/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup pymathutils */ #include #include "mathutils.h" #include "mathutils_geometry.h" /* Used for PolyFill */ #ifndef MATH_STANDALONE /* define when building outside blender */ # include "BKE_curve.h" # include "BKE_displist.h" # include "BLI_blenlib.h" # include "BLI_boxpack_2d.h" # include "BLI_convexhull_2d.h" # include "BLI_delaunay_2d.h" # include "MEM_guardedalloc.h" #endif #include "BLI_math.h" #include "BLI_utildefines.h" #include "../generic/py_capi_utils.h" #include "../generic/python_utildefines.h" /*-------------------------DOC STRINGS ---------------------------*/ PyDoc_STRVAR(M_Geometry_doc, "The Blender geometry module"); /* ---------------------------------INTERSECTION FUNCTIONS-------------------- */ PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc, ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n" "\n" " Returns the intersection between a ray and a triangle, if possible, returns None " "otherwise.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg ray: Direction of the projection\n" " :type ray: :class:`mathutils.Vector`\n" " :arg orig: Origin\n" " :type orig: :class:`mathutils.Vector`\n" " :arg clip: When False, don't restrict the intersection to the area of the " "triangle, use the infinite plane defined by the triangle.\n" " :type clip: boolean\n" " :return: The point of intersection or None if no intersection is found\n" " :rtype: :class:`mathutils.Vector` or None\n"); static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_ray_tri"; PyObject *py_ray, *py_ray_off, *py_tri[3]; float dir[3], orig[3], tri[3][3], e1[3], e2[3], pvec[3], tvec[3], qvec[3]; float det, inv_det, u, v, t; bool clip = true; int i; if (!PyArg_ParseTuple(args, "OOOOO|O&:intersect_ray_tri", UNPACK3_EX(&, py_tri, ), &py_ray, &py_ray_off, PyC_ParseBool, &clip)) { return NULL; } if (((mathutils_array_parse(dir, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray, error_prefix) != -1) && (mathutils_array_parse( orig, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray_off, error_prefix) != -1)) == 0) { return NULL; } for (i = 0; i < ARRAY_SIZE(tri); i++) { if (mathutils_array_parse( tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) { return NULL; } } normalize_v3(dir); /* find vectors for two edges sharing v1 */ sub_v3_v3v3(e1, tri[1], tri[0]); sub_v3_v3v3(e2, tri[2], tri[0]); /* begin calculating determinant - also used to calculated U parameter */ cross_v3_v3v3(pvec, dir, e2); /* if determinant is near zero, ray lies in plane of triangle */ det = dot_v3v3(e1, pvec); if (det > -0.000001f && det < 0.000001f) { Py_RETURN_NONE; } inv_det = 1.0f / det; /* calculate distance from v1 to ray origin */ sub_v3_v3v3(tvec, orig, tri[0]); /* calculate U parameter and test bounds */ u = dot_v3v3(tvec, pvec) * inv_det; if (clip && (u < 0.0f || u > 1.0f)) { Py_RETURN_NONE; } /* prepare to test the V parameter */ cross_v3_v3v3(qvec, tvec, e1); /* calculate V parameter and test bounds */ v = dot_v3v3(dir, qvec) * inv_det; if (clip && (v < 0.0f || u + v > 1.0f)) { Py_RETURN_NONE; } /* calculate t, ray intersects triangle */ t = dot_v3v3(e2, qvec) * inv_det; /* ray hit behind */ if (t < 0.0f) { Py_RETURN_NONE; } mul_v3_fl(dir, t); add_v3_v3v3(pvec, orig, dir); return Vector_CreatePyObject(pvec, 3, NULL); } /* Line-Line intersection using algorithm from mathworld.wolfram.com */ PyDoc_STRVAR(M_Geometry_intersect_line_line_doc, ".. function:: intersect_line_line(v1, v2, v3, v4)\n" "\n" " Returns a tuple with the points on each line respectively closest to the other.\n" "\n" " :arg v1: First point of the first line\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Second point of the first line\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: First point of the second line\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Second point of the second line\n" " :type v4: :class:`mathutils.Vector`\n" " :rtype: tuple of :class:`mathutils.Vector`'s\n"); static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_line_line"; PyObject *tuple; PyObject *py_lines[4]; float lines[4][3], i1[3], i2[3]; int ix_vec_num; int result; if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line", UNPACK4_EX(&, py_lines, ))) { return NULL; } if ((((ix_vec_num = mathutils_array_parse( lines[0], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[0], error_prefix)) != -1) && (mathutils_array_parse(lines[1], ix_vec_num, ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[1], error_prefix) != -1) && (mathutils_array_parse(lines[2], ix_vec_num, ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[2], error_prefix) != -1) && (mathutils_array_parse(lines[3], ix_vec_num, ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[3], error_prefix) != -1)) == 0) { return NULL; } /* Zero 3rd axis of 2D vectors. */ if (ix_vec_num == 2) { lines[1][2] = 0.0f; lines[2][2] = 0.0f; lines[3][2] = 0.0f; } result = isect_line_line_v3(UNPACK4(lines), i1, i2); /* The return-code isn't exposed, * this way we can check know how close the lines are. */ if (result == 1) { closest_to_line_v3(i2, i1, lines[2], lines[3]); } if (result == 0) { /* Collinear. */ Py_RETURN_NONE; } tuple = PyTuple_New(2); PyTuple_SET_ITEMS(tuple, Vector_CreatePyObject(i1, ix_vec_num, NULL), Vector_CreatePyObject(i2, ix_vec_num, NULL)); return tuple; } /* Line-Line intersection using algorithm from mathworld.wolfram.com */ PyDoc_STRVAR( M_Geometry_intersect_sphere_sphere_2d_doc, ".