/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BLI_math.h" #include "BKE_utildefines.h" //-----------------------------METHODS------------------------------ static char Quaternion_ToEuler_doc[] = ".. method:: to_euler(order, euler_compat)\n" "\n" " Return Euler representation of the quaternion.\n" "\n" " :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n" " :type order: string\n" " :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n" " :type euler_compat: :class:`Euler`\n" " :return: Euler representation of the quaternion.\n" " :rtype: :class:`Euler`\n"; static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args) { float eul[3]; char *order_str= NULL; short order= 0; EulerObject *eul_compat = NULL; if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat)) return NULL; if(!BaseMath_ReadCallback(self)) return NULL; if(order_str) { order= euler_order_from_string(order_str, "Matrix.to_euler()"); if(order < 0) return NULL; } if(eul_compat) { float mat[3][3]; if(!BaseMath_ReadCallback(eul_compat)) return NULL; quat_to_mat3(mat, self->quat); if(order == 0) mat3_to_compatible_eul(eul, eul_compat->eul, mat); else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat); } else { if(order == 0) quat_to_eul(eul, self->quat); else quat_to_eulO(eul, order, self->quat); } return newEulerObject(eul, order, Py_NEW, NULL); } //----------------------------Quaternion.toMatrix()------------------ static char Quaternion_ToMatrix_doc[] = ".. method:: to_matrix(other)\n" "\n" " Return a matrix representation of the quaternion.\n" "\n" " :return: A 3x3 rotation matrix representation of the quaternion.\n" " :rtype: :class:`Matrix`\n"; static PyObject *Quaternion_ToMatrix(QuaternionObject * self) { float mat[9]; /* all values are set */ if(!BaseMath_ReadCallback(self)) return NULL; quat_to_mat3( (float (*)[3]) mat,self->quat); return newMatrixObject(mat, 3, 3, Py_NEW, NULL); } //----------------------------Quaternion.cross(other)------------------ static char Quaternion_Cross_doc[] = ".. method:: cross(other)\n" "\n" " Return the cross product of this quaternion and another.\n" "\n" " :arg other: The other quaternion to perform the cross product with.\n" " :type other: :class:`Quaternion`\n" " :return: The cross product.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value) { float quat[4]; if (!QuaternionObject_Check(value)) { PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" ); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; mul_qt_qtqt(quat, self->quat, value->quat); return newQuaternionObject(quat, Py_NEW, NULL); } //----------------------------Quaternion.dot(other)------------------ static char Quaternion_Dot_doc[] = ".. method:: dot(other)\n" "\n" " Return the dot product of this quaternion and another.\n" "\n" " :arg other: The other quaternion to perform the dot product with.\n" " :type other: :class:`Quaternion`\n" " :return: The dot product.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value) { if (!QuaternionObject_Check(value)) { PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" ); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat)); } static char Quaternion_Difference_doc[] = ".. function:: difference(other)\n" "\n" " Returns a quaternion representing the rotational difference.\n" "\n" " :arg other: second quaternion.\n" " :type other: :class:`Quaternion`\n" " :return: the rotational difference between the two quat rotations.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value) { float quat[4], tempQuat[4]; double dot = 0.0f; int x; if (!QuaternionObject_Check(value)) { PyErr_SetString( PyExc_TypeError, "quat.difference(value): expected a quaternion argument" ); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; tempQuat[0] = self->quat[0]; tempQuat[1] = - self->quat[1]; tempQuat[2] = - self->quat[2]; tempQuat[3] = - self->quat[3]; dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] * tempQuat[1] + tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]); for(x = 0; x < 4; x++) { tempQuat[x] /= (float)(dot * dot); } mul_qt_qtqt(quat, tempQuat, value->quat); return newQuaternionObject(quat, Py_NEW, NULL); } static char Quaternion_Slerp_doc[] = ".. function:: slerp(other, factor)\n" "\n" " Returns the interpolation of two quaternions.\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Quaternion`\n" " :arg factor: The interpolation value in [0.0, 1.0].