end, 0, self->size); begin= MIN2(begin, end); tuple= PyTuple_New(end - begin); for(count = begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->vec[count])); } return tuple; } /*----------------------------object[z:y]------------------------ sequence slice (set) */ static int Vector_ass_slice(VectorObject *self, int begin, int end, PyObject * seq) { int i, y, size = 0; float vec[4], scalar; PyObject *v; if(!BaseMath_ReadCallback(self)) return -1; CLAMP(begin, 0, self->size); if (end<0) end= self->size+end+1; CLAMP(end, 0, self->size); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "vector[begin:end] = []: size mismatch in slice assignment"); return -1; } for (i = 0; i < size; i++) { v = PySequence_GetItem(seq, i); if (v == NULL) { /* Failed to read sequence */ PyErr_SetString(PyExc_RuntimeError, "vector[begin:end] = []: unable to read sequence"); return -1; } if((scalar=PyFloat_AsDouble(v)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ Py_DECREF(v); PyErr_SetString(PyExc_TypeError, "vector[begin:end] = []: sequence argument not a number"); return -1; } vec[i] = scalar; Py_DECREF(v); } /*parsed well - now set in vector*/ for(y = 0; y < size; y++){ self->vec[begin + y] = vec[y]; } if(!BaseMath_WriteCallback(self)) return -1; return 0; } /*------------------------NUMERIC PROTOCOLS---------------------- ------------------------obj + obj------------------------------ addition*/ static PyObject *Vector_add(PyObject * v1, PyObject * v2) { int i; float vec[4]; VectorObject *vec1 = NULL, *vec2 = NULL; if VectorObject_Check(v1) vec1= (VectorObject *)v1; if VectorObject_Check(v2) vec2= (VectorObject *)v2; /* make sure v1 is always the vector */ if (vec1 && vec2 ) { if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2)) return NULL; /*VECTOR + VECTOR*/ if(vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector addition: vectors must have the same dimensions for this operation"); return NULL; } for(i = 0; i < vec1->size; i++) { vec[i] = vec1->vec[i] + vec2->vec[i]; } return newVectorObject(vec, vec1->size, Py_NEW, Py_TYPE(v1)); } PyErr_SetString(PyExc_AttributeError, "Vector addition: arguments not valid for this operation"); return NULL; } /* ------------------------obj += obj------------------------------ addition in place */ static PyObject *Vector_iadd(PyObject * v1, PyObject * v2) { int i; VectorObject *vec1 = NULL, *vec2 = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_SetString(PyExc_AttributeError, "Vector addition: arguments not valid for this operation"); return NULL; } vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector addition: vectors must have the same dimensions for this operation"); return NULL; } if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2)) return NULL; for(i = 0; i < vec1->size; i++) { vec1->vec[i] = vec1->vec[i] + vec2->vec[i]; } (void)BaseMath_WriteCallback(vec1); Py_INCREF( v1 ); return v1; } /*------------------------obj - obj------------------------------ subtraction*/ static PyObject *Vector_sub(PyObject * v1, PyObject * v2) { int i; float vec[4]; VectorObject *vec1 = NULL, *vec2 = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: arguments not valid for this operation"); return NULL; } vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2)) return NULL; if(vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: vectors must have the same dimensions for this operation"); return NULL; } for(i = 0; i < vec1->size; i++) { vec[i] = vec1->vec[i] - vec2->vec[i]; } return newVectorObject(vec, vec1->size, Py_NEW, Py_TYPE(v1)); } /*------------------------obj -= obj------------------------------ subtraction*/ static PyObject *Vector_isub(PyObject * v1, PyObject * v2) { int i; VectorObject *vec1 = NULL, *vec2 = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: arguments not valid for this operation"); return NULL; } vec1 = (VectorObject*)v1; vec2 = (VectorObject*)v2; if(vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: vectors must have the same dimensions for this operation"); return NULL; } if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2)) return NULL; for(i = 0; i < vec1->size; i++) { vec1->vec[i] = vec1->vec[i] - vec2->vec[i]; } (void)BaseMath_WriteCallback(vec1); Py_INCREF( v1 ); return v1; } /*------------------------obj * obj------------------------------ mulplication*/ /* COLUMN VECTOR Multiplication (Vector X Matrix) * [a] * [1][4][7] * [b] * [2][5][8] * [c] * [3][6][9] * * note: vector/matrix multiplication IS NOT COMMUTATIVE!!!! * note: assume read callbacks have been done first. */ static int column_vector_multiplication(float *rvec, VectorObject* vec, MatrixObject * mat) { float vecCopy[4]; double dot = 0.0f; int x, y, z = 0; if(mat->rowSize != vec->size){ if(mat->rowSize == 4 && vec->size != 3){ PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same"); return -1; }else{ vecCopy[3] = 1.0f; } } for(x = 0; x < vec->size; x++){ vecCopy[x] = vec->vec[x]; } rvec[3] = 1.0f; for(x = 0; x < mat->colSize; x++) { for(y = 0; y < mat->rowSize; y++) { dot += mat->matrix[y][x] * vecCopy[y]; } rvec[z++] = (float)dot; dot = 0.0f; } return 0; } static PyObject *Vector_mul(PyObject * v1, PyObject * v2) { VectorObject *vec1 = NULL, *vec2 = NULL; float scalar; if VectorObject_Check(v1) { vec1= (VectorObject *)v1; if(!BaseMath_ReadCallback(vec1)) return NULL; } if VectorObject_Check(v2) { vec2= (VectorObject *)v2; if(!BaseMath_ReadCallback(vec2)) return NULL; } /* make sure v1 is always the vector */ if (vec1 && vec2 ) { int i; double dot = 0.0f; if(vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector multiplication: vectors must have the same dimensions for this operation"); return NULL; } /*dot product*/ for(i = 0; i < vec1->size; i++) { dot += vec1->vec[i] * vec2->vec[i]; } return PyFloat_FromDouble(dot); } /* swap so vec1 is always the vector */ /* note: it would seem from this code that the matrix multiplication below * is communicative. however the matrix class will always handle the * (matrix * vector) case so we can ignore it here. * This is NOT so for Quaternions: TODO, check if communicative (vec * quat) is correct */ if (vec2) { vec1= vec2; v2= v1; } if (MatrixObject_Check(v2)) { /* VEC * MATRIX */ float tvec[MAX_DIMENSIONS]; if(!BaseMath_ReadCallback((MatrixObject *)v2)) return NULL; if(column_vector_multiplication(tvec, vec1, (MatrixObject*)v2) == -1) { return NULL; } return newVectorObject(tvec, vec1->size, Py_NEW, Py_TYPE(vec1)); } else if (QuaternionObject_Check(v2)) { /* VEC * QUAT */ QuaternionObject *quat2 = (QuaternionObject*)v2; float tvec[3]; if(vec1->size != 3) { PyErr_SetString(PyExc_TypeError, "Vector multiplication: only 3D vector rotations (with quats) currently supported"); return NULL; } if(!BaseMath_ReadCallback(quat2)) { return NULL; } copy_v3_v3(tvec, vec1->vec); mul_qt_v3(quat2->quat, tvec); return newVectorObject(tvec, 3, Py_NEW, Py_TYPE(vec1)); } else if (((scalar= PyFloat_AsDouble(v2)) == -1.0 && PyErr_Occurred())==0) { /* VEC*FLOAT */ int i; float vec[MAX_DIMENSIONS]; for(i = 0; i < vec1->size; i++) { vec[i] = vec1->vec[i] * scalar; } return newVectorObject(vec, vec1->size, Py_NEW, Py_TYPE(vec1)); } PyErr_SetString(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation"); return NULL; } /*------------------------obj *= obj------------------------------ in place mulplication */ static PyObject *Vector_imul(PyObject * v1, PyObject * v2) { VectorObject *vec = (VectorObject *)v1; float scalar; if(!BaseMath_ReadCallback(vec)) return NULL; /* only support vec*=float and vec*=mat vec*=vec result is a float so that wont work */ if (MatrixObject_Check(v2)) { float rvec[MAX_DIMENSIONS]; if(!BaseMath_ReadCallback((MatrixObject *)v2)) return NULL; if(column_vector_multiplication(rvec, vec, (MatrixObject*)v2) == -1) return NULL; memcpy(vec->vec, rvec, sizeof(float) * vec->size); } else if (QuaternionObject_Check(v2)) { /* VEC *= QUAT */ QuaternionObject *quat2 = (QuaternionObject*)v2; if(vec->size != 3) { PyErr_SetString(PyExc_TypeError, "Vector multiplication: only 3D vector rotations (with quats) currently supported"); return NULL; } if(!BaseMath_ReadCallback(quat2)) { return NULL; } mul_qt_v3(quat2->quat, vec->vec); } else if (((scalar= PyFloat_AsDouble(v2)) == -1.0 && PyErr_Occurred())==0) { /* VEC*=FLOAT */ mul_vn_fl(vec->vec, vec->size, scalar); } else { PyErr_SetString(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation"); return NULL; } (void)BaseMath_WriteCallback(vec); Py_INCREF( v1 ); return v1; } /*------------------------obj / obj------------------------------ divide*/ static PyObject *Vector_div(PyObject * v1, PyObject * v2) { int i; float vec[4], scalar; VectorObject *vec1 = NULL; if(!VectorObject_Check(v1)) { /* not a vector */ PyErr_SetString(PyExc_TypeError, "Vector division: Vector must be divided by a float"); return NULL; } vec1 = (VectorObject*)v1; /* vector */ if(!BaseMath_ReadCallback(vec1)) return NULL; if((scalar=PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "Vector division: Vector must be divided by a float"); return NULL; } if(scalar==0.0) { PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: divide by zero error"); return NULL; } for(i = 0; i < vec1->size; i++) { vec[i] = vec1->vec[i] / scalar; } return newVectorObject(vec, vec1->size, Py_NEW, Py_TYPE(v1)); } /*------------------------obj /= obj------------------------------ divide*/ static PyObject *Vector_idiv(PyObject * v1, PyObject * v2) { int i; float scalar; VectorObject *vec1 = (VectorObject*)v1; if(!BaseMath_ReadCallback(vec1)) return NULL; if((scalar=PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "Vector division: Vector must be divided by a float"); return NULL; } if(scalar==0.0) { PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: divide by zero error"); return NULL; } for(i = 0; i < vec1->size; i++) { vec1->vec[i] /= scalar; } (void)BaseMath_WriteCallback(vec1); Py_INCREF( v1 ); return v1; } /*-------------------------- -obj ------------------------------- returns the negative of this object*/ static PyObject *Vector_neg(VectorObject *self) { int i; float vec[4]; if(!BaseMath_ReadCallback(self)) return NULL; for(i = 0; i < self->size; i++){ vec[i] = -self->vec[i]; } return newVectorObject(vec, self->size, Py_NEW, Py_TYPE(self)); } /*------------------------vec_magnitude_nosqrt (internal) - for comparing only */ static double vec_magnitude_nosqrt(float *data, int size) { double dot = 0.0f; int i; for(i=0; isize != vecB->size){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } switch (comparison_type){ case Py_LT: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA < lenB ){ result = 1; } break; case Py_LE: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA < lenB ){ result = 1; }else{ result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; case Py_EQ: result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1); break; case Py_NE: result = !EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1); break; case