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n" "\n" " Returns 2 points on between intersecting circles.\n" "\n" " :arg p_a: Center of the first circle\n" " :type p_a: :class:`mathutils.Vector`\n" " :arg radius_a: Radius of the first circle\n" " :type radius_a: float\n" " :arg p_b: Center of the second circle\n" " :type p_b: :class:`mathutils.Vector`\n" " :arg radius_b: Radius of the second circle\n" " :type radius_b: float\n" " :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n"); static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_sphere_sphere_2d"; PyObject *ret; PyObject *py_v_a, *py_v_b; float v_a[2], v_b[2]; float rad_a, rad_b; float v_ab[2]; float dist; if (!PyArg_ParseTuple( args, "OfOf:intersect_sphere_sphere_2d", &py_v_a, &rad_a, &py_v_b, &rad_b)) { return NULL; } if (((mathutils_array_parse(v_a, 2, 2, py_v_a, error_prefix) != -1) && (mathutils_array_parse(v_b, 2, 2, py_v_b, error_prefix) != -1)) == 0) { return NULL; } ret = PyTuple_New(2); sub_v2_v2v2(v_ab, v_b, v_a); dist = len_v2(v_ab); if (/* out of range */ (dist > rad_a + rad_b) || /* fully-contained in the other */ (dist < fabsf(rad_a - rad_b)) || /* co-incident */ (dist < FLT_EPSILON)) { /* out of range */ PyTuple_SET_ITEMS(ret, Py_INCREF_RET(Py_None), Py_INCREF_RET(Py_None)); } else { const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist); const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f); float i_cent[2]; float i1[2], i2[2]; i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist); i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist); i1[0] = i_cent[0] + h * v_ab[1] / dist; i1[1] = i_cent[1] - h * v_ab[0] / dist; i2[0] = i_cent[0] - h * v_ab[1] / dist; i2[1] = i_cent[1] + h * v_ab[0] / dist; PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(i1, 2, NULL), Vector_CreatePyObject(i2, 2, NULL)); } return ret; } PyDoc_STRVAR(M_Geometry_intersect_tri_tri_2d_doc, ".. function:: intersect_tri_tri_2d(tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n" "\n" " Check if two 2D triangles intersect.\n" "\n" " :rtype: bool\n"); static PyObject *M_Geometry_intersect_tri_tri_2d(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_tri_tri_2d"; PyObject *tri_pair_py[2][3]; float tri_pair[2][3][2]; if (!PyArg_ParseTuple(args, "OOOOOO:intersect_tri_tri_2d", &tri_pair_py[0][0], &tri_pair_py[0][1], &tri_pair_py[0][2], &tri_pair_py[1][0], &tri_pair_py[1][1], &tri_pair_py[1][2])) { return NULL; } for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { if (mathutils_array_parse( tri_pair[i][j], 2, 2 | MU_ARRAY_SPILL, tri_pair_py[i][j], error_prefix) == -1) { return NULL; } } } const bool ret = isect_tri_tri_v2(UNPACK3(tri_pair[0]), UNPACK3(tri_pair[1])); return PyBool_FromLong(ret); } PyDoc_STRVAR(M_Geometry_normal_doc, ".. function:: normal(vectors)\n" "\n" " Returns the normal of a 3D polygon.\n" "\n" " :arg vectors: Vectors to calculate normals with\n" " :type vectors: sequence of 3 or more 3d vector\n" " :rtype: :class:`mathutils.Vector`\n"); static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args) { float(*coords)[3]; int coords_len; float n[3]; PyObject *ret = NULL; /* use */ if (PyTuple_GET_SIZE(args) == 1) { args = PyTuple_GET_ITEM(args, 0); } if ((coords_len = mathutils_array_parse_alloc_v( (float **)&coords, 3 | MU_ARRAY_SPILL, args, "normal")) == -1) { return NULL; } if (coords_len < 3) { PyErr_SetString(PyExc_ValueError, "Expected 3 or more vectors"); goto finally; } normal_poly_v3(n, coords, coords_len); ret = Vector_CreatePyObject(n, 3, NULL); finally: PyMem_Free(coords); return ret; } /* --------------------------------- AREA FUNCTIONS-------------------- */ PyDoc_STRVAR(M_Geometry_area_tri_doc, ".. function:: area_tri(v1, v2, v3)\n" "\n" " Returns the area size of the 2D or 3D triangle defined.\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :rtype: float\n"); static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "area_tri"; PyObject *py_tri[3]; float tri[3][3]; int len; if (!PyArg_ParseTuple(args, "OOO:area_tri", UNPACK3_EX(&, py_tri, ))) { return NULL; } if ((((len = mathutils_array_parse(tri[0], 2, 3, py_tri[0], error_prefix)) != -1) && (mathutils_array_parse(tri[1], len, len, py_tri[1], error_prefix) != -1) && (mathutils_array_parse(tri[2], len, len, py_tri[2], error_prefix) != -1)) == 0) { return NULL; } return PyFloat_FromDouble((len == 3 ? area_tri_v3 : area_tri_v2)(UNPACK3(tri))); } PyDoc_STRVAR(M_Geometry_volume_tetrahedron_doc, ".. function:: volume_tetrahedron(v1, v2, v3, v4)\n" "\n" " Return the volume formed by a tetrahedron (points can be in any order).\n" "\n" " :arg v1: Point1\n" " :type v1: :class:`mathutils.Vector`\n" " :arg v2: Point2\n" " :type v2: :class:`mathutils.Vector`\n" " :arg v3: Point3\n" " :type v3: :class:`mathutils.Vector`\n" " :arg v4: Point4\n" " :type v4: :class:`mathutils.Vector`\n" " :rtype: float\n"); static PyObject *M_Geometry_volume_tetrahedron(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "volume_tetrahedron"; PyObject *py_tet[4]; float tet[4][3]; int i; if (!PyArg_ParseTuple(args, "OOOO:volume_tetrahedron", UNPACK4_EX(&, py_tet, ))) { return NULL; } for (i = 0; i < ARRAY_SIZE(tet); i++) { if (mathutils_array_parse(tet[i], 3, 3 | MU_ARRAY_SPILL, py_tet[i], error_prefix) == -1) { return NULL; } } return PyFloat_FromDouble(volume_tetrahedron_v3(UNPACK4(tet))); } PyDoc_STRVAR( M_Geometry_intersect_line_line_2d_doc, ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n" "\n" " Takes 2 segments (defined by 4 vectors) and returns a vector for their point of " "intersection or None.