\n" " :type factor: float\n" " :return: The interpolated rotation.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args) { QuaternionObject *value; float quat[4], fac; if(!PyArg_ParseTuple(args, "O!f:slerp", &quaternion_Type, &value, &fac)) { PyErr_SetString(PyExc_TypeError, "quat.slerp(): expected Quaternion types and float"); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; if(fac > 1.0f || fac < 0.0f) { PyErr_SetString(PyExc_AttributeError, "quat.slerp(): interpolation factor must be between 0.0 and 1.0"); return NULL; } interp_qt_qtqt(quat, self->quat, value->quat, fac); return newQuaternionObject(quat, Py_NEW, NULL); } //----------------------------Quaternion.normalize()---------------- //normalize the axis of rotation of [theta,vector] static char Quaternion_Normalize_doc[] = ".. function:: normalize()\n" "\n" " Normalize the quaternion.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Normalize(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; normalize_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.inverse()------------------ static char Quaternion_Inverse_doc[] = ".. function:: inverse()\n" "\n" " Set the quaternion to its inverse.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Inverse(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; invert_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.identity()----------------- static char Quaternion_Identity_doc[] = ".. function:: identity()\n" "\n" " Set the quaternion to an identity quaternion.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Identity(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; unit_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.negate()------------------- static char Quaternion_Negate_doc[] = ".. function:: negate()\n" "\n" " Set the quaternion to its negative.\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Negate(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; mul_qt_fl(self->quat, -1.0f); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.conjugate()---------------- static char Quaternion_Conjugate_doc[] = ".. function:: conjugate()\n" "\n" " Set the quaternion to its conjugate (negate x, y, z).\n" "\n" " :return: an instance of itself.\n" " :rtype: :class:`Quaternion`\n"; static PyObject *Quaternion_Conjugate(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; conjugate_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.copy()---------------- static char Quaternion_copy_doc[] = ".. function:: copy()\n" "\n" " Returns a copy of this quaternion.\n" "\n" " :return: A copy of the quaternion.\n" " :rtype: :class:`Quaternion`\n" "\n" " .. note:: use this to get a copy of a wrapped quaternion with no reference to the original data.\n"; static PyObject *Quaternion_copy(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self)); } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Quaternion_repr(QuaternionObject * self) { char str[64]; if(!BaseMath_ReadCallback(self)) return NULL; sprintf(str, "[%.6f, %.6f, %.6f, %.6f](quaternion)", self->quat[0], self->quat[1], self->quat[2], self->quat[3]); return PyUnicode_FromString(str); } //------------------------tp_richcmpr //returns -1 execption, 0 false, 1 true static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { QuaternionObject *quatA = NULL, *quatB = NULL; int result = 0; if(QuaternionObject_Check(objectA)) { quatA = (QuaternionObject*)objectA; if(!BaseMath_ReadCallback(quatA)) return NULL; } if(QuaternionObject_Check(objectB)) { quatB = (QuaternionObject*)objectB; if(!BaseMath_ReadCallback(quatB)) return NULL; } if (!quatA || !quatB){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } switch (comparison_type){ case Py_EQ: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1); break; case Py_NE: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1); if (result == 0){ result = 1; }else{ result = 0; } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Quaternion_len(QuaternionObject * self) { return 4; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Quaternion_item(QuaternionObject * self, int i) { if(i<0) i= 4-i; if(i < 0 || i >= 4) { PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n"); return NULL; } if(!BaseMath_ReadIndexCallback(self, i)) return NULL; return