/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/python/generic/mathutils_Color.c * \ingroup pygen */ #include #include "mathutils.h" #include "BLI_math.h" #include "BLI_utildefines.h" #define COLOR_SIZE 3 //----------------------------------mathutils.Color() ------------------- //makes a new color for you to play with static PyObject *Color_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { float col[3]= {0.0f, 0.0f, 0.0f}; if(kwds && PyDict_Size(kwds)) { PyErr_SetString(PyExc_TypeError, "mathutils.Color(): " "takes no keyword args"); return NULL; } switch(PyTuple_GET_SIZE(args)) { case 0: break; case 1: if((mathutils_array_parse(col, COLOR_SIZE, COLOR_SIZE, PyTuple_GET_ITEM(args, 0), "mathutils.Color()")) == -1) return NULL; break; default: PyErr_SetString(PyExc_TypeError, "mathutils.Color(): " "more then a single arg given"); return NULL; } return newColorObject(col, Py_NEW, type); } //-----------------------------METHODS---------------------------- /* note: BaseMath_ReadCallback must be called beforehand */ static PyObject *Color_ToTupleExt(ColorObject *self, int ndigits) { PyObject *ret; int i; ret= PyTuple_New(COLOR_SIZE); if(ndigits >= 0) { for(i= 0; i < COLOR_SIZE; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->col[i], ndigits))); } } else { for(i= 0; i < COLOR_SIZE; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->col[i])); } } return ret; } PyDoc_STRVAR(Color_copy_doc, ".. function:: copy()\n" "\n" " Returns a copy of this color.\n" "\n" " :return: A copy of the color.\n" " :rtype: :class:`Color`\n" "\n" " .. note:: use this to get a copy of a wrapped color with\n" " no reference to the original data.\n" ); static PyObject *Color_copy(ColorObject *self) { if(BaseMath_ReadCallback(self) == -1) return NULL; return newColorObject(self->col, Py_NEW, Py_TYPE(self)); } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Color_repr(ColorObject * self) { PyObject *ret, *tuple; if(BaseMath_ReadCallback(self) == -1) return NULL; tuple= Color_ToTupleExt(self, -1); ret= PyUnicode_FromFormat("Color(%R)", tuple); Py_DECREF(tuple); return ret; } //------------------------tp_richcmpr //returns -1 execption, 0 false, 1 true static PyObject* Color_richcmpr(PyObject *a, PyObject *b, int op) { PyObject *res; int ok= -1; /* zero is true */ if (ColorObject_Check(a) && ColorObject_Check(b)) { ColorObject *colA= (ColorObject*)a; ColorObject *colB= (ColorObject*)b; if(BaseMath_ReadCallback(colA) == -1 || BaseMath_ReadCallback(colB) == -1) return NULL; ok= EXPP_VectorsAreEqual(colA->col, colB->col, COLOR_SIZE, 1) ? 0 : -1; } switch (op) { case Py_NE: ok = !ok; /* pass through */ case Py_EQ: res = ok ? Py_False : Py_True; break; case Py_LT: case Py_LE: case Py_GT: case Py_GE: res = Py_NotImplemented; break; default: PyErr_BadArgument(); return NULL; } return Py_INCREF(res), res; } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Color_len(ColorObject *UNUSED(self)) { return COLOR_SIZE; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Color_item(ColorObject * self, int i) { if(i<0) i= COLOR_SIZE-i; if(i < 0 || i >= COLOR_SIZE) { PyErr_SetString(PyExc_IndexError, "color[attribute]: " "array index out of range"); return NULL; } if(BaseMath_ReadIndexCallback(self, i) == -1) return NULL; return PyFloat_FromDouble(self->col[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Color_ass_item(ColorObject * self, int i, PyObject *value) { float f = PyFloat_AsDouble(value); if(f == -1 && PyErr_Occurred()) { // parsed item not a number PyErr_SetString(PyExc_TypeError, "color[attribute] = x: " "argument not a number"); return -1; } if(i<0) i= COLOR_SIZE-i; if(i < 0 || i >= COLOR_SIZE){ PyErr_SetString(PyExc_IndexError, "color[attribute] = x: " "array assignment index out of range"); return -1; } self->col[i] = f; if(BaseMath_WriteIndexCallback(self, i) == -1) return -1; return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Color_slice(ColorObject * self, int begin, int end) { PyObject *tuple; int count; if(BaseMath_ReadCallback(self) == -1) return NULL; CLAMP(begin, 0, COLOR_SIZE); if (end<0) end= (COLOR_SIZE + 1) + end; CLAMP(end, 0, COLOR_SIZE); begin= MIN2(begin, end); tuple= PyTuple_New(end - begin); for(count= begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->col[count])); } return tuple; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Color_ass_slice(ColorObject *self, int begin, int end, PyObject *seq) { int i, size; float col[COLOR_SIZE]; if(BaseMath_ReadCallback(self) == -1) return -1; CLAMP(begin, 0, COLOR_SIZE); if (end<0) end= (COLOR_SIZE + 1) + end; CLAMP(end, 0, COLOR_SIZE); begin = MIN2(begin, end); if((size=mathutils_array_parse(col, 0, COLOR_SIZE, seq, "mathutils.Color[begin:end] = []")) == -1) return -1; if(size != (end - begin)){ PyErr_SetString(PyExc_ValueError, "color[begin:end] = []: " "size mismatch in slice assignment"); return -1; } for(i= 0; i < COLOR_SIZE; i++) self->col[begin + i] = col[i]; (void)BaseMath_WriteCallback(self); return 0; } static PyObject *Color_subscript(ColorObject *self, PyObject *item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return NULL; if (i < 0) i += COLOR_SIZE; return Color_item(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((void *)item, COLOR_SIZE, &start, &stop, &step, &slicelength) < 0) return NULL; if (slicelength <= 0) { return PyTuple_New(0); } else if (step == 1) { return Color_slice(self, start, stop); } else { PyErr_SetString(PyExc_IndexError, "slice steps not supported with color"); return NULL; } } else { PyErr_Format(PyExc_TypeError, "color indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return NULL; } } static int Color_ass_subscript(ColorObject *self, PyObject *item, PyObject *value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) i += COLOR_SIZE; return Color_ass_item(self, i, value); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx((void *)item, COLOR_SIZE, &start, &stop, &step, &slicelength) < 0) return -1; if (step == 1) return Color_ass_slice(self, start, stop, value); else { PyErr_SetString(PyExc_IndexError, "slice steps not supported with color"); return -1; } } else { PyErr_Format(PyExc_TypeError, "color indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } } //-----------------PROTCOL DECLARATIONS-------------------------- static PySequenceMethods Color_SeqMethods = { (lenfunc) Color_len, /* sq_length */ (binaryfunc) NULL, /* sq_concat */ (ssizeargfunc) NULL, /* sq_repeat */ (ssizeargfunc) Color_item, /* sq_item */ NULL, /* sq_slice, deprecated */ (ssizeobjargproc) Color_ass_item, /* sq_ass_item */ NULL, /* sq_ass_slice, deprecated */ (objobjproc) NULL, /* sq_contains */ (binaryfunc) NULL, /* sq_inplace_concat */ (ssizeargfunc) NULL, /* sq_inplace_repeat */ }; static PyMappingMethods Color_AsMapping = { (lenfunc)Color_len, (binaryfunc)Color_subscript, (objobjargproc)Color_ass_subscript }; /* numeric */ /* addition: obj + obj */ static PyObject *Color_add(PyObject *v1, PyObject *v2) { ColorObject *color1 = NULL, *color2 = NULL; float col[COLOR_SIZE]; if (!ColorObject_Check(v1) || !ColorObject_Check(v2)) { PyErr_SetString(PyExc_TypeError, "Color addition: " "arguments not valid for this operation"); return NULL; } color1 = (ColorObject*)v1; color2 = (ColorObject*)v2; if(BaseMath_ReadCallback(color1) == -1 || BaseMath_ReadCallback(color2) == -1) return NULL; add_vn_vnvn(col, color1->col, color2->col, COLOR_SIZE); return newColorObject(col, Py_NEW, Py_TYPE(v1)); } /* addition in-place: obj += obj */ static PyObject *Color_iadd(PyObject *v1, PyObject *v2) { ColorObject *color1 = NULL, *color2 = NULL; if (!ColorObject_Check(v1) || !ColorObject_Check(v2)) { PyErr_SetString(PyExc_TypeError, "Color addition: " "arguments not valid for this operation"); return NULL; } color1 = (ColorObject*)v1; color2 = (ColorObject*)v2; if(BaseMath_ReadCallback(color1) == -1 || BaseMath_ReadCallback(color2) == -1) return NULL; add_vn_vn(color1->col, color2->col, COLOR_SIZE); (void)BaseMath_WriteCallback(color1); Py_INCREF(v1); return v1; } /* subtraction: obj - obj */ static PyObject *Color_sub(PyObject *v1, PyObject *v2) { ColorObject *color1 = NULL, *color2 = NULL; float col[COLOR_SIZE]; if (!ColorObject_Check(v1) || !ColorObject_Check(v2)) { PyErr_SetString(PyExc_TypeError, "Color subtraction: " "arguments not valid for this operation"); return NULL; } color1 = (ColorObject*)v1; color2 = (ColorObject*)v2; if(BaseMath_ReadCallback(color1) == -1 || BaseMath_ReadCallback(color2) == -1) return NULL; sub_vn_vnvn(col, color1->col, color2->col, COLOR_SIZE); return newColorObject(col, Py_NEW, Py_TYPE(v1)); } /* subtraction in-place: obj -= obj */ static PyObject *Color_isub(PyObject *v1, PyObject *v2) { ColorObject *color1= NULL, *color2= NULL; if (!ColorObject_Check(v1) || !ColorObject_Check(v2)) { PyErr_SetString(PyExc_TypeError, "Color subtraction: " "arguments not valid for this operation"); return NULL; } color1 = (ColorObject*)v1; color2 = (ColorObject*)v2; if(BaseMath_ReadCallback(color1) == -1 || BaseMath_ReadCallback(color2) == -1) return NULL; sub_vn_vn(color1->col, color2->col, COLOR_SIZE); (void)BaseMath_WriteCallback(color1); Py_INCREF(v1); return v1; } static PyObject *color_mul_float(ColorObject *color, const float scalar) { float tcol[COLOR_SIZE]; mul_vn_vn_fl(tcol, color->col, COLOR_SIZE, scalar); return newColorObject(tcol, Py_NEW, Py_TYPE(color)); } static PyObject *Color_mul(PyObject *v1, PyObject *v2) { ColorObject *color1 = NULL, *color2 = NULL; float scalar; if ColorObject_Check(v1) { color1= (ColorObject *)v1; if(BaseMath_ReadCallback(color1) == -1) return NULL; } if ColorObject_Check(v2) { color2= (ColorObject *)v2; if(BaseMath_ReadCallback(color2) == -1) return NULL; } /* make sure v1 is always the vector */ if (color1 && color2) { /* col * col, dont support yet! */ } else if (color1) { if (((scalar= PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred())==0) { /* COLOR * FLOAT */ return color_mul_float(color1, scalar); } } else if (color2) { if (((scalar= PyFloat_AsDouble(v1)) == -1.0f && PyErr_Occurred())==0) { /* FLOAT * COLOR */ return color_mul_float(color2, scalar); } } else { BLI_assert(!"internal error"); } PyErr_Format(PyExc_TypeError, "Color multiplication: not supported between " "'%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } static PyObject *Color_div(PyObject *v1, PyObject *v2) { ColorObject *color1 = NULL; float scalar; if ColorObject_Check(v1) { color1= (ColorObject *)v1; if(BaseMath_ReadCallback(color1) == -1) return NULL; } else { PyErr_SetString(PyExc_TypeError, "Color division not supported in this order"); return NULL; } /* make sure v1 is always the vector */ if (((scalar= PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred())==0) { /* COLOR * FLOAT */ if(scalar==0.0f) { PyErr_SetString(PyExc_ZeroDivisionError, "Color division: divide by zero error"); return NULL; } return color_mul_float(color1, 1.0f / scalar); } PyErr_Format(PyExc_TypeError, "Color multiplication: not supported between " "'%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } /* mulplication in-place: obj *= obj */ static PyObject *Color_imul(PyObject *v1, PyObject *v2) { ColorObject *color = (ColorObject *)v1; float scalar; if(BaseMath_ReadCallback(color) == -1) return NULL; /* only support color *= float */ if (((scalar= PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred())==0) { /* COLOR *= FLOAT */ mul_vn_fl(color->col, COLOR_SIZE, scalar); } else { PyErr_SetString(PyExc_TypeError, "Color multiplication: " "arguments not acceptable for this operation"); return NULL; } (void)BaseMath_WriteCallback(color); Py_INCREF(v1); return v1; } /* mulplication in-place: obj *= obj */ static PyObject *Color_idiv(PyObject *v1, PyObject *v2) { ColorObject *color = (ColorObject *)v1; float scalar; if(BaseMath_ReadCallback(color) == -1) return NULL; /* only support color /= float */ if (((scalar= PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred())==0) { /* COLOR /= FLOAT */ if(scalar==0.0f) { PyErr_SetString(PyExc_ZeroDivisionError, "Color division: divide by zero error"); return NULL; } mul_vn_fl(color->col, COLOR_SIZE, 1.0f / scalar); } else { PyErr_SetString(PyExc_TypeError, "Color multiplication: " "arguments not acceptable for this operation"); return NULL; } (void)BaseMath_WriteCallback(color); Py_INCREF(v1); return v1; } /* -obj returns the negative of this object*/ static PyObject *Color_neg(ColorObject *self) { float tcol[COLOR_SIZE]; if(BaseMath_ReadCallback(self) == -1) return NULL; negate_vn_vn(tcol, self->col, COLOR_SIZE); return newColorObject(tcol, Py_NEW, Py_TYPE(self)); } static PyNumberMethods Color_NumMethods = { (binaryfunc) Color_add, /*nb_add*/ (binaryfunc) Color_sub, /*nb_subtract*/ (binaryfunc) Color_mul, /*nb_multiply*/ NULL, /*nb_remainder*/ NULL, /*nb_divmod*/ NULL, /*nb_power*/ (unaryfunc) Color_neg, /*nb_negative*/ (unaryfunc) NULL, /*tp_positive*/ (unaryfunc) NULL, /*tp_absolute*/ (inquiry) NULL, /*tp_bool*/ (unaryfunc) NULL, /*nb_invert*/ NULL, /*nb_lshift*/ (binaryfunc)NULL, /*nb_rshift*/ NULL, /*nb_and*/ NULL, /*nb_xor*/ NULL, /*nb_or*/ NULL, /*nb_int*/ NULL, /*nb_reserved*/ NULL, /*nb_float*/ Color_iadd, /* nb_inplace_add */ Color_isub, /* nb_inplace_subtract */ Color_imul, /* nb_inplace_multiply */ NULL, /* nb_inplace_remainder */ NULL, /* nb_inplace_power */ NULL, /* nb_inplace_lshift */ NULL, /* nb_inplace_rshift */ NULL, /* nb_inplace_and */ NULL, /* nb_inplace_xor */ NULL, /* nb_inplace_or */ NULL, /* nb_floor_divide */ Color_div, /* nb_true_divide */ NULL, /* nb_inplace_floor_divide */ Color_idiv, /* nb_inplace_true_divide */ NULL, /* nb_index */ }; /* color channel, vector.r/g/b */ static PyObject *Color_getChannel(ColorObject * self, void *type) { return Color_item(self, GET_INT_FROM_POINTER(type)); } static int Color_setChannel(ColorObject * self, PyObject *value, void * type) { return Color_ass_item(self, GET_INT_FROM_POINTER(type), value); } /* color channel (HSV), color.h/s/v */ static PyObject *Color_getChannelHSV(ColorObject * self, void *type) { float hsv[3]; int i= GET_INT_FROM_POINTER(type); if(BaseMath_ReadCallback(self) == -1) return NULL; rgb_to_hsv(self->col[0], self->col[1], self->col[2], &(hsv[0]), &(hsv[1]), &(hsv[2])); return PyFloat_FromDouble(hsv[i]); } static int Color_setChannelHSV(ColorObject * self, PyObject *value, void * type) { float hsv[3]; int i= GET_INT_FROM_POINTER(type); float f = PyFloat_AsDouble(value); if(f == -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "color.h/s/v = value: " "argument not a number"); return -1; } if(BaseMath_ReadCallback(self) == -1) return -1; rgb_to_hsv(self->col[0], self->col[1], self->col[2], &(hsv[0]), &(hsv[1]), &(hsv[2])); CLAMP(f, 0.0f, 1.0f); hsv[i] = f; hsv_to_rgb(hsv[0], hsv[1], hsv[2], &(self->col[0]), &(self->col[1]), &(self->col[2])); if(BaseMath_WriteCallback(self) == -1) return -1; return 0; } /* color channel (HSV), color.h/s/v */ static PyObject *Color_getHSV(ColorObject * self, void *UNUSED(closure)) { float hsv[3]; PyObject *ret; if(BaseMath_ReadCallback(self) == -1) return NULL; rgb_to_hsv(self->col[0], self->col[1], self->col[2], &(hsv[0]), &(hsv[1]), &(hsv[2])); ret= PyTuple_New(3); PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(hsv[0])); PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(hsv[1])); PyTuple_SET_ITEM(ret, 2, PyFloat_FromDouble(hsv[2])); return ret; } static int Color_setHSV(ColorObject * self, PyObject *value, void *UNUSED(closure)) { float hsv[3]; if(mathutils_array_parse(hsv, 3, 3, value, "mathutils.Color.hsv = value") == -1) return -1; CLAMP(hsv[0], 0.0f, 1.0f); CLAMP(hsv[1], 0.0f, 1.0f); CLAMP(hsv[2], 0.0f, 1.0f); hsv_to_rgb(hsv[0], hsv[1], hsv[2], &(self->col[0]), &(self->col[1]), &(self->col[2])); if(BaseMath_WriteCallback(self) == -1) return -1; return 0; } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Color_getseters[] = { {(char *)"r", (getter)Color_getChannel, (setter)Color_setChannel, (char *)"Red color channel.