\n" "\n" " .. warning:: Despite its name, this function works on segments, and not on lines.\n" "\n" " :arg lineA_p1: First point of the first line\n" " :type lineA_p1: :class:`mathutils.Vector`\n" " :arg lineA_p2: Second point of the first line\n" " :type lineA_p2: :class:`mathutils.Vector`\n" " :arg lineB_p1: First point of the second line\n" " :type lineB_p1: :class:`mathutils.Vector`\n" " :arg lineB_p2: Second point of the second line\n" " :type lineB_p2: :class:`mathutils.Vector`\n" " :return: The point of intersection or None when not found\n" " :rtype: :class:`mathutils.Vector` or None\n"); static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_line_line_2d"; PyObject *py_lines[4]; float lines[4][2]; float vi[2]; int i; if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line_2d", UNPACK4_EX(&, py_lines, ))) { return NULL; } for (i = 0; i < ARRAY_SIZE(lines); i++) { if (mathutils_array_parse(lines[i], 2, 2 | MU_ARRAY_SPILL, py_lines[i], error_prefix) == -1) { return NULL; } } if (isect_seg_seg_v2_point(UNPACK4(lines), vi) == 1) { return Vector_CreatePyObject(vi, 2, NULL); } Py_RETURN_NONE; } PyDoc_STRVAR( M_Geometry_intersect_line_plane_doc, ".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n" "\n" " Calculate the intersection between a line (as 2 vectors) and a plane.\n" " Returns a vector for the intersection or None.\n" "\n" " :arg line_a: First point of the first line\n" " :type line_a: :class:`mathutils.Vector`\n" " :arg line_b: Second point of the first line\n" " :type line_b: :class:`mathutils.Vector`\n" " :arg plane_co: A point on the plane\n" " :type plane_co: :class:`mathutils.Vector`\n" " :arg plane_no: The direction the plane is facing\n" " :type plane_no: :class:`mathutils.Vector`\n" " :return: The point of intersection or None when not found\n" " :rtype: :class:`mathutils.Vector` or None\n"); static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_line_plane"; PyObject *py_line_a, *py_line_b, *py_plane_co, *py_plane_no; float line_a[3], line_b[3], plane_co[3], plane_no[3]; float isect[3]; const bool no_flip = false; if (!PyArg_ParseTuple(args, "OOOO|O&:intersect_line_plane", &py_line_a, &py_line_b, &py_plane_co, &py_plane_no, PyC_ParseBool, &no_flip)) { return NULL; } if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) && (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) && (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) && (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) != -1)) == 0) { return NULL; } /* TODO: implements no_flip */ if (isect_line_plane_v3(isect, line_a, line_b, plane_co, plane_no) == 1) { return Vector_CreatePyObject(isect, 3, NULL); } Py_RETURN_NONE; } PyDoc_STRVAR( M_Geometry_intersect_plane_plane_doc, ".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n" "\n" " Return the intersection between two planes\n" "\n" " :arg plane_a_co: Point on the first plane\n" " :type plane_a_co: :class:`mathutils.Vector`\n" " :arg plane_a_no: Normal of the first plane\n" " :type plane_a_no: :class:`mathutils.Vector`\n" " :arg plane_b_co: Point on the second plane\n" " :type plane_b_co: :class:`mathutils.Vector`\n" " :arg plane_b_no: Normal of the second plane\n" " :type plane_b_no: :class:`mathutils.Vector`\n" " :return: The line of the intersection represented as a point and a vector\n" " :rtype: tuple pair of :class:`mathutils.Vector` or None if the intersection can't be " "calculated\n"); static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_plane_plane"; PyObject *ret, *ret_co, *ret_no; PyObject *py_plane_a_co, *py_plane_a_no, *py_plane_b_co, *py_plane_b_no; float plane_a_co[3], plane_a_no[3], plane_b_co[3], plane_b_no[3]; float plane_a[4], plane_b[4]; float isect_co[3]; float isect_no[3]; if (!PyArg_ParseTuple(args, "OOOO:intersect_plane_plane", &py_plane_a_co, &py_plane_a_no, &py_plane_b_co, &py_plane_b_no)) { return NULL; } if (((mathutils_array_parse(plane_a_co, 3, 3 | MU_ARRAY_SPILL, py_plane_a_co, error_prefix) != -1) && (mathutils_array_parse(plane_a_no, 3, 3 | MU_ARRAY_SPILL, py_plane_a_no, error_prefix) != -1) && (mathutils_array_parse(plane_b_co, 3, 3 | MU_ARRAY_SPILL, py_plane_b_co, error_prefix) != -1) && (mathutils_array_parse(plane_b_no, 3, 3 | MU_ARRAY_SPILL, py_plane_b_no, error_prefix) != -1)) == 0) { return NULL; } plane_from_point_normal_v3(plane_a, plane_a_co, plane_a_no); plane_from_point_normal_v3(plane_b, plane_b_co, plane_b_no); if (isect_plane_plane_v3(plane_a, plane_b, isect_co, isect_no)) { normalize_v3(isect_no); ret_co = Vector_CreatePyObject(isect_co, 3, NULL); ret_no = Vector_CreatePyObject(isect_no, 3, NULL); } else { ret_co = Py_INCREF_RET(Py_None); ret_no = Py_INCREF_RET(Py_None); } ret = PyTuple_New(2); PyTuple_SET_ITEMS(ret, ret_co, ret_no); return ret; } PyDoc_STRVAR( M_Geometry_intersect_line_sphere_doc, ".