/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup pymathutils */ #include #include "mathutils.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "../generic/py_capi_utils.h" #ifndef MATH_STANDALONE # include "BLI_dynstr.h" #endif /** * Higher dimensions are supported, for many common operations * (dealing with vector/matrix multiply or handling as 3D locations) * stack memory is used with a fixed size - defined here. */ #define MAX_DIMENSIONS 4 /* Swizzle axes get packed into a single value that is used as a closure. Each * axis uses SWIZZLE_BITS_PER_AXIS bits. The first bit (SWIZZLE_VALID_AXIS) is * used as a sentinel: if it is unset, the axis is not valid. */ #define SWIZZLE_BITS_PER_AXIS 3 #define SWIZZLE_VALID_AXIS 0x4 #define SWIZZLE_AXIS 0x3 static PyObject *Vector_copy(VectorObject *self); static PyObject *Vector_deepcopy(VectorObject *self, PyObject *args); static PyObject *Vector_to_tuple_ex(VectorObject *self, int ndigits); static int row_vector_multiplication(float rvec[MAX_DIMENSIONS], VectorObject *vec, MatrixObject *mat); /** * Supports 2D, 3D, and 4D vector objects both int and float values * accepted. Mixed float and int values accepted. Ints are parsed to float */ static PyObject *Vector_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { float *vec = NULL; int size = 3; /* default to a 3D vector */ if (kwds && PyDict_Size(kwds)) { PyErr_SetString(PyExc_TypeError, "Vector(): " "takes no keyword args"); return NULL; } switch (PyTuple_GET_SIZE(args)) { case 0: vec = PyMem_Malloc(size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating pointer space"); return NULL; } copy_vn_fl(vec, size, 0.0f); break; case 1: if ((size = mathutils_array_parse_alloc( &vec, 2, PyTuple_GET_ITEM(args, 0), "mathutils.Vector()")) == -1) { return NULL; } break; default: PyErr_SetString(PyExc_TypeError, "mathutils.Vector(): " "more than a single arg given"); return NULL; } return Vector_CreatePyObject_alloc(vec, size, type); } static PyObject *vec__apply_to_copy(PyObject *(*vec_func)(VectorObject *), VectorObject *self) { PyObject *ret = Vector_copy(self); PyObject *ret_dummy = vec_func((VectorObject *)ret); if (ret_dummy) { Py_DECREF(ret_dummy); return (PyObject *)ret; } /* error */ Py_DECREF(ret); return NULL; } /*-----------------------CLASS-METHODS----------------------------*/ PyDoc_STRVAR(C_Vector_Fill_doc, ".. classmethod:: Fill(size, fill=0.0)\n" "\n" " Create a vector of length size with all values set to fill.\n" "\n" " :arg size: The length of the vector to be created.\n" " :type size: int\n" " :arg fill: The value used to fill the vector.\n" " :type fill: float\n"); static PyObject *C_Vector_Fill(PyObject *cls, PyObject *args) { float *vec; int size; float fill = 0.0f; if (!PyArg_ParseTuple(args, "i|f:Vector.Fill", &size, &fill)) { return NULL; } if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return NULL; } vec = PyMem_Malloc(size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.Fill(): " "problem allocating pointer space"); return NULL; } copy_vn_fl(vec, size, fill); return Vector_CreatePyObject_alloc(vec, size, (PyTypeObject *)cls); } PyDoc_STRVAR(C_Vector_Range_doc, ".. classmethod:: Range(start=0, stop, step=1)\n" "\n" " Create a filled with a range of values.\n" "\n" " :arg start: The start of the range used to fill the vector.\n" " :type start: int\n" " :arg stop: The end of the range used to fill the vector.\n" " :type stop: int\n" " :arg step: The step between successive values in the vector.\n" " :type step: int\n"); static PyObject *C_Vector_Range(PyObject *cls, PyObject *args) { float *vec; int stop, size; int start = 0; int step = 1; if (!PyArg_ParseTuple(args, "i|ii:Vector.Range", &start, &stop, &step)) { return NULL; } switch (PyTuple_GET_SIZE(args)) { case 1: size = start; start = 0; break; case 2: if (start >= stop) { PyErr_SetString(PyExc_RuntimeError, "Start value is larger " "than the stop value"); return NULL; } size = stop - start; break; default: if (start >= stop) { PyErr_SetString(PyExc_RuntimeError, "Start value is larger " "than the stop value"); return NULL; } size = (stop - start); if ((size % step) != 0) { size += step; } size /= step; break; } if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return NULL; } vec = PyMem_Malloc(size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.Range(): " "problem allocating pointer space"); return NULL; } range_vn_fl(vec, size, (float)start, (float)step); return Vector_CreatePyObject_alloc(vec, size, (PyTypeObject *)cls); } PyDoc_STRVAR(C_Vector_Linspace_doc, ".. classmethod:: Linspace(start, stop, size)\n" "\n" " Create a vector of the specified size which is filled with linearly spaced " "values between start and stop values.\n" "\n" " :arg start: The start of the range used to fill the vector.\n" " :type start: int\n" " :arg stop: The end of the range used to fill the vector.\n" " :type stop: int\n" " :arg size: The size of the vector to be created.\n" " :type size: int\n"); static PyObject *C_Vector_Linspace(PyObject *cls, PyObject *args) { float *vec; int size; float start, end, step; if (!PyArg_ParseTuple(args, "ffi:Vector.Linspace", &start, &end, &size)) { return NULL; } if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.Linspace(): invalid size"); return NULL; } step = (end - start) / (float)(size - 1); vec = PyMem_Malloc(size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.Linspace(): " "problem allocating pointer space"); return NULL; } range_vn_fl(vec, size, start, step); return Vector_CreatePyObject_alloc(vec, size, (PyTypeObject *)cls); } PyDoc_STRVAR( C_Vector_Repeat_doc, ".. classmethod:: Repeat(vector, size)\n" "\n" " Create a vector by repeating the values in vector until the required size is reached.\n" "\n" " :arg tuple: The vector to draw values from.\n" " :type tuple: :class:`mathutils.Vector`\n" " :arg size: The size of the vector to be created.\n" " :type size: int\n"); static PyObject *C_Vector_Repeat(PyObject *cls, PyObject *args) { float *vec; float *iter_vec = NULL; int i, size, value_size; PyObject *value; if (!PyArg_ParseTuple(args, "Oi:Vector.Repeat", &value, &size)) { return NULL; } if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.Repeat(): invalid size"); return NULL; } if ((value_size = mathutils_array_parse_alloc( &iter_vec, 2, value, "Vector.Repeat(vector, size), invalid 'vector' arg")) == -1) { return NULL; } if (iter_vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.Repeat(): " "problem allocating pointer space"); return NULL; } vec = PyMem_Malloc(size * sizeof(float)); if (vec == NULL) { PyMem_Free(iter_vec); PyErr_SetString(PyExc_MemoryError, "Vector.Repeat(): " "problem allocating pointer space"); return NULL; } i = 0; while (i < size) { vec[i] = iter_vec[i % value_size]; i++; } PyMem_Free(iter_vec); return Vector_CreatePyObject_alloc(vec, size, (PyTypeObject *)cls); } /*-----------------------------METHODS---------------------------- */ PyDoc_STRVAR(Vector_zero_doc, ".. method:: zero()\n" "\n" " Set all values to zero.\n"); static PyObject *Vector_zero(VectorObject *self) { if (BaseMath_Prepare_ForWrite(self) == -1) { return NULL; } copy_vn_fl(self->vec, self->size, 0.0f); if (BaseMath_WriteCallback(self) == -1) { return NULL; } Py_RETURN_NONE; } PyDoc_STRVAR(Vector_normalize_doc, ".. method:: normalize()\n" "\n" " Normalize the vector, making the length of the vector always 1.0.\n" "\n" " .. warning:: Normalizing a vector where all values are zero has no effect.\n" "\n" " .. note:: Normalize works for vectors of all sizes,\n" " however 4D Vectors w axis is left untouched.\n"); static PyObject *Vector_normalize(VectorObject *self) { const int size = (self->size == 4 ? 3 : self->size); if (BaseMath_ReadCallback_ForWrite(self) == -1) { return NULL; } normalize_vn(self->vec, size); (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } PyDoc_STRVAR(Vector_normalized_doc, ".. method:: normalized()\n" "\n" " Return a new, normalized vector.\n" "\n" " :return: a normalized copy of the vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_normalized(VectorObject *self) { return vec__apply_to_copy(Vector_normalize, self); } PyDoc_STRVAR(Vector_resize_doc, ".. method:: resize(size=3)\n" "\n" " Resize the vector to have size number of elements.\n"); static PyObject *Vector_resize(VectorObject *self, PyObject *value) { int size; if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize(): " "cannot resize wrapped data - only python vectors"); return NULL; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize(): " "cannot resize a vector that has an owner"); return NULL; } if ((size = PyC_Long_AsI32(value)) == -1) { PyErr_SetString(PyExc_TypeError, "Vector.resize(size): " "expected size argument to be an integer"); return NULL; } if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.resize(): invalid size"); return NULL; } self->vec = PyMem_Realloc(self->vec, (size * sizeof(float))); if (self->vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.resize(): " "problem allocating pointer space"); return NULL; } /* If the vector has increased in length, set all new elements to 0.0f */ if (size > self->size) { copy_vn_fl(self->vec + self->size, size - self->size, 0.0f); } self->size = size; Py_RETURN_NONE; } PyDoc_STRVAR(Vector_resized_doc, ".. method:: resized(size=3)\n" "\n" " Return a resized copy of the vector with size number of elements.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_resized(VectorObject *self, PyObject *value) { int size; float *vec; if ((size = PyLong_AsLong(value)) == -1) { return NULL; } if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.resized(): invalid size"); return NULL; } vec = PyMem_Malloc(size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.resized(): " "problem allocating pointer space"); return NULL; } copy_vn_fl(vec, size, 0.0f); memcpy(vec, self->vec, self->size * sizeof(float)); return Vector_CreatePyObject_alloc(vec, size, NULL); } PyDoc_STRVAR(Vector_resize_2d_doc, ".. method:: resize_2d()\n" "\n" " Resize the vector to 2D (x, y).\n"); static PyObject *Vector_resize_2d(VectorObject *self) { if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize_2d(): " "cannot resize wrapped data - only python vectors"); return NULL; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize_2d(): " "cannot resize a vector that has an owner"); return NULL; } self->vec = PyMem_Realloc(self->vec, sizeof(float[2])); if (self->vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.resize_2d(): " "problem allocating pointer space"); return NULL; } self->size = 2; Py_RETURN_NONE; } PyDoc_STRVAR(Vector_resize_3d_doc, ".. method:: resize_3d()\n" "\n" " Resize the vector to 3D (x, y, z).\n"); static PyObject *Vector_resize_3d(VectorObject *self) { if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize_3d(): " "cannot resize wrapped data - only python vectors"); return NULL; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize_3d(): " "cannot resize a vector that has an owner"); return NULL; } self->vec = PyMem_Realloc(self->vec, sizeof(float[3])); if (self->vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.resize_3d(): " "problem allocating pointer space"); return NULL; } if (self->size == 2) { self->vec[2] = 0.0f; } self->size = 3; Py_RETURN_NONE; } PyDoc_STRVAR(Vector_resize_4d_doc, ".. method:: resize_4d()\n" "\n" " Resize the vector to 4D (x, y, z, w).