Py_GT: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA > lenB ){ result = 1; } break; case Py_GE: lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size); lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size); if( lenA > lenB ){ result = 1; }else{ result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } /*-----------------PROTCOL DECLARATIONS--------------------------*/ static PySequenceMethods Vector_SeqMethods = { (lenfunc) Vector_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (ssizeargfunc) 0, /* sq_repeat */ (ssizeargfunc) Vector_item, /* sq_item */ NULL, /* py3 deprecated slice func */ (ssizeobjargproc) Vector_ass_item, /* sq_ass_item */ NULL, /* py3 deprecated slice assign func */ (objobjproc) NULL, /* sq_contains */ (binaryfunc) NULL, /* sq_inplace_concat */ (ssizeargfunc) NULL, /* sq_inplace_repeat */ }; static PyObject *Vector_subscript(VectorObject* self, PyObject* item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += self->size; return Vector_item(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((PySliceObject*)item, self->size, &start, &stop, &step, &slicelength) < 0) return NULL; if (slicelength <= 0) { return PyList_New(0); } else if (step == 1) { return Vector_slice(self, start, stop); } else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with vectors"); return NULL; } } else { PyErr_Format(PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } static int Vector_ass_subscript(VectorObject* self, PyObject* item, PyObject* value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) i += self->size; return Vector_ass_item(self, i, value); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((PySliceObject*)item, self->size, &start, &stop, &step, &slicelength) < 0) return -1; if (step == 1) return Vector_ass_slice(self, start, stop, value); else { PyErr_SetString(PyExc_TypeError, "slice steps not supported with vectors"); return -1; } } else { PyErr_Format(PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } } static PyMappingMethods Vector_AsMapping = { (lenfunc)Vector_len, (binaryfunc)Vector_subscript, (objobjargproc)Vector_ass_subscript }; static PyNumberMethods Vector_NumMethods = { (binaryfunc) Vector_add, /*nb_add*/ (binaryfunc) Vector_sub, /*nb_subtract*/ (binaryfunc) Vector_mul, /*nb_multiply*/ 0, /*nb_remainder*/ 0, /*nb_divmod*/ 0, /*nb_power*/ (unaryfunc) Vector_neg, /*nb_negative*/ (unaryfunc) 0, /*tp_positive*/ (unaryfunc) 0, /*tp_absolute*/ (inquiry) 0, /*tp_bool*/ (unaryfunc) 0, /*nb_invert*/ 0, /*nb_lshift*/ (binaryfunc)0, /*nb_rshift*/ 0, /*nb_and*/ 0, /*nb_xor*/ 0, /*nb_or*/ 0, /*nb_int*/ 0, /*nb_reserved*/ 0, /*nb_float*/ Vector_iadd, /* nb_inplace_add */ Vector_isub, /* nb_inplace_subtract */ Vector_imul, /* nb_inplace_multiply */ 0, /* nb_inplace_remainder */ 0, /* nb_inplace_power */ 0, /* nb_inplace_lshift */ 0, /* nb_inplace_rshift */ 0, /* nb_inplace_and */ 0, /* nb_inplace_xor */ 0, /* nb_inplace_or */ 0, /* nb_floor_divide */ Vector_div, /* nb_true_divide */ 0, /* nb_inplace_floor_divide */ Vector_idiv, /* nb_inplace_true_divide */ 0, /* nb_index */ }; /*------------------PY_OBECT DEFINITION--------------------------*/ /* * vector axis, vector.x/y/z/w */ static PyObject *Vector_getAxis(VectorObject *self, void *type ) { return Vector_item(self, GET_INT_FROM_POINTER(type)); } static int Vector_setAxis(VectorObject *self, PyObject * value, void * type ) { return Vector_ass_item(self, GET_INT_FROM_POINTER(type), value); } /* vector.length */ static PyObject *Vector_getLength(VectorObject *self, void *UNUSED(closure)) { double dot = 0.0f; int i; if(!BaseMath_ReadCallback(self)) return NULL; for(i = 0; i < self->size; i++){ dot += (self->vec[i] * self->vec[i]); } return PyFloat_FromDouble(sqrt(dot)); } static int Vector_setLength(VectorObject *self, PyObject * value ) { double dot = 0.0f, param; int i; if(!BaseMath_ReadCallback(self)) return -1; if((param=PyFloat_AsDouble(value)) == -1.0 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "length must be set to a number"); return -1; } if (param < 0.0f) { PyErr_SetString(PyExc_TypeError, "cannot set a vectors length to a negative value"); return -1; } if (param == 0.0f) { for(i = 0; i < self->size; i++){ self->vec[i]= 0; } return 0; } for(i = 0; i < self->size; i++){ dot += (self->vec[i] * self->vec[i]); } if (!dot) /* cant sqrt zero */ return 0; dot = sqrt(dot); if (dot==param) return 0; dot= dot/param; for(i = 0; i < self->size; i++){ self->vec[i]= self->vec[i] / (float)dot; } (void)BaseMath_WriteCallback(self); /* checked already */ return 0; } /* Get a new Vector according to the provided swizzle. This function has little error checking, as we are in control of the inputs: the closure is set by us in Vector_createSwizzleGetSeter. */ static PyObject *Vector_getSwizzle(VectorObject *self, void *closure) { size_t axis_to; size_t axis_from; float vec[MAX_DIMENSIONS]; unsigned int swizzleClosure; if(!BaseMath_ReadCallback(self)) return NULL; /* Unpack the axes from the closure into an array. */ axis_to = 0; swizzleClosure = GET_INT_FROM_POINTER(closure); while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_from = swizzleClosure & SWIZZLE_AXIS; if(axis_from >= self->size) { PyErr_SetString(PyExc_AttributeError, "Error: vector does not have specified axis"); return NULL; } vec[axis_to] = self->vec[axis_from]; swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_to++; } return newVectorObject(vec, axis_to, Py_NEW, Py_TYPE(self)); } /* Set the items of this vector using a swizzle. - If value is a vector or list this operates like an array copy, except that the destination is effectively re-ordered as defined by the swizzle. At most min(len(source), len(dest)) values will be copied. - If the value is scalar, it is copied to all axes listed in the swizzle. - If an axis appears more than once in the swizzle, the final occurrence is the one that determines its value. Returns 0 on success and -1 on failure. On failure, the vector will be unchanged. */ static int Vector_setSwizzle(VectorObject *self, PyObject * value, void *closure) { size_t size_from; float scalarVal; size_t axis_from; size_t axis_to; unsigned int swizzleClosure; float tvec[MAX_DIMENSIONS]; float vec_assign[MAX_DIMENSIONS]; if(!BaseMath_ReadCallback(self)) return -1; /* Check that the closure can be used with this vector: even 2D vectors have swizzles defined for axes z and w, but they would be invalid. */ swizzleClosure = GET_INT_FROM_POINTER(closure); axis_from= 0; while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_to = swizzleClosure & SWIZZLE_AXIS; if (axis_to >= self->size) { PyErr_SetString(PyExc_AttributeError, "Error: vector does not have specified axis"); return -1; } swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_from++; } if (((scalarVal=PyFloat_AsDouble(value)) == -1 && PyErr_Occurred())==0) { int i; for(i=0; i < MAX_DIMENSIONS; i++) vec_assign[i]= scalarVal; size_from= axis_from; } else if((size_from=mathutils_array_parse(vec_assign, 2, 4, value, "mathutils.Vector.