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n" "\n" " Takes a line (as 2 points) and a sphere (as a point and a radius) and\n" " returns the intersection\n" "\n" " :arg line_a: First point of the line\n" " :type line_a: :class:`mathutils.Vector`\n" " :arg line_b: Second point of the line\n" " :type line_b: :class:`mathutils.Vector`\n" " :arg sphere_co: The center of the sphere\n" " :type sphere_co: :class:`mathutils.Vector`\n" " :arg sphere_radius: Radius of the sphere\n" " :type sphere_radius: sphere_radius\n" " :return: The intersection points as a pair of vectors or None when there is no " "intersection\n" " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"); static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_line_sphere"; PyObject *py_line_a, *py_line_b, *py_sphere_co; float line_a[3], line_b[3], sphere_co[3]; float sphere_radius; bool clip = true; float isect_a[3]; float isect_b[3]; if (!PyArg_ParseTuple(args, "OOOf|O&:intersect_line_sphere", &py_line_a, &py_line_b, &py_sphere_co, &sphere_radius, PyC_ParseBool, &clip)) { return NULL; } if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) && (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) && (mathutils_array_parse(sphere_co, 3, 3 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) != -1)) == 0) { return NULL; } bool use_a = true; bool use_b = true; float lambda; PyObject *ret = PyTuple_New(2); switch (isect_line_sphere_v3(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) { case 1: if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; } use_b = false; break; case 2: if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; } if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_b = false; } break; default: use_a = false; use_b = false; break; } PyTuple_SET_ITEMS(ret, use_a ? Vector_CreatePyObject(isect_a, 3, NULL) : Py_INCREF_RET(Py_None), use_b ? Vector_CreatePyObject(isect_b, 3, NULL) : Py_INCREF_RET(Py_None)); return ret; } /* keep in sync with M_Geometry_intersect_line_sphere */ PyDoc_STRVAR( M_Geometry_intersect_line_sphere_2d_doc, ".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n" "\n" " Takes a line (as 2 points) and a sphere (as a point and a radius) and\n" " returns the intersection\n" "\n" " :arg line_a: First point of the line\n" " :type line_a: :class:`mathutils.Vector`\n" " :arg line_b: Second point of the line\n" " :type line_b: :class:`mathutils.Vector`\n" " :arg sphere_co: The center of the sphere\n" " :type sphere_co: :class:`mathutils.Vector`\n" " :arg sphere_radius: Radius of the sphere\n" " :type sphere_radius: sphere_radius\n" " :return: The intersection points as a pair of vectors or None when there is no " "intersection\n" " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"); static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_line_sphere_2d"; PyObject *py_line_a, *py_line_b, *py_sphere_co; float line_a[2], line_b[2], sphere_co[2]; float sphere_radius; bool clip = true; float isect_a[2]; float isect_b[2]; if (!PyArg_ParseTuple(args, "OOOf|O&:intersect_line_sphere_2d", &py_line_a, &py_line_b, &py_sphere_co, &sphere_radius, PyC_ParseBool, &clip)) { return NULL; } if (((mathutils_array_parse(line_a, 2, 2 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) && (mathutils_array_parse(line_b, 2, 2 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) && (mathutils_array_parse(sphere_co, 2, 2 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) != -1)) == 0) { return NULL; } bool use_a = true; bool use_b = true; float lambda; PyObject *ret = PyTuple_New(2); switch (isect_line_sphere_v2(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) { case 1: if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; } use_b = false; break; case 2: if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; } if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_b = false; } break; default: use_a = false; use_b = false; break; } PyTuple_SET_ITEMS(ret, use_a ? Vector_CreatePyObject(isect_a, 2, NULL) : Py_INCREF_RET(Py_None), use_b ? Vector_CreatePyObject(isect_b, 2, NULL) : Py_INCREF_RET(Py_None)); return ret; } PyDoc_STRVAR( M_Geometry_intersect_point_line_doc, ".. function:: intersect_point_line(pt, line_p1, line_p2)\n" "\n" " Takes a point and a line and returns a tuple with the closest point on the line and its " "distance from the first point of the line as a percentage of the length of the line.\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg line_p1: First point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n" " :arg line_p1: Second point of the line\n" " :type line_p1: :class:`mathutils.Vector`\n" " :rtype: (:class:`mathutils.Vector`, float)\n"); static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_point_line"; PyObject *py_pt, *py_line_a, *py_line_b; float pt[3], pt_out[3], line_a[3], line_b[3]; float lambda; PyObject *ret; int pt_num = 2; if (!PyArg_ParseTuple(args, "OOO:intersect_point_line", &py_pt, &py_line_a, &py_line_b)) { return NULL; } /* accept 2d verts */ if ((((pt_num = mathutils_array_parse( pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix)) != -1) && (mathutils_array_parse( line_a, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_a, error_prefix) != -1) && (mathutils_array_parse( line_b, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_b, error_prefix) != -1)) == 0) { return NULL; } /* do the calculation */ lambda = closest_to_line_v3(pt_out, pt, line_a, line_b); ret = PyTuple_New(2); PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(pt_out, pt_num, NULL), PyFloat_FromDouble(lambda)); return ret; } PyDoc_STRVAR(M_Geometry_intersect_point_tri_doc, ".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3)\n" "\n" " Takes 4 vectors: one is the point and the next 3 define the triangle. Projects " "the point onto the triangle plane and checks if it is within the triangle.