PyFloat_FromDouble(self->quat[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob) { float scalar= (float)PyFloat_AsDouble(ob); if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n"); return -1; } if(i<0) i= 4-i; if(i < 0 || i >= 4){ PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n"); return -1; } self->quat[i] = scalar; if(!BaseMath_WriteIndexCallback(self, i)) return -1; return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end) { PyObject *list = NULL; int count; if(!BaseMath_ReadCallback(self)) return NULL; CLAMP(begin, 0, 4); if (end<0) end= 5+end; CLAMP(end, 0, 4); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->quat[count])); } return list; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq) { int i, y, size = 0; float quat[4]; PyObject *q; if(!BaseMath_ReadCallback(self)) return -1; CLAMP(begin, 0, 4); if (end<0) end= 5+end; CLAMP(end, 0, 4); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment\n"); return -1; } for (i = 0; i < size; i++) { q = PySequence_GetItem(seq, i); if (q == NULL) { // Failed to read sequence PyErr_SetString(PyExc_RuntimeError, "quaternion[begin:end] = []: unable to read sequence\n"); return -1; } quat[i]= (float)PyFloat_AsDouble(q); Py_DECREF(q); if(quat[i]==-1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: sequence argument not a number\n"); return -1; } } //parsed well - now set in vector for(y = 0; y < size; y++) self->quat[begin + y] = quat[y]; BaseMath_WriteCallback(self); return 0; } //------------------------NUMERIC PROTOCOLS---------------------- //------------------------obj + obj------------------------------ //addition static PyObject *Quaternion_add(PyObject * q1, PyObject * q2) { float quat[4]; QuaternionObject *quat1 = NULL, *quat2 = NULL; if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) { PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n"); return NULL; } quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2)) return NULL; add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f); return newQuaternionObject(quat, Py_NEW, NULL); } //------------------------obj - obj------------------------------ //subtraction static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2) { int x; float quat[4]; QuaternionObject *quat1 = NULL, *quat2 = NULL; if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) { PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n"); return NULL; } quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2)) return NULL; for(x = 0; x < 4; x++) { quat[x] = quat1->quat[x] - quat2->quat[x]; } return newQuaternionObject(quat, Py_NEW, NULL); } //------------------------obj * obj------------------------------ //mulplication static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2) { float quat[4], scalar; QuaternionObject *quat1 = NULL, *quat2 = NULL; VectorObject *vec = NULL; if(QuaternionObject_Check(q1)) { quat1 = (QuaternionObject*)q1; if(!BaseMath_ReadCallback(quat1)) return NULL; } if(QuaternionObject_Check(q2)) { quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat2)) return NULL; } if(quat1 && quat2) { /* QUAT*QUAT (dot product) */ return PyFloat_FromDouble(dot_qtqt(quat1->quat, quat2->quat)); } /* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */ if(!QuaternionObject_Check(q1)) { scalar= PyFloat_AsDouble(q1); if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */ QUATCOPY(quat, quat2->quat); mul_qt_fl(quat, scalar); return newQuaternionObject(quat, Py_NEW, NULL); } PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type"); return NULL; } else { /* QUAT*SOMETHING */ if(VectorObject_Check(q2)){ /* QUAT*VEC */ vec = (VectorObject*)q2; if(vec->size != 3){ PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n"); return NULL; } return quat_rotation((PyObject*)quat1, (PyObject*)vec); /* vector updating done inside the func */ } scalar= PyFloat_AsDouble(q2); if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */ QUATCOPY(quat, quat1->quat); mul_qt_fl(quat, scalar); return newQuaternionObject(quat, Py_NEW, NULL); } } PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n"); return NULL; } //-----------------PROTOCOL DECLARATIONS-------------------------- static PySequenceMethods Quaternion_SeqMethods = { (lenfunc) Quaternion_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (ssizeargfunc) 0, /* sq_repeat */ (ssizeargfunc) Quaternion_item, /* sq_item */ (ssizessizeargfunc) Quaternion_slice, /* sq_slice */ (ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) Quaternion_ass_slice, /* sq_ass_slice */ }; static PyNumberMethods Quaternion_NumMethods = { (binaryfunc) Quaternion_add, /*nb_add*/ (binaryfunc) Quaternion_sub, /*nb_subtract*/ (binaryfunc) Quaternion_mul, /*nb_multiply*/ 0, /*nb_remainder*/ 0, /*nb_divmod*/ 0, /*nb_power*/ (unaryfunc) 0, /*nb_negative*/ (unaryfunc) 0, /*tp_positive*/ (unaryfunc) 0, /*tp_absolute*/ (inquiry) 0, /*tp_bool*/ (unaryfunc) 0, /*nb_invert*/ 0, /*nb_lshift*/ (binaryfunc)0, /*nb_rshift*/ 0, /*nb_and*/ 0, /*nb_xor*/ 0, /*nb_or*/ 0, /*nb_int*/ 0, /*nb_reserved*/ 0, /*nb_float*/ 0, /* nb_inplace_add */ 0, /* nb_inplace_subtract */ 0, /* nb_inplace_multiply */ 0, /* nb_inplace_remainder */ 0, /* nb_inplace_power */ 0, /* nb_inplace_lshift */ 0, /* nb_inplace_rshift */ 0, /* nb_inplace_and */ 0, /* nb_inplace_xor */ 0, /* nb_inplace_or */ 0, /* nb_floor_divide */ 0, /* nb_true_divide */ 0, /* nb_inplace_floor_divide */ 0, /* nb_inplace_true_divide */ 0, /* nb_index */ }; static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type ) { return Quaternion_item(self, GET_INT_FROM_POINTER(type)); } static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type ) { return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value); } static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type ) { return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat))); } static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type ) { return PyFloat_FromDouble(2.0 * (saacos(self->quat[0]))); } static PyObject *Quaternion_getAxisVec( QuaternionObject * self, void *type ) { int i; float vec[3]; double mag = self->quat[0] * (Py_PI / 180); mag = 2 * (saacos(mag)); mag = sin(mag / 2); for(i = 0; i < 3; i++) vec[i] = (float)(self->quat[i + 1] / mag); normalize_v3(vec); //If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) && EXPP_FloatsAreEqual(vec[1], 0.0f, 10) && EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){ vec[0] = 1.0f; } return (PyObject *) newVectorObject(vec, 3, Py_NEW, NULL); } //----------------------------------Mathutils.Quaternion() -------------- static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *listObject = NULL, *n, *q; int size, i; float quat[4]; double angle = 0.0f; size = PyTuple_GET_SIZE(args); if (size == 1 || size == 2) { //seq? listObject = PyTuple_GET_ITEM(args, 0); if (PySequence_Check(listObject)) { size = PySequence_Length(listObject); if ((size == 4 && PySequence_Length(args) !=1) || (size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) { // invalid args/size PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } if(size == 3){ //get angle in axis/angle n = PySequence_GetItem(args, 1); if(n == NULL) { // parsed item not a number or getItem fail PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } angle = PyFloat_AsDouble(n); Py_DECREF(n); if (angle==-1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } }else{ listObject = PyTuple_GET_ITEM(args, 1); if (size>1 && PySequence_Check(listObject)) { size = PySequence_Length(listObject); if (size != 3) { // invalid args/size PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } angle = PyFloat_AsDouble(PyTuple_GET_ITEM(args, 0)); if (angle==-1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } else { // argument was not a sequence PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } } else if (size == 0) { //returns a new empty quat return newQuaternionObject(NULL, Py_NEW, NULL); } else { listObject = args; } if (size == 3) { // invalid quat size if(PySequence_Length(args) != 2){ PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } }else{ if(size != 4){ PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } for (i=0; itp_alloc(base_type, 0); else self = PyObject_NEW(QuaternionObject, &quaternion_Type); /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP){ self->quat = quat; self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->quat = PyMem_Malloc(4 * sizeof(float)); if(!quat) { //new empty unit_qt(self->quat); }else{ QUATCOPY(self->quat, quat); } self->wrapped = Py_NEW; }else{ //bad type return NULL; } return (PyObject *) self; } PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype) { QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; } return (PyObject *)self; }