\n"); static PyObject *Vector_resize_4d(VectorObject *self) { if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize_4d(): " "cannot resize wrapped data - only python vectors"); return NULL; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize_4d(): " "cannot resize a vector that has an owner"); return NULL; } self->vec = PyMem_Realloc(self->vec, sizeof(float[4])); if (self->vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector.resize_4d(): " "problem allocating pointer space"); return NULL; } if (self->size == 2) { self->vec[2] = 0.0f; self->vec[3] = 1.0f; } else if (self->size == 3) { self->vec[3] = 1.0f; } self->size = 4; Py_RETURN_NONE; } PyDoc_STRVAR(Vector_to_2d_doc, ".. method:: to_2d()\n" "\n" " Return a 2d copy of the vector.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_to_2d(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return NULL; } return Vector_CreatePyObject(self->vec, 2, Py_TYPE(self)); } PyDoc_STRVAR(Vector_to_3d_doc, ".. method:: to_3d()\n" "\n" " Return a 3d copy of the vector.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_to_3d(VectorObject *self) { float tvec[3] = {0.0f}; if (BaseMath_ReadCallback(self) == -1) { return NULL; } memcpy(tvec, self->vec, sizeof(float) * MIN2(self->size, 3)); return Vector_CreatePyObject(tvec, 3, Py_TYPE(self)); } PyDoc_STRVAR(Vector_to_4d_doc, ".. method:: to_4d()\n" "\n" " Return a 4d copy of the vector.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_to_4d(VectorObject *self) { float tvec[4] = {0.0f, 0.0f, 0.0f, 1.0f}; if (BaseMath_ReadCallback(self) == -1) { return NULL; } memcpy(tvec, self->vec, sizeof(float) * MIN2(self->size, 4)); return Vector_CreatePyObject(tvec, 4, Py_TYPE(self)); } PyDoc_STRVAR(Vector_to_tuple_doc, ".. method:: to_tuple(precision=-1)\n" "\n" " Return this vector as a tuple with.\n" "\n" " :arg precision: The number to round the value to in [-1, 21].\n" " :type precision: int\n" " :return: the values of the vector rounded by *precision*\n" " :rtype: tuple\n"); /* note: BaseMath_ReadCallback must be called beforehand */ static PyObject *Vector_to_tuple_ex(VectorObject *self, int ndigits) { PyObject *ret; int i; ret = PyTuple_New(self->size); if (ndigits >= 0) { for (i = 0; i < self->size; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->vec[i], ndigits))); } } else { for (i = 0; i < self->size; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->vec[i])); } } return ret; } static PyObject *Vector_to_tuple(VectorObject *self, PyObject *args) { int ndigits = 0; if (!PyArg_ParseTuple(args, "|i:to_tuple", &ndigits)) { return NULL; } if (ndigits > 22 || ndigits < 0) { PyErr_SetString(PyExc_ValueError, "Vector.to_tuple(ndigits): " "ndigits must be between 0 and 21"); return NULL; } if (PyTuple_GET_SIZE(args) == 0) { ndigits = -1; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } return Vector_to_tuple_ex(self, ndigits); } PyDoc_STRVAR(Vector_to_track_quat_doc, ".. method:: to_track_quat(track, up)\n" "\n" " Return a quaternion rotation from the vector and the track and up axis.\n" "\n" " :arg track: Track axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z'].\n" " :type track: string\n" " :arg up: Up axis in ['X', 'Y', 'Z'].\n" " :type up: string\n" " :return: rotation from the vector and the track and up axis.\n" " :rtype: :class:`Quaternion`\n"); static PyObject *Vector_to_track_quat(VectorObject *self, PyObject *args) { float vec[3], quat[4]; const char *strack = NULL; const char *sup = NULL; short track = 2, up = 1; if (!PyArg_ParseTuple(args, "|ss:to_track_quat", &strack, &sup)) { return NULL; } if (self->size != 3) { PyErr_SetString(PyExc_TypeError, "Vector.to_track_quat(): " "only for 3D vectors"); return NULL; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (strack) { const char *axis_err_msg = "only X, -X, Y, -Y, Z or -Z for track axis"; if (strlen(strack) == 2) { if (strack[0] == '-') { switch (strack[1]) { case 'X': track = 3; break; case 'Y': track = 4; break; case 'Z': track = 5; break; default: PyErr_SetString(PyExc_ValueError, axis_err_msg); return NULL; } } else { PyErr_SetString(PyExc_ValueError, axis_err_msg); return NULL; } } else if (strlen(strack) == 1) { switch (strack[0]) { case '-': case 'X': track = 0; break; case 'Y': track = 1; break; case 'Z': track = 2; break; default: PyErr_SetString(PyExc_ValueError, axis_err_msg); return NULL; } } else { PyErr_SetString(PyExc_ValueError, axis_err_msg); return NULL; } } if (sup) { const char *axis_err_msg = "only X, Y or Z for up axis"; if (strlen(sup) == 1) { switch (*sup) { case 'X': up = 0; break; case 'Y': up = 1; break; case 'Z': up = 2; break; default: PyErr_SetString(PyExc_ValueError, axis_err_msg); return NULL; } } else { PyErr_SetString(PyExc_ValueError, axis_err_msg); return NULL; } } if (track == up) { PyErr_SetString(PyExc_ValueError, "Can't have the same axis for track and up"); return NULL; } /* Flip vector around, since #vec_to_quat expect a vector from target to tracking object * and the python function expects the inverse (a vector to the target). */ negate_v3_v3(vec, self->vec); vec_to_quat(quat, vec, track, up); return Quaternion_CreatePyObject(quat, NULL); } PyDoc_STRVAR( Vector_orthogonal_doc, ".. method:: orthogonal()\n" "\n" " Return a perpendicular vector.\n" "\n" " :return: a new vector 90 degrees from this vector.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: the axis is undefined, only use when any orthogonal vector is acceptable.\n"); static PyObject *Vector_orthogonal(VectorObject *self) { float vec[3]; if (self->size > 3) { PyErr_SetString(PyExc_TypeError, "Vector.orthogonal(): " "Vector must be 3D or 2D"); return NULL; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (self->size == 3) { ortho_v3_v3(vec, self->vec); } else { ortho_v2_v2(vec, self->vec); } return Vector_CreatePyObject(vec, self->size, Py_TYPE(self)); } /** * Vector.reflect(mirror): return a reflected vector on the mirror normal. *
 * vec - ((2 * dot(vec, mirror)) * mirror)
 * 
*/ PyDoc_STRVAR(Vector_reflect_doc, ".. method:: reflect(mirror)\n" "\n" " Return the reflection vector from the *mirror* argument.\n" "\n" " :arg mirror: This vector could be a normal from the reflecting surface.\n" " :type mirror: :class:`Vector`\n" " :return: The reflected vector matching the size of this vector.\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_reflect(VectorObject *self, PyObject *value) { int value_size; float mirror[3], vec[3]; float reflect[3] = {0.0f}; float tvec[MAX_DIMENSIONS]; if (BaseMath_ReadCallback(self) == -1) { return NULL; } if ((value_size = mathutils_array_parse( tvec, 2, 4, value, "Vector.reflect(other), invalid 'other' arg")) == -1) { return NULL; } if (self->size < 2 || self->size > 4) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D, 3D or 4D"); return NULL; } mirror[0] = tvec[0]; mirror[1] = tvec[1]; mirror[2] = (value_size > 2) ? tvec[2] : 0.0f; vec[0] = self->vec[0]; vec[1] = self->vec[1]; vec[2] = (value_size > 2) ? self->vec[2] : 0.0f; normalize_v3(mirror); reflect_v3_v3v3(reflect, vec, mirror); return Vector_CreatePyObject(reflect, self->size, Py_TYPE(self)); } PyDoc_STRVAR(Vector_cross_doc, ".. method:: cross(other)\n" "\n" " Return the cross product of this vector and another.\n" "\n" " :arg other: The other vector to perform the cross product with.\n" " :type other: :class:`Vector`\n" " :return: The cross product.\n" " :rtype: :class:`Vector` or float when 2D vectors are used\n" "\n" " .. note:: both vectors must be 2D or 3D\n"); static PyObject *Vector_cross(VectorObject *self, PyObject *value) { PyObject *ret; float tvec[3]; if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (self->size > 3) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D or 3D"); return NULL; } if (mathutils_array_parse( tvec, self->size, self->size, value, "Vector.cross(other), invalid 'other' arg") == -1) { return NULL; } if (self->size == 3) { ret = Vector_CreatePyObject(NULL, 3, Py_TYPE(self)); cross_v3_v3v3(((VectorObject *)ret)->vec, self->vec, tvec); } else { /* size == 2 */ ret = PyFloat_FromDouble(cross_v2v2(self->vec, tvec)); } return ret; } PyDoc_STRVAR(Vector_dot_doc, ".. method:: dot(other)\n" "\n" " Return the dot product of this vector and another.\n" "\n" " :arg other: The other vector to perform the dot product with.\n" " :type other: :class:`Vector`\n" " :return: The dot product.\n" " :rtype: float\n"); static PyObject *Vector_dot(VectorObject *self, PyObject *value) { float *tvec; PyObject *ret; if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (mathutils_array_parse_alloc( &tvec, self->size, value, "Vector.dot(other), invalid 'other' arg") == -1) { return NULL; } ret = PyFloat_FromDouble(dot_vn_vn(self->vec, tvec, self->size)); PyMem_Free(tvec); return ret; } PyDoc_STRVAR( Vector_angle_doc, ".. function:: angle(other, fallback=None)\n" "\n" " Return the angle between two vectors.\n" "\n" " :arg other: another vector to compare the angle with\n" " :type other: :class:`Vector`\n" " :arg fallback: return this when the angle can't be calculated (zero length vector),\n" " (instead of raising a :exc:`ValueError`).\n" " :type fallback: any\n" " :return: angle in radians or fallback when given\n" " :rtype: float\n"); static PyObject *Vector_angle(VectorObject *self, PyObject *args) { const int size = MIN2(self->size, 3); /* 4D angle makes no sense */ float tvec[MAX_DIMENSIONS]; PyObject *value; double dot = 0.0f, dot_self = 0.0f, dot_other = 0.0f; int x; PyObject *fallback = NULL; if (!PyArg_ParseTuple(args, "O|O:angle", &value, &fallback)) { return NULL; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } /* don't use clamped size, rule of thumb is vector sizes must match, * even though n this case 'w' is ignored */ if (mathutils_array_parse( tvec, self->size, self->size, value, "Vector.angle(other), invalid 'other' arg") == -1) { return NULL; } if (self->size > 4) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D, 3D or 4D"); return NULL; } for (x = 0; x < size; x++) { dot_self += (double)self->vec[x] * (double)self->vec[x]; dot_other += (double)tvec[x] * (double)tvec[x]; dot += (double)self->vec[x] * (double)tvec[x]; } if (!dot_self || !dot_other) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.angle(other): " "zero length vectors have no valid angle"); return NULL; } return PyFloat_FromDouble(saacos(dot / (sqrt(dot_self) * sqrt(dot_other)))); } PyDoc_STRVAR( Vector_angle_signed_doc, ".. function:: angle_signed(other, fallback)\n" "\n" " Return the signed angle between two 2D vectors (clockwise is positive).\n" "\n" " :arg other: another vector to compare the angle with\n" " :type other: :class:`Vector`\n" " :arg fallback: return this when the angle can't be calculated (zero length vector),\n" " (instead of raising a :exc:`ValueError`).