\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg tri_p1: First point of the triangle\n" " :type tri_p1: :class:`mathutils.Vector`\n" " :arg tri_p2: Second point of the triangle\n" " :type tri_p2: :class:`mathutils.Vector`\n" " :arg tri_p3: Third point of the triangle\n" " :type tri_p3: :class:`mathutils.Vector`\n" " :return: Point on the triangles plane or None if its outside the triangle\n" " :rtype: :class:`mathutils.Vector` or None\n"); static PyObject *M_Geometry_intersect_point_tri(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_point_tri"; PyObject *py_pt, *py_tri[3]; float pt[3], tri[3][3]; float vi[3]; int i; if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) { return NULL; } if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) == -1) { return NULL; } for (i = 0; i < ARRAY_SIZE(tri); i++) { if (mathutils_array_parse( tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) { return NULL; } } if (isect_point_tri_v3(pt, UNPACK3(tri), vi)) { return Vector_CreatePyObject(vi, 3, NULL); } Py_RETURN_NONE; } PyDoc_STRVAR(M_Geometry_closest_point_on_tri_doc, ".. function:: closest_point_on_tri(pt, tri_p1, tri_p2, tri_p3)\n" "\n" " Takes 4 vectors: one is the point and the next 3 define the triangle.\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg tri_p1: First point of the triangle\n" " :type tri_p1: :class:`mathutils.Vector`\n" " :arg tri_p2: Second point of the triangle\n" " :type tri_p2: :class:`mathutils.Vector`\n" " :arg tri_p3: Third point of the triangle\n" " :type tri_p3: :class:`mathutils.Vector`\n" " :return: The closest point of the triangle.\n" " :rtype: :class:`mathutils.Vector`\n"); static PyObject *M_Geometry_closest_point_on_tri(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "closest_point_on_tri"; PyObject *py_pt, *py_tri[3]; float pt[3], tri[3][3]; float vi[3]; int i; if (!PyArg_ParseTuple(args, "OOOO:closest_point_on_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) { return NULL; } if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) == -1) { return NULL; } for (i = 0; i < ARRAY_SIZE(tri); i++) { if (mathutils_array_parse( tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) { return NULL; } } closest_on_tri_to_point_v3(vi, pt, UNPACK3(tri)); return Vector_CreatePyObject(vi, 3, NULL); } PyDoc_STRVAR( M_Geometry_intersect_point_tri_2d_doc, ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n" "\n" " Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 " "define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg tri_p1: First point of the triangle\n" " :type tri_p1: :class:`mathutils.Vector`\n" " :arg tri_p2: Second point of the triangle\n" " :type tri_p2: :class:`mathutils.Vector`\n" " :arg tri_p3: Third point of the triangle\n" " :type tri_p3: :class:`mathutils.Vector`\n" " :rtype: int\n"); static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_point_tri_2d"; PyObject *py_pt, *py_tri[3]; float pt[2], tri[3][2]; int i; if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri_2d", &py_pt, UNPACK3_EX(&, py_tri, ))) { return NULL; } if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) { return NULL; } for (i = 0; i < ARRAY_SIZE(tri); i++) { if (mathutils_array_parse(tri[i], 2, 2 | MU_ARRAY_SPILL, py_tri[i], error_prefix) == -1) { return NULL; } } return PyLong_FromLong(isect_point_tri_v2(pt, UNPACK3(tri))); } PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc, ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n" "\n" " Takes 5 vectors (using only the x and y coordinates): one is the point and the " "next 4 define the quad,\n" " only the x and y are used from the vectors. Returns 1 if the point is within the " "quad, otherwise 0.\n" " Works only with convex quads without singular edges.\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg quad_p1: First point of the quad\n" " :type quad_p1: :class:`mathutils.Vector`\n" " :arg quad_p2: Second point of the quad\n" " :type quad_p2: :class:`mathutils.Vector`\n" " :arg quad_p3: Third point of the quad\n" " :type quad_p3: :class:`mathutils.Vector`\n" " :arg quad_p4: Fourth point of the quad\n" " :type quad_p4: :class:`mathutils.Vector`\n" " :rtype: int\n"); static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "intersect_point_quad_2d"; PyObject *py_pt, *py_quad[4]; float pt[2], quad[4][2]; int i; if (!PyArg_ParseTuple(args, "OOOOO:intersect_point_quad_2d", &py_pt, UNPACK4_EX(&, py_quad, ))) { return NULL; } if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) { return NULL; } for (i = 0; i < ARRAY_SIZE(quad); i++) { if (mathutils_array_parse(quad[i], 2, 2 | MU_ARRAY_SPILL, py_quad[i], error_prefix) == -1) { return NULL; } } return PyLong_FromLong(isect_point_quad_v2(pt, UNPACK4(quad))); } PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc, ".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n" "\n" " Returns the signed distance between a point and a plane " " (negative when below the normal).\n" "\n" " :arg pt: Point\n" " :type pt: :class:`mathutils.Vector`\n" " :arg plane_co: A point on the plane\n" " :type plane_co: :class:`mathutils.Vector`\n" " :arg plane_no: The direction the plane is facing\n" " :type plane_no: :class:`mathutils.Vector`\n" " :rtype: float\n"); static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "distance_point_to_plane"; PyObject *py_pt, *py_plane_co, *py_plane_no; float pt[3], plane_co[3], plane_no[3]; float plane[4]; if (!PyArg_ParseTuple(args, "OOO:distance_point_to_plane", &py_pt, &py_plane_co, &py_plane_no)) { return NULL; } if (((mathutils_array_parse(pt, 3, 3 | MU_ARRAY_SPILL, py_pt, error_prefix) != -1) && (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) && (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) != -1)) == 0) { return NULL; } plane_from_point_normal_v3(plane, plane_co, plane_no); return PyFloat_FromDouble(dist_signed_to_plane_v3(pt, plane)); } PyDoc_STRVAR( M_Geometry_barycentric_transform_doc, ".