**** = swizzle assignment")) == -1) { return -1; } if(axis_from != size_from) { PyErr_SetString(PyExc_AttributeError, "Error: vector size does not match swizzle"); return -1; } /* Copy vector contents onto swizzled axes. */ axis_from = 0; swizzleClosure = GET_INT_FROM_POINTER(closure); while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_to = swizzleClosure & SWIZZLE_AXIS; tvec[axis_to] = vec_assign[axis_from]; swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_from++; } memcpy(self->vec, tvec, axis_from * sizeof(float)); /* continue with BaseMathObject_WriteCallback at the end */ if(!BaseMath_WriteCallback(self)) return -1; else return 0; } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Vector_getseters[] = { {(char *)"x", (getter)Vector_getAxis, (setter)Vector_setAxis, (char *)"Vector X axis.\n\n:type: float", (void *)0}, {(char *)"y", (getter)Vector_getAxis, (setter)Vector_setAxis, (char *)"Vector Y axis.\n\n:type: float", (void *)1}, {(char *)"z", (getter)Vector_getAxis, (setter)Vector_setAxis, (char *)"Vector Z axis (3D Vectors only).\n\n:type: float", (void *)2}, {(char *)"w", (getter)Vector_getAxis, (setter)Vector_setAxis, (char *)"Vector W axis (4D Vectors only).\n\n:type: float", (void *)3}, {(char *)"length", (getter)Vector_getLength, (setter)Vector_setLength, (char *)"Vector Length.\n\n:type: float", NULL}, {(char *)"magnitude", (getter)Vector_getLength, (setter)Vector_setLength, (char *)"Vector Length.\n\n:type: float", NULL}, {(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL}, {(char *)"owner", (getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL}, /* autogenerated swizzle attrs, see python script below */ {(char *)"xx", (getter)Vector_getSwizzle, (setter)NULL, NULL, SET_INT_IN_POINTER(((0|SWIZZLE_VALID_AXIS) | ((0|SWIZZLE_VALID_AXIS)<= 2: for axis_0 in axises: axis_0_pos = axis_pos[axis_0] for axis_1 in axises: axis_1_pos = axis_pos[axis_1] axis_dict[axis_0+axis_1] = '((%s|SWIZZLE_VALID_AXIS) | ((%s|SWIZZLE_VALID_AXIS)<2: for axis_2 in axises: axis_2_pos = axis_pos[axis_2] axis_dict[axis_0+axis_1+axis_2] = '((%s|SWIZZLE_VALID_AXIS) | ((%s|SWIZZLE_VALID_AXIS)<3: for axis_3 in axises: axis_3_pos = axis_pos[axis_3] axis_dict[axis_0+axis_1+axis_2+axis_3] = '((%s|SWIZZLE_VALID_AXIS) | ((%s|SWIZZLE_VALID_AXIS)<size; if(mat->colSize != vec_size){ if(mat->colSize == 4 && vec_size != 3){ PyErr_SetString(PyExc_AttributeError, "vector * matrix: matrix column size and the vector size must be the same"); return -1; }else{ vecCopy[3] = 1.0f; } } if(!BaseMath_ReadCallback(vec) || !BaseMath_ReadCallback(mat)) return -1; for(x = 0; x < vec_size; x++){ vecCopy[x] = vec->vec[x]; } rvec[3] = 1.0f; //muliplication for(x = 0; x < mat->rowSize; x++) { for(y = 0; y < mat->colSize; y++) { dot += mat->matrix[x][y] * vecCopy[y]; } rvec[z++] = (float)dot; dot = 0.0f; } return 0; } #endif /*----------------------------Vector.negate() -------------------- */ static char Vector_Negate_doc[] = ".. method:: negate()\n" "\n" " Set all values to their negative.\n" "\n" " :return: an instance of itself\n" " :rtype: :class:`Vector`\n"; static PyObject *Vector_Negate(VectorObject *self) { int i; if(!BaseMath_ReadCallback(self)) return NULL; for(i = 0; i < self->size; i++) self->vec[i] = -(self->vec[i]); (void)BaseMath_WriteCallback(self); // already checked for error Py_INCREF(self); return (PyObject*)self; } static struct PyMethodDef Vector_methods[] = { {"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc}, {"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc}, {"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc}, {"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc}, {"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize3D_doc}, {"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize4D_doc}, {"to_tuple", (PyCFunction) Vector_ToTuple, METH_VARARGS, Vector_ToTuple_doc}, {"to_track_quat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc}, {"reflect", ( PyCFunction ) Vector_Reflect, METH_O, Vector_Reflect_doc}, {"cross", ( PyCFunction ) Vector_Cross, METH_O, Vector_Cross_doc}, {"dot", ( PyCFunction ) Vector_Dot, METH_O, Vector_Dot_doc}, {"angle", ( PyCFunction ) Vector_angle, METH_VARARGS, Vector_angle_doc}, {"difference", ( PyCFunction ) Vector_Difference, METH_O, Vector_Difference_doc}, {"project", ( PyCFunction ) Vector_Project, METH_O, Vector_Project_doc}, {"lerp", ( PyCFunction ) Vector_Lerp, METH_VARARGS, Vector_Lerp_doc}, {"rotate", ( PyCFunction ) Vector_Rotate, METH_VARARGS, Vector_Rotate_doc}, {"copy", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc}, {"__copy__", (PyCFunction) Vector_copy, METH_NOARGS, NULL}, {NULL, NULL, 0, NULL} }; /* Note Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing but this means for eg that vec*mat and mat*vec both get sent to Vector_mul and it neesd to sort out the order */ static char vector_doc[] = "This object gives access to Vectors in Blender."; PyTypeObject vector_Type = { PyVarObject_HEAD_INIT(NULL, 0) /* For printing, in format "." */ "mathutils.Vector", /* char *tp_name; */ sizeof(VectorObject), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ ( destructor ) BaseMathObject_dealloc,/* destructor tp_dealloc; */ NULL, /* printfunc tp_print; */ NULL, /* getattrfunc tp_getattr; */ NULL, /* setattrfunc tp_setattr; */ NULL, /* cmpfunc tp_compare; */ ( reprfunc ) Vector_repr, /* reprfunc tp_repr; */ /* Method suites for standard classes */ &Vector_NumMethods, /* PyNumberMethods *tp_as_number; */ &Vector_SeqMethods, /* PySequenceMethods *tp_as_sequence; */ &Vector_AsMapping, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ NULL, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ NULL, /* reprfunc tp_str; */ NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, vector_doc, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ NULL, /* traverseproc tp_traverse; */ /* delete references to contained objects */ NULL, /* inquiry tp_clear; */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ (richcmpfunc)Vector_richcmpr, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ NULL, /* getiterfunc tp_iter; */ NULL, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ Vector_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ Vector_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ Vector_new, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL }; /*------------------------newVectorObject (internal)------------- creates a new vector object pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newVectorObject(float *vec, int size, int type, PyTypeObject *base_type) { int i; VectorObject *self; if(size > 4 || size < 2) return NULL; if(base_type) self = (VectorObject *)base_type->tp_alloc(base_type, 0); else self = PyObject_NEW(VectorObject, &vector_Type); self->size = size; /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP) { self->vec = vec; self->wrapped = Py_WRAP; } else if (type == Py_NEW) { self->vec = PyMem_Malloc(size * sizeof(float)); if(!vec) { /*new empty*/ for(i = 0; i < size; i++){ self->vec[i] = 0.0f; } if(size == 4) /* do the homogenous thing */ self->vec[3] = 1.0f; }else{ for(i = 0; i < size; i++){ self->vec[i] = vec[i]; } } self->wrapped = Py_NEW; }else{ /*bad type*/ return NULL; } return (PyObject *) self; } PyObject *newVectorObject_cb(PyObject *cb_user, int size, int cb_type, int cb_subtype) { float dummy[4] = {0.0, 0.0, 0.0, 0.0}; /* dummy init vector, callbacks will be used on access */ VectorObject *self= (VectorObject *)newVectorObject(dummy, size, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; } return (PyObject *)self; }