\n" " :type fallback: any\n" " :return: angle in radians or fallback when given\n" " :rtype: float\n"); static PyObject *Vector_angle_signed(VectorObject *self, PyObject *args) { float tvec[2]; PyObject *value; PyObject *fallback = NULL; if (!PyArg_ParseTuple(args, "O|O:angle_signed", &value, &fallback)) { return NULL; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (mathutils_array_parse( tvec, 2, 2, value, "Vector.angle_signed(other), invalid 'other' arg") == -1) { return NULL; } if (self->size != 2) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D"); return NULL; } if (is_zero_v2(self->vec) || is_zero_v2(tvec)) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.angle_signed(other): " "zero length vectors have no valid angle"); return NULL; } return PyFloat_FromDouble(angle_signed_v2v2(self->vec, tvec)); } PyDoc_STRVAR(Vector_rotation_difference_doc, ".. function:: rotation_difference(other)\n" "\n" " Returns a quaternion representing the rotational difference between this\n" " vector and another.\n" "\n" " :arg other: second vector.\n" " :type other: :class:`Vector`\n" " :return: the rotational difference between the two vectors.\n" " :rtype: :class:`Quaternion`\n" "\n" " .. note:: 2D vectors raise an :exc:`AttributeError`.\n"); static PyObject *Vector_rotation_difference(VectorObject *self, PyObject *value) { float quat[4], vec_a[3], vec_b[3]; if (self->size < 3 || self->size > 4) { PyErr_SetString(PyExc_ValueError, "vec.difference(value): " "expects both vectors to be size 3 or 4"); return NULL; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (mathutils_array_parse( vec_b, 3, MAX_DIMENSIONS, value, "Vector.difference(other), invalid 'other' arg") == -1) { return NULL; } normalize_v3_v3(vec_a, self->vec); normalize_v3(vec_b); rotation_between_vecs_to_quat(quat, vec_a, vec_b); return Quaternion_CreatePyObject(quat, NULL); } PyDoc_STRVAR(Vector_project_doc, ".. function:: project(other)\n" "\n" " Return the projection of this vector onto the *other*.\n" "\n" " :arg other: second vector.\n" " :type other: :class:`Vector`\n" " :return: the parallel projection vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_project(VectorObject *self, PyObject *value) { const int size = self->size; float *tvec; double dot = 0.0f, dot2 = 0.0f; int x; if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (mathutils_array_parse_alloc( &tvec, size, value, "Vector.project(other), invalid 'other' arg") == -1) { return NULL; } /* get dot products */ for (x = 0; x < size; x++) { dot += (double)(self->vec[x] * tvec[x]); dot2 += (double)(tvec[x] * tvec[x]); } /* projection */ dot /= dot2; for (x = 0; x < size; x++) { tvec[x] *= (float)dot; } return Vector_CreatePyObject_alloc(tvec, size, Py_TYPE(self)); } PyDoc_STRVAR(Vector_lerp_doc, ".. function:: lerp(other, factor)\n" "\n" " Returns the interpolation of two vectors.\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Vector`\n" " :arg factor: The interpolation value in [0.0, 1.0].\n" " :type factor: float\n" " :return: The interpolated vector.\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_lerp(VectorObject *self, PyObject *args) { const int size = self->size; PyObject *value = NULL; float fac; float *tvec; if (!PyArg_ParseTuple(args, "Of:lerp", &value, &fac)) { return NULL; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (mathutils_array_parse_alloc(&tvec, size, value, "Vector.lerp(other), invalid 'other' arg") == -1) { return NULL; } interp_vn_vn(tvec, self->vec, 1.0f - fac, size); return Vector_CreatePyObject_alloc(tvec, size, Py_TYPE(self)); } PyDoc_STRVAR(Vector_slerp_doc, ".. function:: slerp(other, factor, fallback=None)\n" "\n" " Returns the interpolation of two non-zero vectors (spherical coordinates).\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Vector`\n" " :arg factor: The interpolation value typically in [0.0, 1.0].\n" " :type factor: float\n" " :arg fallback: return this when the vector can't be calculated (zero length " "vector or direct opposites),\n" " (instead of raising a :exc:`ValueError`).\n" " :type fallback: any\n" " :return: The interpolated vector.\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_slerp(VectorObject *self, PyObject *args) { const int size = self->size; PyObject *value = NULL; float fac, cosom, w[2]; float self_vec[3], other_vec[3], ret_vec[3]; float self_len_sq, other_len_sq; int x; PyObject *fallback = NULL; if (!PyArg_ParseTuple(args, "Of|O:slerp", &value, &fac, &fallback)) { return NULL; } if (BaseMath_ReadCallback(self) == -1) { return NULL; } if (self->size > 3) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D or 3D"); return NULL; } if (mathutils_array_parse( other_vec, size, size, value, "Vector.slerp(other), invalid 'other' arg") == -1) { return NULL; } self_len_sq = normalize_vn_vn(self_vec, self->vec, size); other_len_sq = normalize_vn(other_vec, size); /* use fallbacks for zero length vectors */ if (UNLIKELY((self_len_sq < FLT_EPSILON) || (other_len_sq < FLT_EPSILON))) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.slerp(): " "zero length vectors unsupported"); return NULL; } /* We have sane state, execute slerp */ cosom = (float)dot_vn_vn(self_vec, other_vec, size); /* direct opposite, can't slerp */ if (UNLIKELY(cosom < (-1.0f + FLT_EPSILON))) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.slerp(): " "opposite vectors unsupported"); return NULL; } interp_dot_slerp(fac, cosom, w); for (x = 0; x < size; x++) { ret_vec[x] = (w[0] * self_vec[x]) + (w[1] * other_vec[x]); } return Vector_CreatePyObject(ret_vec, size, Py_TYPE(self)); } PyDoc_STRVAR( Vector_rotate_doc, ".. function:: rotate(other)\n" "\n" " Rotate the vector by a rotation value.\n" "\n" " .. note:: 2D vectors are a special case that can only be rotated by a 2x2 matrix.\n" "\n" " :arg other: rotation component of mathutils value\n" " :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n"); static PyObject *Vector_rotate(VectorObject *self, PyObject *value) { if (BaseMath_ReadCallback_ForWrite(self) == -1) { return NULL; } if (self->size == 2) { /* Special case for 2D Vector with 2x2 matrix, so we avoid resizing it to a 3x3. */ float other_rmat[2][2]; MatrixObject *pymat; if (!Matrix_Parse2x2(value, &pymat)) { return NULL; } normalize_m2_m2(other_rmat, (const float(*)[2])pymat->matrix); /* Equivalent to a rotation along the Z axis. */ mul_m2_v2(other_rmat, self->vec); } else { float other_rmat[3][3]; if (mathutils_any_to_rotmat(other_rmat, value, "Vector.rotate(value)") == -1) { return NULL; } mul_m3_v3(other_rmat, self->vec); } (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } PyDoc_STRVAR(Vector_copy_doc, ".. function:: copy()\n" "\n" " Returns a copy of this vector.\n" "\n" " :return: A copy of the vector.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: use this to get a copy of a wrapped vector with\n" " no reference to the original data.\n"); static PyObject *Vector_copy(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return NULL; } return Vector_CreatePyObject(self->vec, self->size, Py_TYPE(self)); } static PyObject *Vector_deepcopy(VectorObject *self, PyObject *args) { if (!PyC_CheckArgs_DeepCopy(args)) { return NULL; } return Vector_copy(self); } static PyObject *Vector_repr(VectorObject *self) { PyObject *ret, *tuple; if (BaseMath_ReadCallback(self) == -1) { return NULL; } tuple = Vector_to_tuple_ex(self, -1); ret = PyUnicode_FromFormat("Vector(%R)", tuple); Py_DECREF(tuple); return ret; } #ifndef MATH_STANDALONE static PyObject *Vector_str(VectorObject *self) { int i; DynStr *ds; if (BaseMath_ReadCallback(self) == -1) { return NULL; } ds = BLI_dynstr_new(); BLI_dynstr_append(ds, "size; i++) { BLI_dynstr_appendf(ds, i ? ", %.4f" : "%.4f", self->vec[i]); } BLI_dynstr_append(ds, ")>"); return mathutils_dynstr_to_py(ds); /* frees ds */ } #endif /* Sequence Protocol */ /* sequence length len(vector) */ static int Vector_len(VectorObject *self) { return self->size; } /* sequence accessor (get): vector[index] */ static PyObject *vector_item_internal(VectorObject *self, int i, const bool is_attr) { if (i < 0) { i = self->size - i; } if (i < 0 || i >= self->size) { if (is_attr) { PyErr_Format(PyExc_AttributeError, "Vector.%c: unavailable on %dd vector", *(((const char *)"xyzw") + i), self->size); } else { PyErr_SetString(PyExc_IndexError, "vector[index]: out of range"); } return NULL; } if (BaseMath_ReadIndexCallback(self, i) == -1) { return NULL; } return PyFloat_FromDouble(self->vec[i]); } static PyObject *Vector_item(VectorObject *self, int i) { return vector_item_internal(self, i, false); } /* sequence accessor (set): vector[index] = value */ static int vector_ass_item_internal(VectorObject *self, int i, PyObject *value, const bool is_attr) { float scalar; if (BaseMath_Prepare_ForWrite(self) == -1) { return -1; } if ((scalar = PyFloat_AsDouble(value)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "vector[index] = x: " "assigned value not a number"); return -1; } if (i < 0) { i = self->size - i; } if (i < 0 || i >= self->size) { if (is_attr) { PyErr_Format(PyExc_AttributeError, "Vector.%c = x: unavailable on %dd vector", *(((const char *)"xyzw") + i), self->size); } else { PyErr_SetString(PyExc_IndexError, "vector[index] = x: " "assignment index out of range"); } return -1; } self->vec[i] = scalar; if (BaseMath_WriteIndexCallback(self, i) == -1) { return -1; } return 0; } static int Vector_ass_item(VectorObject *self, int i, PyObject *value) { return vector_ass_item_internal(self, i, value, false); } /* sequence slice (get): vector[a:b] */ static PyObject *Vector_slice(VectorObject *self, int begin, int end) { PyObject *tuple; int count; if (BaseMath_ReadCallback(self) == -1) { return NULL; } CLAMP(begin, 0, self->size); if (end < 0) { end = self->size + end + 1; } CLAMP(end, 0, self->size); begin = MIN2(begin, end); tuple = PyTuple_New(end - begin); for (count = begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->vec[count])); } return tuple; } /* sequence slice (set): vector[a:b] = value */ static int Vector_ass_slice(VectorObject *self, int begin, int end, PyObject *seq) { int size = 0; float *vec = NULL; if (BaseMath_ReadCallback_ForWrite(self) == -1) { return -1; } CLAMP(begin, 0, self->size); CLAMP(end, 0, self->size); begin = MIN2(begin, end); size = (end - begin); if (mathutils_array_parse_alloc(&vec, size, seq, "vector[begin:end] = [...]") == -1) { return -1; } if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "vec[:] = seq: " "problem allocating pointer space"); return -1; } /*parsed well - now set in vector*/ memcpy(self->vec + begin, vec, size * sizeof(float)); PyMem_Free(vec); if (BaseMath_WriteCallback(self) == -1) { return -1; } return 0; } /* Numeric Protocols */ /* addition: obj + obj */ static PyObject *Vector_add(PyObject *v1, PyObject *v2) { VectorObject *vec1 = NULL, *vec2 = NULL; float *vec = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector addition: (%s + %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return NULL; } /*VECTOR + VECTOR*/ if (vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector addition: " "vectors must have the same dimensions for this operation"); return NULL; } vec = PyMem_Malloc(vec1->size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating pointer space"); return NULL; } add_vn_vnvn(vec, vec1->vec, vec2->vec, vec1->size); return Vector_CreatePyObject_alloc(vec, vec1->size, Py_TYPE(v1)); } /* addition in-place: obj += obj */ static PyObject *Vector_iadd(PyObject *v1, PyObject *v2) { VectorObject *vec1 = NULL, *vec2 = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector addition: (%s += %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector addition: " "vectors must have the same dimensions for this operation"); return NULL; } if (BaseMath_ReadCallback_ForWrite(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return NULL; } add_vn_vn(vec1->vec, vec2->vec, vec1->size); (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } /* subtraction: obj - obj */ static PyObject *Vector_sub(PyObject *v1, PyObject *v2) { VectorObject *vec1 = NULL, *vec2 = NULL; float *vec; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector subtraction: (%s - %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return NULL; } if (vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: " "vectors must have the same dimensions for this operation"); return NULL; } vec = PyMem_Malloc(vec1->size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating pointer space"); return NULL; } sub_vn_vnvn(vec, vec1->vec, vec2->vec, vec1->size); return Vector_CreatePyObject_alloc(vec, vec1->size, Py_TYPE(v1)); } /* subtraction in-place: obj -= obj */ static PyObject *Vector_isub(PyObject *v1, PyObject *v2) { VectorObject *vec1 = NULL, *vec2 = NULL; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector subtraction: (%s -= %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (vec1->size != vec2->size) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: " "vectors must have the same dimensions for this operation"); return NULL; } if (BaseMath_ReadCallback_ForWrite(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return NULL; } sub_vn_vn(vec1->vec, vec2->vec, vec1->size); (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } /*------------------------obj * obj------------------------------ * multiplication */ /** * Column vector multiplication (Matrix * Vector). *
 * [1][4][7]   [a]
 * [2][5][8] * [b]
 * [3][6][9]   [c]
 * 
* * \note Vector/Matrix multiplication is not commutative. * \note Assume read callbacks have been done first. */ int column_vector_multiplication(float r_vec[MAX_DIMENSIONS], VectorObject *vec, MatrixObject *mat) { float vec_cpy[MAX_DIMENSIONS]; int row, col, z = 0; if (mat->num_col != vec->size) { if (mat->num_col == 4 && vec->size == 3) { vec_cpy[3] = 1.0f; } else { PyErr_SetString(PyExc_ValueError, "matrix * vector: " "len(matrix.col) and len(vector) must be the same, " "except for 4x4 matrix * 3D vector."); return -1; } } memcpy(vec_cpy, vec->vec, vec->size * sizeof(float)); r_vec[3] = 1.0f; for (row = 0; row < mat->num_row; row++) { double dot = 0.0f; for (col = 0; col < mat->num_col; col++) { dot += (double)(MATRIX_ITEM(mat, row, col) * vec_cpy[col]); } r_vec[z++] = (float)dot; } return 0; } static PyObject *vector_mul_float(VectorObject *vec, const float scalar) { float *tvec = PyMem_Malloc(vec->size * sizeof(float)); if (tvec == NULL) { PyErr_SetString(PyExc_MemoryError, "vec * float: " "problem allocating pointer space"); return NULL; } mul_vn_vn_fl(tvec, vec->vec, vec->size, scalar); return Vector_CreatePyObject_alloc(tvec, vec->size, Py_TYPE(vec)); } static PyObject *vector_mul_vec(VectorObject *vec1, VectorObject *vec2) { float *tvec = PyMem_Malloc(vec1->size * sizeof(float)); if (tvec == NULL) { PyErr_SetString(PyExc_MemoryError, "vec * vec: " "problem allocating pointer space"); return NULL; } mul_vn_vnvn(tvec, vec1->vec, vec2->vec, vec1->size); return Vector_CreatePyObject_alloc(tvec, vec1->size, Py_TYPE(vec1)); } static PyObject *Vector_mul(PyObject *v1, PyObject *v2) { VectorObject *vec1 = NULL, *vec2 = NULL; float scalar; if (VectorObject_Check(v1)) { vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback(vec1) == -1) { return NULL; } } if (VectorObject_Check(v2)) { vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec2) == -1) { return NULL; } } /* Intentionally don't support (Quaternion) here, uses reverse order instead. */ /* make sure v1 is always the vector */ if (vec1 && vec2) { if (vec1->size != vec2->size) { PyErr_SetString(PyExc_ValueError, "Vector multiplication: " "vectors must have the same dimensions for this operation"); return NULL; } /* element-wise product */ return vector_mul_vec(vec1, vec2); } if (vec1) { if (((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) == 0) { /* VEC * FLOAT */ return vector_mul_float(vec1, scalar); } } else if (vec2) { if (((scalar = PyFloat_AsDouble(v1)) == -1.0f && PyErr_Occurred()) == 0) { /* FLOAT * VEC */ return vector_mul_float(vec2, scalar); } } PyErr_Format(PyExc_TypeError, "Element-wise multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } /* multiplication in-place: obj *= obj */ static PyObject *Vector_imul(PyObject *v1, PyObject *v2) { VectorObject *vec1 = NULL, *vec2 = NULL; float scalar; if (VectorObject_Check(v1)) { vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback(vec1) == -1) { return NULL; } } if (VectorObject_Check(v2)) { vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec2) == -1) { return NULL; } } if (BaseMath_ReadCallback_ForWrite(vec1) == -1) { return NULL; } /* Intentionally don't support (Quaternion, Matrix) here, uses reverse order instead. */ if (vec1 && vec2) { if (vec1->size != vec2->size) { PyErr_SetString(PyExc_ValueError, "Vector multiplication: " "vectors must have the same dimensions for this operation"); return NULL; } /* Element-wise product in-place. */ mul_vn_vn(vec1->vec, vec2->vec, vec1->size); } else if (vec1 && (((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) == 0)) { /* VEC *= FLOAT */ mul_vn_fl(vec1->vec, vec1->size, scalar); } else { PyErr_Format(PyExc_TypeError, "In place element-wise multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } static PyObject *Vector_matmul(PyObject *v1, PyObject *v2) { VectorObject *vec1 = NULL, *vec2 = NULL; int vec_size; if (VectorObject_Check(v1)) { vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback(vec1) == -1) { return NULL; } } if (VectorObject_Check(v2)) { vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec2) == -1) { return NULL; } } /* Intentionally don't support (Quaternion) here, uses reverse order instead. */ /* make sure v1 is always the vector */ if (vec1 && vec2) { if (vec1->size != vec2->size) { PyErr_SetString(PyExc_ValueError, "Vector multiplication: " "vectors must have the same dimensions for this operation"); return NULL; } /*dot product*/ return PyFloat_FromDouble(dot_vn_vn(vec1->vec, vec2->vec, vec1->size)); } if (vec1) { if (MatrixObject_Check(v2)) { /* VEC @ MATRIX */ float tvec[MAX_DIMENSIONS]; if (BaseMath_ReadCallback((MatrixObject *)v2) == -1) { return NULL; } if (row_vector_multiplication(tvec, vec1, (MatrixObject *)v2) == -1) { return NULL; } if (((MatrixObject *)v2)->num_row == 4 && vec1->size == 3) { vec_size = 3; } else { vec_size = ((MatrixObject *)v2)->num_col; } return Vector_CreatePyObject(tvec, vec_size, Py_TYPE(vec1)); } } PyErr_Format(PyExc_TypeError, "Vector multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } static PyObject *Vector_imatmul(PyObject *v1, PyObject *v2) { PyErr_Format(PyExc_TypeError, "In place vector multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return NULL; } /* divid: obj / obj */ static PyObject *Vector_div(PyObject *v1, PyObject *v2) { float *vec = NULL, scalar; VectorObject *vec1 = NULL; if (!VectorObject_Check(v1)) { /* not a vector */ PyErr_SetString(PyExc_TypeError, "Vector division: " "Vector must be divided by a float"); return NULL; } vec1 = (VectorObject *)v1; /* vector */ if (BaseMath_ReadCallback(vec1) == -1) { return NULL; } if ((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "Vector division: " "Vector must be divided by a float"); return NULL; } if (scalar == 0.0f) { PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: " "divide by zero error"); return NULL; } vec = PyMem_Malloc(vec1->size * sizeof(float)); if (vec == NULL) { PyErr_SetString(PyExc_MemoryError, "vec / value: " "problem allocating pointer space"); return NULL; } mul_vn_vn_fl(vec, vec1->vec, vec1->size, 1.0f / scalar); return Vector_CreatePyObject_alloc(vec, vec1->size, Py_TYPE(v1)); } /* divide in-place: obj /= obj */ static PyObject *Vector_idiv(PyObject *v1, PyObject *v2) { float scalar; VectorObject *vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback_ForWrite(vec1) == -1) { return NULL; } if ((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "Vector division: " "Vector must be divided by a float"); return NULL; } if (scalar == 0.0f) { PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: " "divide by zero error"); return NULL; } mul_vn_fl(vec1->vec, vec1->size, 1.0f / scalar); (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } /* -obj * returns the negative of this object*/ static PyObject *Vector_neg(VectorObject *self) { float *tvec; if (BaseMath_ReadCallback(self) == -1) { return NULL; } tvec = PyMem_Malloc(self->size * sizeof(float)); negate_vn_vn(tvec, self->vec, self->size); return Vector_CreatePyObject_alloc(tvec, self->size, Py_TYPE(self)); } /*------------------------tp_richcmpr * returns -1 exception, 0 false, 1 true */ static PyObject *Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { VectorObject *vecA = NULL, *vecB = NULL; int result = 0; const double epsilon = 0.000001f; double lenA, lenB; if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)) { if (comparison_type == Py_NE) { Py_RETURN_TRUE; } Py_RETURN_FALSE; } vecA = (VectorObject *)objectA; vecB = (VectorObject *)objectB; if (BaseMath_ReadCallback(vecA) == -1 || BaseMath_ReadCallback(vecB) == -1) { return NULL; } if (vecA->size != vecB->size) { if (comparison_type == Py_NE) { Py_RETURN_TRUE; } Py_RETURN_FALSE; } switch (comparison_type) { case Py_LT: lenA = len_squared_vn(vecA->vec, vecA->size); lenB = len_squared_vn(vecB->vec, vecB->size); if (lenA < lenB) { result = 1; } break; case Py_LE: lenA = len_squared_vn(vecA->vec, vecA->size); lenB = len_squared_vn(vecB->vec, vecB->size); if (lenA < lenB) { result = 1; } else { result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; case Py_EQ: result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1); break; case Py_NE: result = !EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1); break; case Py_GT: lenA = len_squared_vn(vecA->vec, vecA->size); lenB = len_squared_vn(vecB->vec, vecB->size); if (lenA > lenB) { result = 1; } break; case Py_GE: lenA = len_squared_vn(vecA->vec, vecA->size); lenB = len_squared_vn(vecB->vec, vecB->size); if (lenA > lenB) { result = 1; } else { result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1) { Py_RETURN_TRUE; } Py_RETURN_FALSE; } static Py_hash_t Vector_hash(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return -1; } if (BaseMathObject_Prepare_ForHash(self) == -1) { return -1; } return mathutils_array_hash(self->vec, self->size); } /*-----------------PROTCOL DECLARATIONS--------------------------*/ static PySequenceMethods Vector_SeqMethods = { (lenfunc)Vector_len, /* sq_length */ (binaryfunc)NULL, /* sq_concat */ (ssizeargfunc)NULL, /* sq_repeat */ (ssizeargfunc)Vector_item, /* sq_item */ NULL, /* py3 deprecated slice func */ (ssizeobjargproc)Vector_ass_item, /* sq_ass_item */ NULL, /* py3 deprecated slice assign func */ (objobjproc)NULL, /* sq_contains */ (binaryfunc)NULL, /* sq_inplace_concat */ (ssizeargfunc)NULL, /* sq_inplace_repeat */ }; static PyObject *Vector_subscript(VectorObject *self, PyObject *item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) { return NULL; } if (i < 0) { i += self->size; } return Vector_item(self, i); } if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx(item, self->size, &start, &stop, &step, &slicelength) < 0) { return NULL; } if (slicelength <= 0) { return PyTuple_New(0); } if (step == 1) { return Vector_slice(self, start, stop); } PyErr_SetString(PyExc_IndexError, "slice steps not supported with vectors"); return NULL; } PyErr_Format( PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return NULL; } static int Vector_ass_subscript(VectorObject *self, PyObject *item, PyObject *value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) { return -1; } if (i < 0) { i += self->size; } return Vector_ass_item(self, i, value); } if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx(item, self->size, &start, &stop, &step, &slicelength) < 0) { return -1; } if (step == 1) { return Vector_ass_slice(self, start, stop, value); } PyErr_SetString(PyExc_IndexError, "slice steps not supported with vectors"); return -1; } PyErr_Format( PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } static PyMappingMethods Vector_AsMapping = { (lenfunc)Vector_len, (binaryfunc)Vector_subscript, (objobjargproc)Vector_ass_subscript, }; static PyNumberMethods Vector_NumMethods = { (binaryfunc)Vector_add, /*nb_add*/ (binaryfunc)Vector_sub, /*nb_subtract*/ (binaryfunc)Vector_mul, /*nb_multiply*/ NULL, /*nb_remainder*/ NULL, /*nb_divmod*/ NULL, /*nb_power*/ (unaryfunc)Vector_neg, /*nb_negative*/ (unaryfunc)Vector_copy, /*tp_positive*/ (unaryfunc)NULL, /*tp_absolute*/ (inquiry)NULL, /*tp_bool*/ (unaryfunc)NULL, /*nb_invert*/ NULL, /*nb_lshift*/ (binaryfunc)NULL, /*nb_rshift*/ NULL, /*nb_and*/ NULL, /*nb_xor*/ NULL, /*nb_or*/ NULL, /*nb_int*/ NULL, /*nb_reserved*/ NULL, /*nb_float*/ Vector_iadd, /* nb_inplace_add */ Vector_isub, /* nb_inplace_subtract */ Vector_imul, /* nb_inplace_multiply */ NULL, /* nb_inplace_remainder */ NULL, /* nb_inplace_power */ NULL, /* nb_inplace_lshift */ NULL, /* nb_inplace_rshift */ NULL, /* nb_inplace_and */ NULL, /* nb_inplace_xor */ NULL, /* nb_inplace_or */ NULL, /* nb_floor_divide */ Vector_div, /* nb_true_divide */ NULL, /* nb_inplace_floor_divide */ Vector_idiv, /* nb_inplace_true_divide */ NULL, /* nb_index */ (binaryfunc)Vector_matmul, /* nb_matrix_multiply */ (binaryfunc)Vector_imatmul, /* nb_inplace_matrix_multiply */ }; /*------------------PY_OBECT DEFINITION--------------------------*/ /* vector axis, vector.x/y/z/w */ PyDoc_STRVAR(Vector_axis_x_doc, "Vector X axis.\n\n:type: float"); PyDoc_STRVAR(Vector_axis_y_doc, "Vector Y axis.\n\n:type: float"); PyDoc_STRVAR(Vector_axis_z_doc, "Vector Z axis (3D Vectors only).\n\n:type: float"); PyDoc_STRVAR(Vector_axis_w_doc, "Vector W axis (4D Vectors only).\n\n:type: float"); static PyObject *Vector_axis_get(VectorObject *self, void *type) { return vector_item_internal(self, POINTER_AS_INT(type), true); } static int Vector_axis_set(VectorObject *self, PyObject *value, void *type) { return vector_ass_item_internal(self, POINTER_AS_INT(type), value, true); } /* vector.length */ PyDoc_STRVAR(Vector_length_doc, "Vector Length.\n\n:type: float"); static PyObject *Vector_length_get(VectorObject *self, void *UNUSED(closure)) { if (BaseMath_ReadCallback(self) == -1) { return NULL; } return PyFloat_FromDouble(sqrt(dot_vn_vn(self->vec, self->vec, self->size))); } static int Vector_length_set(VectorObject *self, PyObject *value) { double dot = 0.0f, param; if (BaseMath_ReadCallback_ForWrite(self) == -1) { return -1; } if ((param = PyFloat_AsDouble(value)) == -1.0 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "length must be set to a number"); return -1; } if (param < 0.0) { PyErr_SetString(PyExc_ValueError, "cannot set a vectors length to a negative value"); return -1; } if (param == 0.0) { copy_vn_fl(self->vec, self->size, 0.0f); return 0; } dot = dot_vn_vn(self->vec, self->vec, self->size); if (!dot) { /* cant sqrt zero */ return 0; } dot = sqrt(dot); if (dot == param) { return 0; } dot = dot / param; mul_vn_fl(self->vec, self->size, 1.0 / dot); (void)BaseMath_WriteCallback(self); /* checked already */ return 0; } /* vector.length_squared */ PyDoc_STRVAR(Vector_length_squared_doc, "Vector length squared (v.dot(v)).\n\n:type: float"); static PyObject *Vector_length_squared_get(VectorObject *self, void *UNUSED(closure)) { if (BaseMath_ReadCallback(self) == -1) { return NULL; } return PyFloat_FromDouble(dot_vn_vn(self->vec, self->vec, self->size)); } /** * Python script used to make swizzle array: * * \code{.py} * SWIZZLE_BITS_PER_AXIS = 3 * SWIZZLE_VALID_AXIS = 0x4 * * axis_dict = {} * axis_pos = {'x': 0, 'y': 1, 'z': 2, 'w': 3} * axis_chars = 'xyzw' * while len(axis_chars) >= 2: * for axis_0 in axis_chars: * axis_0_pos = axis_pos[axis_0] * for axis_1 in axis_chars: * axis_1_pos = axis_pos[axis_1] * axis_dict[axis_0 + axis_1] = ( * '((%s | SWIZZLE_VALID_AXIS) | ' * '((%s | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS))' % * (axis_0_pos, axis_1_pos)) * if len(axis_chars) > 2: * for axis_2 in axis_chars: * axis_2_pos = axis_pos[axis_2] * axis_dict[axis_0 + axis_1 + axis_2] = ( * '((%s | SWIZZLE_VALID_AXIS) | ' * '((%s | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS) | ' * '((%s | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2)))' % * (axis_0_pos, axis_1_pos, axis_2_pos)) * if len(axis_chars) > 3: * for axis_3 in axis_chars: * axis_3_pos = axis_pos[axis_3] * axis_dict[axis_0 + axis_1 + axis_2 + axis_3] = ( * '((%s | SWIZZLE_VALID_AXIS) | ' * '((%s | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS) | ' * '((%s | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2)) | ' * '((%s | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 3))) ' * % * (axis_0_pos, axis_1_pos, axis_2_pos, axis_3_pos)) * * axis_chars = axis_chars[:-1] * items = list(axis_dict.items()) * items.sort( * key=lambda a: a[0].replace('x', '0').replace('y', '1').replace('z', '2').replace('w', '3') * ) * * unique = set() * for key, val in items: * num = eval(val) * set_str = 'Vector_swizzle_set' if (len(set(key)) == len(key)) else 'NULL' * key_args = ', '.join(["'%s'" % c for c in key.upper()]) * print('\t{"%s", %s(getter)Vector_swizzle_get, (setter)%s, NULL, SWIZZLE%d(%s)},' % * (key, (' ' * (4 - len(key))), set_str, len(key), key_args)) * unique.add(num) * * if len(unique) != len(items): * print("ERROR, duplicate values found") * \endcode */ /** * Get a new Vector according to the provided swizzle bits. */ static PyObject *Vector_swizzle_get(VectorObject *self, void *closure) { size_t axis_to; size_t axis_from; float vec[MAX_DIMENSIONS]; uint swizzleClosure; if (BaseMath_ReadCallback(self) == -1) { return NULL; } /* Unpack the axes from the closure into an array. */ axis_to = 0; swizzleClosure = POINTER_AS_INT(closure); while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_from = swizzleClosure & SWIZZLE_AXIS; if (axis_from >= self->size) { PyErr_SetString(PyExc_AttributeError, "Vector swizzle: " "specified axis not present"); return NULL; } vec[axis_to] = self->vec[axis_from]; swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_to++; } return Vector_CreatePyObject(vec, axis_to, Py_TYPE(self)); } /** * Set the items of this vector using a swizzle. * - If value is a vector or list this operates like an array copy, except that * the destination is effectively re-ordered as defined by the swizzle. At * most min(len(source), len(dest)) values will be copied. * - If the value is scalar, it is copied to all axes listed in the swizzle. * - If an axis appears more than once in the swizzle, the final occurrence is * the one that determines its value. * * \return 0 on success and -1 on failure. On failure, the vector will be unchanged. */ static int Vector_swizzle_set(VectorObject *self, PyObject *value, void *closure) { size_t size_from; float scalarVal; size_t axis_from; size_t axis_to; uint swizzleClosure; float tvec[MAX_DIMENSIONS]; float vec_assign[MAX_DIMENSIONS]; if (BaseMath_ReadCallback_ForWrite(self) == -1) { return -1; } /* Check that the closure can be used with this vector: even 2D vectors have * swizzles defined for axes z and w, but they would be invalid. */ swizzleClosure = POINTER_AS_INT(closure); axis_from = 0; while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_to = swizzleClosure & SWIZZLE_AXIS; if (axis_to >= self->size) { PyErr_SetString(PyExc_AttributeError, "Vector swizzle: " "specified axis not present"); return -1; } swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_from++; } if (((scalarVal = PyFloat_AsDouble(value)) == -1 && PyErr_Occurred()) == 0) { int i; for (i = 0; i < MAX_DIMENSIONS; i++) { vec_assign[i] = scalarVal; } size_from = axis_from; } else if (((void)PyErr_Clear()), /* run but ignore the result */ (size_from = mathutils_array_parse( vec_assign, 2, 4, value, "mathutils.Vector.**** = swizzle assignment")) == -1) { return -1; } if (axis_from != size_from) { PyErr_SetString(PyExc_AttributeError, "Vector swizzle: size does not match swizzle"); return -1; } /* Copy vector contents onto swizzled axes. */ axis_from = 0; swizzleClosure = POINTER_AS_INT(closure); /* We must first copy current vec into tvec, else some org values may be lost. * See [#31760]. * Assuming self->size can't be higher than MAX_DIMENSIONS! */ memcpy(tvec, self->vec, self->size * sizeof(float)); while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_to = swizzleClosure & SWIZZLE_AXIS; tvec[axis_to] = vec_assign[axis_from]; swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_from++; } /* We must copy back the whole tvec into vec, else some changes may be lost (e.g. xz...). * See [#31760]. */ memcpy(self->vec, tvec, self->size * sizeof(float)); /* continue with BaseMathObject_WriteCallback at the end */ if (BaseMath_WriteCallback(self) == -1) { return -1; } return 0; } #define _SWIZZLE1(a) ((a) | SWIZZLE_VALID_AXIS) #define _SWIZZLE2(a, b) (_SWIZZLE1(a) | (((b) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS))) #define _SWIZZLE3(a, b, c) \ (_SWIZZLE2(a, b) | (((c) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2))) #define _SWIZZLE4(a, b, c, d) \ (_SWIZZLE3(a, b, c) | (((d) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 3))) #define SWIZZLE2(a, b) POINTER_FROM_INT(_SWIZZLE2(a, b)) #define SWIZZLE3(a, b, c) POINTER_FROM_INT(_SWIZZLE3(a, b, c)) #define SWIZZLE4(a, b, c, d) POINTER_FROM_INT(_SWIZZLE4(a, b, c, d)) /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Vector_getseters[] = { {"x", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_x_doc, (void *)0}, {"y", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_y_doc, (void *)1}, {"z", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_z_doc, (void *)2}, {"w", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_w_doc, (void *)3}, {"length", (getter)Vector_length_get, (setter)Vector_length_set, Vector_length_doc, NULL}, {"length_squared", (getter)Vector_length_squared_get, (setter)NULL, Vector_length_squared_doc, NULL}, {"magnitude", (getter)Vector_length_get, (setter)Vector_length_set, Vector_length_doc, NULL}, {"is_wrapped", (getter)BaseMathObject_is_wrapped_get, (setter)NULL, BaseMathObject_is_wrapped_doc, NULL}, {"is_frozen", (getter)BaseMathObject_is_frozen_get, (setter)NULL, BaseMathObject_is_frozen_doc, NULL}, {"owner", (getter)BaseMathObject_owner_get, (setter)NULL, BaseMathObject_owner_doc, NULL}, /* autogenerated swizzle attrs, see Python script above */ {"xx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE2(0, 0)}, {"xxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 0, 0)}, {"xxxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 0, 0)}, {"xxxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 0, 1)}, {"xxxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 0, 2)}, {"xxxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 0, 3)}, {"xxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 0, 1)}, {"xxyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 1, 0)}, {"xxyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 1, 1)}, {"xxyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 1, 2)}, {"xxyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 1, 3)}, {"xxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 0, 2)}, {"xxzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 2, 0)}, {"xxzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 2, 1)}, {"xxzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 2, 2)}, {"xxzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 2, 3)}, {"xxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 0, 3)}, {"xxwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 3, 0)}, {"xxwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 3, 1)}, {"xxwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 3, 2)}, {"xxww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 0, 3, 3)}, {"xy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(0, 1)}, {"xyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 1, 0)}, {"xyxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 0, 0)}, {"xyxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 0, 1)}, {"xyxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 0, 2)}, {"xyxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 0, 3)}, {"xyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 1, 1)}, {"xyyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 1, 0)}, {"xyyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 1, 1)}, {"xyyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 1, 2)}, {"xyyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 1, 3)}, {"xyz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(0, 1, 2)}, {"xyzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 2, 0)}, {"xyzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 2, 1)}, {"xyzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 2, 2)}, {"xyzw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(0, 1, 2, 3)}, {"xyw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(0, 1, 3)}, {"xywx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 3, 0)}, {"xywy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 3, 1)}, {"xywz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(0, 1, 3, 2)}, {"xyww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 1, 3, 3)}, {"xz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(0, 2)}, {"xzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 2, 0)}, {"xzxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 0, 0)}, {"xzxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 0, 1)}, {"xzxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 0, 2)}, {"xzxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 0, 3)}, {"xzy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(0, 2, 1)}, {"xzyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 1, 0)}, {"xzyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 1, 1)}, {"xzyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 1, 2)}, {"xzyw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(0, 2, 1, 3)}, {"xzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 2, 2)}, {"xzzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 2, 0)}, {"xzzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 2, 1)}, {"xzzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 2, 2)}, {"xzzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 2, 3)}, {"xzw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(0, 2, 3)}, {"xzwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 3, 0)}, {"xzwy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(0, 2, 3, 1)}, {"xzwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 3, 2)}, {"xzww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 2, 3, 3)}, {"xw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(0, 3)}, {"xwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 3, 0)}, {"xwxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 0, 0)}, {"xwxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 0, 1)}, {"xwxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 0, 2)}, {"xwxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 0, 3)}, {"xwy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(0, 3, 1)}, {"xwyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 1, 0)}, {"xwyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 1, 1)}, {"xwyz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(0, 3, 1, 2)}, {"xwyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 1, 3)}, {"xwz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(0, 3, 2)}, {"xwzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 2, 0)}, {"xwzy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(0, 3, 2, 1)}, {"xwzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 2, 2)}, {"xwzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 2, 3)}, {"xww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(0, 3, 3)}, {"xwwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 3, 0)}, {"xwwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 3, 1)}, {"xwwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 3, 2)}, {"xwww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(0, 3, 3, 3)}, {"yx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(1, 0)}, {"yxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 0, 0)}, {"yxxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 0, 0)}, {"yxxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 0, 1)}, {"yxxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 0, 2)}, {"yxxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 0, 3)}, {"yxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 0, 1)}, {"yxyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 1, 0)}, {"yxyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 1, 1)}, {"yxyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 1, 2)}, {"yxyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 1, 3)}, {"yxz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(1, 0, 2)}, {"yxzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 2, 0)}, {"yxzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 2, 1)}, {"yxzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 2, 2)}, {"yxzw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(1, 0, 2, 3)}, {"yxw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(1, 0, 3)}, {"yxwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 3, 0)}, {"yxwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 3, 1)}, {"yxwz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(1, 0, 3, 2)}, {"yxww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 0, 3, 3)}, {"yy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE2(1, 1)}, {"yyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 1, 0)}, {"yyxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 0, 0)}, {"yyxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 0, 1)}, {"yyxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 0, 2)}, {"yyxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 0, 3)}, {"yyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 1, 1)}, {"yyyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 1, 0)}, {"yyyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 1, 1)}, {"yyyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 1, 2)}, {"yyyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 1, 3)}, {"yyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 1, 2)}, {"yyzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 2, 0)}, {"yyzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 2, 1)}, {"yyzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 2, 2)}, {"yyzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 2, 3)}, {"yyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 1, 3)}, {"yywx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 3, 0)}, {"yywy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 3, 1)}, {"yywz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 3, 2)}, {"yyww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 1, 3, 3)}, {"yz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(1, 2)}, {"yzx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(1, 2, 0)}, {"yzxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 0, 0)}, {"yzxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 0, 1)}, {"yzxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 0, 2)}, {"yzxw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(1, 2, 0, 3)}, {"yzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 2, 1)}, {"yzyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 1, 0)}, {"yzyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 1, 1)}, {"yzyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 1, 2)}, {"yzyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 1, 3)}, {"yzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 2, 2)}, {"yzzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 2, 0)}, {"yzzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 2, 1)}, {"yzzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 2, 2)}, {"yzzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 2, 3)}, {"yzw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(1, 2, 3)}, {"yzwx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(1, 2, 3, 0)}, {"yzwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 3, 1)}, {"yzwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 3, 2)}, {"yzww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 2, 3, 3)}, {"yw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(1, 3)}, {"ywx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(1, 3, 0)}, {"ywxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 0, 0)}, {"ywxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 0, 