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n" "\n" " Return a transformed point, the transformation is defined by 2 triangles.\n" "\n" " :arg point: The point to transform.\n" " :type point: :class:`mathutils.Vector`\n" " :arg tri_a1: source triangle vertex.\n" " :type tri_a1: :class:`mathutils.Vector`\n" " :arg tri_a2: source triangle vertex.\n" " :type tri_a2: :class:`mathutils.Vector`\n" " :arg tri_a3: source triangle vertex.\n" " :type tri_a3: :class:`mathutils.Vector`\n" " :arg tri_b1: target triangle vertex.\n" " :type tri_b1: :class:`mathutils.Vector`\n" " :arg tri_b2: target triangle vertex.\n" " :type tri_b2: :class:`mathutils.Vector`\n" " :arg tri_b3: target triangle vertex.\n" " :type tri_b3: :class:`mathutils.Vector`\n" " :return: The transformed point\n" " :rtype: :class:`mathutils.Vector`'s\n"); static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "barycentric_transform"; PyObject *py_pt_src, *py_tri_src[3], *py_tri_dst[3]; float pt_src[3], pt_dst[3], tri_src[3][3], tri_dst[3][3]; int i; if (!PyArg_ParseTuple(args, "OOOOOOO:barycentric_transform", &py_pt_src, UNPACK3_EX(&, py_tri_src, ), UNPACK3_EX(&, py_tri_dst, ))) { return NULL; } if (mathutils_array_parse(pt_src, 3, 3 | MU_ARRAY_SPILL, py_pt_src, error_prefix) == -1) { return NULL; } for (i = 0; i < ARRAY_SIZE(tri_src); i++) { if (((mathutils_array_parse(tri_src[i], 3, 3 | MU_ARRAY_SPILL, py_tri_src[i], error_prefix) != -1) && (mathutils_array_parse(tri_dst[i], 3, 3 | MU_ARRAY_SPILL, py_tri_dst[i], error_prefix) != -1)) == 0) { return NULL; } } transform_point_by_tri_v3(pt_dst, pt_src, UNPACK3(tri_dst), UNPACK3(tri_src)); return Vector_CreatePyObject(pt_dst, 3, NULL); } struct PointsInPlanes_UserData { PyObject *py_verts; char *planes_used; }; static void points_in_planes_fn(const float co[3], int i, int j, int k, void *user_data_p) { struct PointsInPlanes_UserData *user_data = user_data_p; PyList_APPEND(user_data->py_verts, Vector_CreatePyObject(co, 3, NULL)); user_data->planes_used[i] = true; user_data->planes_used[j] = true; user_data->planes_used[k] = true; } PyDoc_STRVAR(M_Geometry_points_in_planes_doc, ".. function:: points_in_planes(planes)\n" "\n" " Returns a list of points inside all planes given and a list of index values for " "the planes used.\n" "\n" " :arg planes: List of planes (4D vectors).\n" " :type planes: list of :class:`mathutils.Vector`\n" " :return: two lists, once containing the vertices inside the planes, another " "containing the plane indices used\n" " :rtype: pair of lists\n"); static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args) { PyObject *py_planes; float(*planes)[4]; uint planes_len; if (!PyArg_ParseTuple(args, "O:points_in_planes", &py_planes)) { return NULL; } if ((planes_len = mathutils_array_parse_alloc_v( (float **)&planes, 4, py_planes, "points_in_planes")) == -1) { return NULL; } /* NOTE: this could be refactored into plain C easy - py bits are noted. */ struct PointsInPlanes_UserData user_data = { .py_verts = PyList_New(0), .planes_used = PyMem_Malloc(sizeof(char) * planes_len), }; /* python */ PyObject *py_plane_index = PyList_New(0); memset(user_data.planes_used, 0, sizeof(char) * planes_len); const float eps_coplanar = 1e-4f; const float eps_isect = 1e-6f; const bool has_isect = isect_planes_v3_fn( planes, planes_len, eps_coplanar, eps_isect, points_in_planes_fn, &user_data); PyMem_Free(planes); /* Now make user_data list of used planes. */ if (has_isect) { for (int i = 0; i < planes_len; i++) { if (user_data.planes_used[i]) { PyList_APPEND(py_plane_index, PyLong_FromLong(i)); } } } PyMem_Free(user_data.planes_used); { PyObject *ret = PyTuple_New(2); PyTuple_SET_ITEMS(ret, user_data.py_verts, py_plane_index); return ret; } } #ifndef MATH_STANDALONE PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc, ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n" "\n" " Interpolate a bezier spline segment.\n" "\n" " :arg knot1: First bezier spline point.\n" " :type knot1: :class:`mathutils.Vector`\n" " :arg handle1: First bezier spline handle.\n" " :type handle1: :class:`mathutils.Vector`\n" " :arg handle2: Second bezier spline handle.\n" " :type handle2: :class:`mathutils.Vector`\n" " :arg knot2: Second bezier spline point.\n" " :type knot2: :class:`mathutils.Vector`\n" " :arg resolution: Number of points to return.\n" " :type resolution: int\n" " :return: The interpolated points\n" " :rtype: list of :class:`mathutils.Vector`'s\n"); static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "interpolate_bezier"; PyObject *py_data[4]; float data[4][4] = {{0.0f}}; int resolu; int dims = 0; int i; float *coord_array, *fp; PyObject *list; if (!PyArg_ParseTuple(args, "OOOOi:interpolate_bezier", UNPACK4_EX(&, py_data, ), &resolu)) { return NULL; } for (i = 0; i < 4; i++) { int dims_tmp; if ((dims_tmp = mathutils_array_parse( data[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_data[i], error_prefix)) == -1) { return NULL; } dims = max_ii(dims, dims_tmp); } if (resolu <= 1) { PyErr_SetString(PyExc_ValueError, "resolution must be 2 or over"); return NULL; } coord_array = MEM_callocN(dims * (resolu) * sizeof(float), error_prefix); for (i = 0; i < dims; i++) { BKE_curve_forward_diff_bezier( UNPACK4_EX(, data, [i]), coord_array + i, resolu - 1, sizeof(float) * dims); } list = PyList_New(resolu); fp = coord_array; for (i = 0; i < resolu; i++, fp = fp + dims) { PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, NULL)); } MEM_freeN(coord_array); return list; } PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc, ".. function:: tessellate_polygon(veclist_list)\n" "\n" " Takes a list of polylines (each point a pair or triplet of numbers) and returns " "the point indices for a polyline filled with triangles. Does not handle degenerate " "geometry (such as zero-length lines due to consecutive identical points).