\n\n:type: float", (void *)0}, {(char *)"g", (getter)Color_getChannel, (setter)Color_setChannel, (char *)"Green color channel.\n\n:type: float", (void *)1}, {(char *)"b", (getter)Color_getChannel, (setter)Color_setChannel, (char *)"Blue color channel.\n\n:type: float", (void *)2}, {(char *)"h", (getter)Color_getChannelHSV, (setter)Color_setChannelHSV, (char *)"HSV Hue component in [0, 1].\n\n:type: float", (void *)0}, {(char *)"s", (getter)Color_getChannelHSV, (setter)Color_setChannelHSV, (char *)"HSV Saturation component in [0, 1].\n\n:type: float", (void *)1}, {(char *)"v", (getter)Color_getChannelHSV, (setter)Color_setChannelHSV, (char *)"HSV Value component in [0, 1].\n\n:type: float", (void *)2}, {(char *)"hsv", (getter)Color_getHSV, (setter)Color_setHSV, (char *)"HSV Values in [0, 1].\n\n:type: float triplet", (void *)0}, {(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL}, {(char *)"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL}, {NULL, NULL, NULL, NULL, NULL} /* Sentinel */ }; //-----------------------METHOD DEFINITIONS ---------------------- static struct PyMethodDef Color_methods[] = { {"__copy__", (PyCFunction) Color_copy, METH_NOARGS, Color_copy_doc}, {"copy", (PyCFunction) Color_copy, METH_NOARGS, Color_copy_doc}, {NULL, NULL, 0, NULL} }; //------------------PY_OBECT DEFINITION-------------------------- PyDoc_STRVAR(color_doc, "This object gives access to Colors in Blender." ); PyTypeObject color_Type = { PyVarObject_HEAD_INIT(NULL, 0) "mathutils.Color", //tp_name sizeof(ColorObject), //tp_basicsize 0, //tp_itemsize (destructor)BaseMathObject_dealloc, //tp_dealloc NULL, //tp_print NULL, //tp_getattr NULL, //tp_setattr NULL, //tp_compare (reprfunc) Color_repr, //tp_repr &Color_NumMethods, //tp_as_number &Color_SeqMethods, //tp_as_sequence &Color_AsMapping, //tp_as_mapping NULL, //tp_hash NULL, //tp_call NULL, //tp_str NULL, //tp_getattro NULL, //tp_setattro NULL, //tp_as_buffer Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, //tp_flags color_doc, //tp_doc (traverseproc)BaseMathObject_traverse, //tp_traverse (inquiry)BaseMathObject_clear, //tp_clear (richcmpfunc)Color_richcmpr, //tp_richcompare 0, //tp_weaklistoffset NULL, //tp_iter NULL, //tp_iternext Color_methods, //tp_methods NULL, //tp_members Color_getseters, //tp_getset NULL, //tp_base NULL, //tp_dict NULL, //tp_descr_get NULL, //tp_descr_set 0, //tp_dictoffset NULL, //tp_init NULL, //tp_alloc Color_new, //tp_new NULL, //tp_free NULL, //tp_is_gc NULL, //tp_bases NULL, //tp_mro NULL, //tp_cache NULL, //tp_subclasses NULL, //tp_weaklist NULL //tp_del }; //------------------------newColorObject (internal)------------- //creates a new color object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newColorObject(float *col, int type, PyTypeObject *base_type) { ColorObject *self; self= base_type ? (ColorObject *)base_type->tp_alloc(base_type, 0) : (ColorObject *)PyObject_GC_New(ColorObject, &color_Type); if(self) { /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP){ self->col = col; self->wrapped = Py_WRAP; } else if (type == Py_NEW){ self->col = PyMem_Malloc(COLOR_SIZE * sizeof(float)); if(col) copy_v3_v3(self->col, col); else zero_v3(self->col); self->wrapped = Py_NEW; } else { Py_FatalError("Color(): invalid type!"); } } return (PyObject *)self; } PyObject *newColorObject_cb(PyObject *cb_user, int cb_type, int cb_subtype) { ColorObject *self= (ColorObject *)newColorObject(NULL, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; PyObject_GC_Track(self); } return (PyObject *)self; }