1)}, {"ywxz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(1, 3, 0, 2)}, {"ywxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 0, 3)}, {"ywy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 3, 1)}, {"ywyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 1, 0)}, {"ywyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 1, 1)}, {"ywyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 1, 2)}, {"ywyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 1, 3)}, {"ywz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(1, 3, 2)}, {"ywzx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(1, 3, 2, 0)}, {"ywzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 2, 1)}, {"ywzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 2, 2)}, {"ywzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 2, 3)}, {"yww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(1, 3, 3)}, {"ywwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 3, 0)}, {"ywwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 3, 1)}, {"ywwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 3, 2)}, {"ywww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(1, 3, 3, 3)}, {"zx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(2, 0)}, {"zxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 0, 0)}, {"zxxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 0, 0)}, {"zxxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 0, 1)}, {"zxxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 0, 2)}, {"zxxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 0, 3)}, {"zxy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(2, 0, 1)}, {"zxyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 1, 0)}, {"zxyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 1, 1)}, {"zxyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 1, 2)}, {"zxyw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(2, 0, 1, 3)}, {"zxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 0, 2)}, {"zxzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 2, 0)}, {"zxzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 2, 1)}, {"zxzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 2, 2)}, {"zxzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 2, 3)}, {"zxw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(2, 0, 3)}, {"zxwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 3, 0)}, {"zxwy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(2, 0, 3, 1)}, {"zxwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 3, 2)}, {"zxww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 0, 3, 3)}, {"zy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(2, 1)}, {"zyx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(2, 1, 0)}, {"zyxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 0, 0)}, {"zyxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 0, 1)}, {"zyxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 0, 2)}, {"zyxw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(2, 1, 0, 3)}, {"zyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 1, 1)}, {"zyyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 1, 0)}, {"zyyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 1, 1)}, {"zyyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 1, 2)}, {"zyyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 1, 3)}, {"zyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 1, 2)}, {"zyzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 2, 0)}, {"zyzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 2, 1)}, {"zyzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 2, 2)}, {"zyzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 2, 3)}, {"zyw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(2, 1, 3)}, {"zywx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(2, 1, 3, 0)}, {"zywy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 3, 1)}, {"zywz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 3, 2)}, {"zyww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 1, 3, 3)}, {"zz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE2(2, 2)}, {"zzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 2, 0)}, {"zzxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 0, 0)}, {"zzxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 0, 1)}, {"zzxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 0, 2)}, {"zzxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 0, 3)}, {"zzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 2, 1)}, {"zzyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 1, 0)}, {"zzyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 1, 1)}, {"zzyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 1, 2)}, {"zzyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 1, 3)}, {"zzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 2, 2)}, {"zzzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 2, 0)}, {"zzzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 2, 1)}, {"zzzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 2, 2)}, {"zzzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 2, 3)}, {"zzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 2, 3)}, {"zzwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 3, 0)}, {"zzwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 3, 1)}, {"zzwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 3, 2)}, {"zzww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 2, 3, 3)}, {"zw", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(2, 3)}, {"zwx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(2, 3, 0)}, {"zwxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 0, 0)}, {"zwxy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(2, 3, 0, 1)}, {"zwxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 0, 2)}, {"zwxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 0, 3)}, {"zwy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(2, 3, 1)}, {"zwyx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(2, 3, 1, 0)}, {"zwyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 1, 1)}, {"zwyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 1, 2)}, {"zwyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 1, 3)}, {"zwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 3, 2)}, {"zwzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 2, 0)}, {"zwzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 2, 1)}, {"zwzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 2, 2)}, {"zwzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 2, 3)}, {"zww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(2, 3, 3)}, {"zwwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 3, 0)}, {"zwwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 3, 1)}, {"zwwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 3, 2)}, {"zwww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(2, 3, 3, 3)}, {"wx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(3, 0)}, {"wxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 0, 0)}, {"wxxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 0, 0)}, {"wxxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 0, 1)}, {"wxxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 0, 2)}, {"wxxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 0, 3)}, {"wxy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(3, 0, 1)}, {"wxyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 1, 0)}, {"wxyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 1, 1)}, {"wxyz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(3, 0, 1, 2)}, {"wxyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 1, 3)}, {"wxz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(3, 0, 2)}, {"wxzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 2, 0)}, {"wxzy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(3, 0, 2, 1)}, {"wxzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 2, 2)}, {"wxzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 2, 3)}, {"wxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 0, 3)}, {"wxwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 3, 0)}, {"wxwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 3, 1)}, {"wxwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 3, 2)}, {"wxww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 0, 3, 3)}, {"wy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(3, 1)}, {"wyx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(3, 1, 0)}, {"wyxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 0, 0)}, {"wyxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 0, 1)}, {"wyxz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(3, 1, 0, 2)}, {"wyxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 0, 3)}, {"wyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 1, 1)}, {"wyyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 1, 0)}, {"wyyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 1, 1)}, {"wyyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 1, 2)}, {"wyyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 1, 3)}, {"wyz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(3, 1, 2)}, {"wyzx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(3, 1, 2, 0)}, {"wyzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 2, 1)}, {"wyzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 2, 2)}, {"wyzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 2, 3)}, {"wyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 1, 3)}, {"wywx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 3, 0)}, {"wywy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 3, 1)}, {"wywz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 3, 2)}, {"wyww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 1, 3, 3)}, {"wz", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE2(3, 2)}, {"wzx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(3, 2, 0)}, {"wzxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 0, 0)}, {"wzxy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(3, 2, 0, 1)}, {"wzxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 0, 2)}, {"wzxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 0, 3)}, {"wzy", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE3(3, 2, 1)}, {"wzyx", (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, NULL, SWIZZLE4(3, 2, 1, 0)}, {"wzyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 1, 1)}, {"wzyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 1, 2)}, {"wzyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 1, 3)}, {"wzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 2, 2)}, {"wzzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 2, 0)}, {"wzzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 2, 1)}, {"wzzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 2, 2)}, {"wzzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 2, 3)}, {"wzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 2, 3)}, {"wzwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 3, 0)}, {"wzwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 3, 1)}, {"wzwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 3, 2)}, {"wzww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 