\n" "\n" " :arg veclist_list: list of polylines\n" " :rtype: list\n"); /* PolyFill function, uses Blenders scan-fill to fill multiple poly lines. */ static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq) { PyObject *tri_list; /* Return this list of tri's */ PyObject *polyLine, *polyVec; int i, len_polylines, len_polypoints; bool list_parse_error = false; bool is_2d = true; /* Display #ListBase. */ ListBase dispbase = {NULL, NULL}; DispList *dl; float *fp; /* Pointer to the array of malloced dl->verts to set the points from the vectors. */ int totpoints = 0; if (!PySequence_Check(polyLineSeq)) { PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines"); return NULL; } len_polylines = PySequence_Size(polyLineSeq); for (i = 0; i < len_polylines; i++) { polyLine = PySequence_GetItem(polyLineSeq, i); if (!PySequence_Check(polyLine)) { BKE_displist_free(&dispbase); Py_XDECREF(polyLine); /* May be null so use #Py_XDECREF. */ PyErr_SetString(PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's"); return NULL; } len_polypoints = PySequence_Size(polyLine); if (len_polypoints > 0) { /* don't bother adding edges as polylines */ dl = MEM_callocN(sizeof(DispList), "poly disp"); BLI_addtail(&dispbase, dl); dl->type = DL_INDEX3; dl->nr = len_polypoints; dl->type = DL_POLY; dl->parts = 1; /* no faces, 1 edge loop */ dl->col = 0; /* no material */ dl->verts = fp = MEM_mallocN(sizeof(float[3]) * len_polypoints, "dl verts"); dl->index = MEM_callocN(sizeof(int[3]) * len_polypoints, "dl index"); for (int index = 0; index < len_polypoints; index++, fp += 3) { polyVec = PySequence_GetItem(polyLine, index); const int polyVec_len = mathutils_array_parse( fp, 2, 3 | MU_ARRAY_SPILL, polyVec, "tessellate_polygon: parse coord"); Py_DECREF(polyVec); if (UNLIKELY(polyVec_len == -1)) { list_parse_error = true; } else if (polyVec_len == 2) { fp[2] = 0.0f; } else if (polyVec_len == 3) { is_2d = false; } totpoints++; } } Py_DECREF(polyLine); } if (list_parse_error) { BKE_displist_free(&dispbase); /* possible some dl was allocated */ return NULL; } if (totpoints) { /* now make the list to return */ BKE_displist_fill(&dispbase, &dispbase, is_2d ? ((const float[3]){0, 0, -1}) : NULL, false); /* The faces are stored in a new DisplayList * that's added to the head of the #ListBase. */ dl = dispbase.first; tri_list = PyList_New(dl->parts); if (!tri_list) { BKE_displist_free(&dispbase); PyErr_SetString(PyExc_RuntimeError, "failed to make a new list"); return NULL; } int *dl_face = dl->index; for (int index = 0; index < dl->parts; index++) { PyList_SET_ITEM(tri_list, index, PyC_Tuple_Pack_I32(dl_face[0], dl_face[1], dl_face[2])); dl_face += 3; } BKE_displist_free(&dispbase); } else { /* no points, do this so scripts don't barf */ BKE_displist_free(&dispbase); /* possible some dl was allocated */ tri_list = PyList_New(0); } return tri_list; } static int boxPack_FromPyObject(PyObject *value, BoxPack **r_boxarray) { Py_ssize_t len, i; PyObject *list_item, *item_1, *item_2; BoxPack *boxarray; /* Error checking must already be done */ if (!PyList_Check(value)) { PyErr_SetString(PyExc_TypeError, "can only back a list of [x, y, w, h]"); return -1; } len = PyList_GET_SIZE(value); boxarray = MEM_mallocN(sizeof(BoxPack) * len, __func__); for (i = 0; i < len; i++) { list_item = PyList_GET_ITEM(value, i); if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) { MEM_freeN(boxarray); PyErr_SetString(PyExc_TypeError, "can only pack a list of [x, y, w, h]"); return -1; } BoxPack *box = &boxarray[i]; item_1 = PyList_GET_ITEM(list_item, 2); item_2 = PyList_GET_ITEM(list_item, 3); box->w = (float)PyFloat_AsDouble(item_1); box->h = (float)PyFloat_AsDouble(item_2); box->index = i; /* accounts for error case too and overwrites with own error */ if (box->w < 0.0f || box->h < 0.0f) { MEM_freeN(boxarray); PyErr_SetString(PyExc_TypeError, "error parsing width and height values from list: " "[x, y, w, h], not numbers or below zero"); return -1; } /* verts will be added later */ } *r_boxarray = boxarray; return 0; } static void boxPack_ToPyObject(PyObject *value, const BoxPack *boxarray) { Py_ssize_t len, i; PyObject *list_item; len = PyList_GET_SIZE(value); for (i = 0; i < len; i++) { const BoxPack *box = &boxarray[i]; list_item = PyList_GET_ITEM(value, box->index); PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x)); PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y)); } } PyDoc_STRVAR(M_Geometry_box_pack_2d_doc, ".. function:: box_pack_2d(boxes)\n" "\n" " Returns a tuple with the width and height of the packed bounding box.\n" "\n" " :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, " "width, height, ...] other items are ignored.