2, 3, 3)}, {"ww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE2(3, 3)}, {"wwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 3, 0)}, {"wwxx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 0, 0)}, {"wwxy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 0, 1)}, {"wwxz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 0, 2)}, {"wwxw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 0, 3)}, {"wwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 3, 1)}, {"wwyx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 1, 0)}, {"wwyy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 1, 1)}, {"wwyz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 1, 2)}, {"wwyw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 1, 3)}, {"wwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 3, 2)}, {"wwzx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 2, 0)}, {"wwzy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 2, 1)}, {"wwzz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 2, 2)}, {"wwzw", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 2, 3)}, {"www", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE3(3, 3, 3)}, {"wwwx", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 3, 0)}, {"wwwy", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 3, 1)}, {"wwwz", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 3, 2)}, {"wwww", (getter)Vector_swizzle_get, (setter)NULL, NULL, SWIZZLE4(3, 3, 3, 3)}, #undef AXIS_FROM_CHAR #undef SWIZZLE1 #undef SWIZZLE2 #undef SWIZZLE3 #undef SWIZZLE4 #undef _SWIZZLE1 #undef _SWIZZLE2 #undef _SWIZZLE3 #undef _SWIZZLE4 {NULL, NULL, NULL, NULL, NULL} /* Sentinel */ }; /** * Row vector multiplication - (Vector * Matrix) *
 * [x][y][z] * [1][4][7]
 *             [2][5][8]
 *             [3][6][9]
 * 
* \note vector/matrix multiplication is not commutative. */ static int row_vector_multiplication(float r_vec[MAX_DIMENSIONS], VectorObject *vec, MatrixObject *mat) { float vec_cpy[MAX_DIMENSIONS]; int row, col, z = 0, vec_size = vec->size; if (mat->num_row != vec_size) { if (mat->num_row == 4 && vec_size == 3) { vec_cpy[3] = 1.0f; } else { PyErr_SetString(PyExc_ValueError, "vector * matrix: matrix column size " "and the vector size must be the same"); return -1; } } if (BaseMath_ReadCallback(vec) == -1 || BaseMath_ReadCallback(mat) == -1) { return -1; } memcpy(vec_cpy, vec->vec, vec_size * sizeof(float)); r_vec[3] = 1.0f; /* muliplication */ for (col = 0; col < mat->num_col; col++) { double dot = 0.0; for (row = 0; row < mat->num_row; row++) { dot += (double)(MATRIX_ITEM(mat, row, col) * vec_cpy[row]); } r_vec[z++] = (float)dot; } return 0; } /*----------------------------Vector.negate() -------------------- */ PyDoc_STRVAR(Vector_negate_doc, ".. method:: negate()\n" "\n" " Set all values to their negative.\n"); static PyObject *Vector_negate(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return NULL; } negate_vn(self->vec, self->size); (void)BaseMath_WriteCallback(self); /* already checked for error */ Py_RETURN_NONE; } static struct PyMethodDef Vector_methods[] = { /* Class Methods */ {"Fill", (PyCFunction)C_Vector_Fill, METH_VARARGS | METH_CLASS, C_Vector_Fill_doc}, {"Range", (PyCFunction)C_Vector_Range, METH_VARARGS | METH_CLASS, C_Vector_Range_doc}, {"Linspace", (PyCFunction)C_Vector_Linspace, METH_VARARGS | METH_CLASS, C_Vector_Linspace_doc}, {"Repeat", (PyCFunction)C_Vector_Repeat, METH_VARARGS | METH_CLASS, C_Vector_Repeat_doc}, /* in place only */ {"zero", (PyCFunction)Vector_zero, METH_NOARGS, Vector_zero_doc}, {"negate", (PyCFunction)Vector_negate, METH_NOARGS, Vector_negate_doc}, /* operate on original or copy */ {"normalize", (PyCFunction)Vector_normalize, METH_NOARGS, Vector_normalize_doc}, {"normalized", (PyCFunction)Vector_normalized, METH_NOARGS, Vector_normalized_doc}, {"resize", (PyCFunction)Vector_resize, METH_O, Vector_resize_doc}, {"resized", (PyCFunction)Vector_resized, METH_O, Vector_resized_doc}, {"to_2d", (PyCFunction)Vector_to_2d, METH_NOARGS, Vector_to_2d_doc}, {"resize_2d", (PyCFunction)Vector_resize_2d, METH_NOARGS, Vector_resize_2d_doc}, {"to_3d", (PyCFunction)Vector_to_3d, METH_NOARGS, Vector_to_3d_doc}, {"resize_3d", (PyCFunction)Vector_resize_3d, METH_NOARGS, Vector_resize_3d_doc}, {"to_4d", (PyCFunction)Vector_to_4d, METH_NOARGS, Vector_to_4d_doc}, {"resize_4d", (PyCFunction)Vector_resize_4d, METH_NOARGS, Vector_resize_4d_doc}, {"to_tuple", (PyCFunction)Vector_to_tuple, METH_VARARGS, Vector_to_tuple_doc}, {"to_track_quat", (PyCFunction)Vector_to_track_quat, METH_VARARGS, Vector_to_track_quat_doc}, {"orthogonal", (PyCFunction)Vector_orthogonal, METH_NOARGS, Vector_orthogonal_doc}, /* operation between 2 or more types */ {"reflect", (PyCFunction)Vector_reflect, METH_O, Vector_reflect_doc}, {"cross", (PyCFunction)Vector_cross, METH_O, Vector_cross_doc}, {"dot", (PyCFunction)Vector_dot, METH_O, Vector_dot_doc}, {"angle", (PyCFunction)Vector_angle, METH_VARARGS, Vector_angle_doc}, {"angle_signed", (PyCFunction)Vector_angle_signed, METH_VARARGS, Vector_angle_signed_doc}, {"rotation_difference", (PyCFunction)Vector_rotation_difference, METH_O, Vector_rotation_difference_doc}, {"project", (PyCFunction)Vector_project, METH_O, Vector_project_doc}, {"lerp", (PyCFunction)Vector_lerp, METH_VARARGS, Vector_lerp_doc}, {"slerp", (PyCFunction)Vector_slerp, METH_VARARGS, Vector_slerp_doc}, {"rotate", (PyCFunction)Vector_rotate, METH_O, Vector_rotate_doc}, /* base-math methods */ {"freeze", (PyCFunction)BaseMathObject_freeze, METH_NOARGS, BaseMathObject_freeze_doc}, {"copy", (PyCFunction)Vector_copy, METH_NOARGS, Vector_copy_doc}, {"__copy__", (PyCFunction)Vector_copy, METH_NOARGS, NULL}, {"__deepcopy__", (PyCFunction)Vector_deepcopy, METH_VARARGS, NULL}, {NULL, NULL, 0, NULL}, }; /** * Note: * #Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing * but this means for eg that (vec * mat) and (mat * vec) * both get sent to Vector_mul and it needs to sort out the order */ PyDoc_STRVAR(vector_doc, ".. class:: Vector(seq)\n" "\n" " This object gives access to Vectors in Blender.\n" "\n" " :param seq: Components of the vector, must be a sequence of at least two\n" " :type seq: sequence of numbers\n"); PyTypeObject vector_Type = { PyVarObject_HEAD_INIT(NULL, 0) /* For printing, in format "." */ "Vector", /* char *tp_name; */ sizeof(VectorObject), /* int tp_basicsize; */ 0, /* tp_itemsize; For allocation */ /* Methods to implement standard operations */ (destructor)BaseMathObject_dealloc, /* destructor tp_dealloc; */ (printfunc)NULL, /* printfunc tp_print; */ NULL, /* getattrfunc tp_getattr; */ NULL, /* setattrfunc tp_setattr; */ NULL, /* cmpfunc tp_compare; */ (reprfunc)Vector_repr, /* reprfunc tp_repr; */ /* Method suites for standard classes */ &Vector_NumMethods, /* PyNumberMethods *tp_as_number; */ &Vector_SeqMethods, /* PySequenceMethods *tp_as_sequence; */ &Vector_AsMapping, /* PyMappingMethods *tp_as_mapping; */ /* More standard operations (here for binary compatibility) */ (hashfunc)Vector_hash, /* hashfunc tp_hash; */ NULL, /* ternaryfunc tp_call; */ #ifndef MATH_STANDALONE (reprfunc)Vector_str, /* reprfunc tp_str; */ #else NULL, /* reprfunc tp_str; */ #endif NULL, /* getattrofunc tp_getattro; */ NULL, /* setattrofunc tp_setattro; */ /* Functions to access object as input/output buffer */ NULL, /* PyBufferProcs *tp_as_buffer; */ /*** Flags to define presence of optional/expanded features ***/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, vector_doc, /* char *tp_doc; Documentation string */ /*** Assigned meaning in release 2.0 ***/ /* call function for all accessible objects */ (traverseproc)BaseMathObject_traverse, /* tp_traverse */ /* delete references to contained objects */ (inquiry)BaseMathObject_clear, /* tp_clear */ /*** Assigned meaning in release 2.1 ***/ /*** rich comparisons ***/ (richcmpfunc)Vector_richcmpr, /* richcmpfunc tp_richcompare; */ /*** weak reference enabler ***/ 0, /* long tp_weaklistoffset; */ /*** Added in release 2.2 ***/ /* Iterators */ NULL, /* getiterfunc tp_iter; */ NULL, /* iternextfunc tp_iternext; */ /*** Attribute descriptor and subclassing stuff ***/ Vector_methods, /* struct PyMethodDef *tp_methods; */ NULL, /* struct PyMemberDef *tp_members; */ Vector_getseters, /* struct PyGetSetDef *tp_getset; */ NULL, /* struct _typeobject *tp_base; */ NULL, /* PyObject *tp_dict; */ NULL, /* descrgetfunc tp_descr_get; */ NULL, /* descrsetfunc tp_descr_set; */ 0, /* long tp_dictoffset; */ NULL, /* initproc tp_init; */ NULL, /* allocfunc tp_alloc; */ Vector_new, /* newfunc tp_new; */ /* Low-level free-memory routine */ NULL, /* freefunc tp_free; */ /* For PyObject_IS_GC */ NULL, /* inquiry tp_is_gc; */ NULL, /* PyObject *tp_bases; */ /* method resolution order */ NULL, /* PyObject *tp_mro; */ NULL, /* PyObject *tp_cache; */ NULL, /* PyObject *tp_subclasses; */ NULL, /* PyObject *tp_weaklist; */ NULL, }; PyObject *Vector_CreatePyObject(const float *vec, const int size, PyTypeObject *base_type) { VectorObject *self; float *vec_alloc; if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return NULL; } vec_alloc = PyMem_Malloc(size * sizeof(float)); if (UNLIKELY(vec_alloc == NULL)) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating data"); return NULL; } self = BASE_MATH_NEW(VectorObject, vector_Type, base_type); if (self) { self->vec = vec_alloc; self->size = size; /* init callbacks as NULL */ self->cb_user = NULL; self->cb_type = self->cb_subtype = 0; if (vec) { memcpy(self->vec, vec, size * sizeof(float)); } else { /* new empty */ copy_vn_fl(self->vec, size, 0.0f); if (size == 4) { /* do the homogeneous thing */ self->vec[3] = 1.0f; } } self->flag = BASE_MATH_FLAG_DEFAULT; } else { PyMem_Free(vec_alloc); } return (PyObject *)self; } /** * Create a vector that wraps existing memory. * * \param vec: Use this vector in-place. */ PyObject *Vector_CreatePyObject_wrap(float *vec, const int size, PyTypeObject *base_type) { VectorObject *self; if (size < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return NULL; } self = BASE_MATH_NEW(VectorObject, vector_Type, base_type); if (self) { self->size = size; /* init callbacks as NULL */ self->cb_user = NULL; self->cb_type = self->cb_subtype = 0; self->vec = vec; self->flag = BASE_MATH_FLAG_DEFAULT | BASE_MATH_FLAG_IS_WRAP; } return (PyObject *)self; } /** * Create a vector where the value is defined by registered callbacks, * see: #Mathutils_RegisterCallback */ PyObject *Vector_CreatePyObject_cb(PyObject *cb_user, int size, uchar cb_type, uchar cb_subtype) { VectorObject *self = (VectorObject *)Vector_CreatePyObject(NULL, size, NULL); if (self) { Py_INCREF(cb_user); self->cb_user = cb_user; self->cb_type = cb_type; self->cb_subtype = cb_subtype; PyObject_GC_Track(self); } return (PyObject *)self; } /** * \param vec: Initialized vector value to use in-place, allocated with #PyMem_Malloc */ PyObject *Vector_CreatePyObject_alloc(float *vec, const int size, PyTypeObject *base_type) { VectorObject *self; self = (VectorObject *)Vector_CreatePyObject_wrap(vec, size, base_type); if (self) { self->flag &= ~BASE_MATH_FLAG_IS_WRAP; } return (PyObject *)self; }