\n" " :type boxes: list\n" " :return: the width and height of the packed bounding box\n" " :rtype: tuple, pair of floats\n"); static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist) { float tot_width = 0.0f, tot_height = 0.0f; Py_ssize_t len; PyObject *ret; if (!PyList_Check(boxlist)) { PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x, y, w, h], ... ]"); return NULL; } len = PyList_GET_SIZE(boxlist); if (len) { BoxPack *boxarray = NULL; if (boxPack_FromPyObject(boxlist, &boxarray) == -1) { return NULL; /* exception set */ } /* Non Python function */ BLI_box_pack_2d(boxarray, len, &tot_width, &tot_height); boxPack_ToPyObject(boxlist, boxarray); MEM_freeN(boxarray); } ret = PyTuple_New(2); PyTuple_SET_ITEMS(ret, PyFloat_FromDouble(tot_width), PyFloat_FromDouble(tot_height)); return ret; } PyDoc_STRVAR(M_Geometry_box_fit_2d_doc, ".. function:: box_fit_2d(points)\n" "\n" " Returns an angle that best fits the points to an axis aligned rectangle\n" "\n" " :arg points: list of 2d points.\n" " :type points: list\n" " :return: angle\n" " :rtype: float\n"); static PyObject *M_Geometry_box_fit_2d(PyObject *UNUSED(self), PyObject *pointlist) { float(*points)[2]; Py_ssize_t len; float angle = 0.0f; len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "box_fit_2d"); if (len == -1) { return NULL; } if (len) { /* Non Python function */ angle = BLI_convexhull_aabb_fit_points_2d(points, len); PyMem_Free(points); } return PyFloat_FromDouble(angle); } PyDoc_STRVAR(M_Geometry_convex_hull_2d_doc, ".. function:: convex_hull_2d(points)\n" "\n" " Returns a list of indices into the list given\n" "\n" " :arg points: list of 2d points.\n" " :type points: list\n" " :return: a list of indices\n" " :rtype: list of ints\n"); static PyObject *M_Geometry_convex_hull_2d(PyObject *UNUSED(self), PyObject *pointlist) { float(*points)[2]; Py_ssize_t len; PyObject *ret; len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "convex_hull_2d"); if (len == -1) { return NULL; } if (len) { int *index_map; Py_ssize_t len_ret, i; index_map = MEM_mallocN(sizeof(*index_map) * len, __func__); /* Non Python function */ len_ret = BLI_convexhull_2d(points, len, index_map); ret = PyList_New(len_ret); for (i = 0; i < len_ret; i++) { PyList_SET_ITEM(ret, i, PyLong_FromLong(index_map[i])); } MEM_freeN(index_map); PyMem_Free(points); } else { ret = PyList_New(0); } return ret; } /* Return a PyObject that is a list of lists, using the flattened list array * to fill values, with start_table and len_table giving the start index * and length of the toplevel_len sub-lists. */ static PyObject *list_of_lists_from_arrays(const int *array, const int *start_table, const int *len_table, int toplevel_len) { PyObject *ret, *sublist; int i, j, sublist_len, sublist_start, val; if (array == NULL) { return PyList_New(0); } ret = PyList_New(toplevel_len); for (i = 0; i < toplevel_len; i++) { sublist_len = len_table[i]; sublist = PyList_New(sublist_len); sublist_start = start_table[i]; for (j = 0; j < sublist_len; j++) { val = array[sublist_start + j]; PyList_SET_ITEM(sublist, j, PyLong_FromLong(val)); } PyList_SET_ITEM(ret, i, sublist); } return ret; } PyDoc_STRVAR( M_Geometry_delaunay_2d_cdt_doc, ".. function:: delaunay_2d_cdt(vert_coords, edges, faces, output_type, epsilon, " "need_ids=True)\n" "\n" " Computes the Constrained Delaunay Triangulation of a set of vertices,\n" " with edges and faces that must appear in the triangulation.\n" " Some triangles may be eaten away, or combined with other triangles,\n" " according to output type.\n" " The returned verts may be in a different order from input verts, may be moved\n" " slightly, and may be merged with other nearby verts.\n" " The three returned orig lists give, for each of verts, edges, and faces, the list of\n" " input element indices corresponding to the positionally same output element.\n" " For edges, the orig indices start with the input edges and then continue\n" " with the edges implied by each of the faces (n of them for an n-gon).\n" " If the need_ids argument is supplied, and False, then the code skips the preparation\n" " of the orig arrays, which may save some time." "\n" " :arg vert_coords: Vertex coordinates (2d)\n" " :type vert_coords: list of :class:`mathutils.Vector`\n" " :arg edges: Edges, as pairs of indices in `vert_coords`\n" " :type edges: list of (int, int)\n" " :arg faces: Faces, each sublist is a face, as indices in `vert_coords` (CCW oriented)\n" " :type faces: list of list of int\n" " :arg output_type: What output looks like. 0 => triangles with convex hull. " "1 => triangles inside constraints. " "2 => the input constraints, intersected. " "3 => like 2 but detect holes and omit them from output. " "4 => like 2 but with extra edges to make valid BMesh faces. " "5 => like 4 but detect holes and omit them from output.\n" " :type output_type: int\\n" " :arg epsilon: For nearness tests; should not be zero\n" " :type epsilon: float\n" " :arg need_ids: are the orig output arrays needed?\n" " :type need_args: bool\n" " :return: Output tuple, (vert_coords, edges, faces, orig_verts, orig_edges, orig_faces)\n" " :rtype: (list of `mathutils.Vector`, " "list of (int, int), " "list of list of int, " "list of list of int, " "list of list of int, " "list of list of int)\n" "\n"); static PyObject *M_Geometry_delaunay_2d_cdt(PyObject *UNUSED(self), PyObject *args) { const char *error_prefix = "delaunay_2d_cdt"; PyObject *vert_coords, *edges, *faces, *item; int output_type; float epsilon; bool need_ids = true; float(*in_coords)[2] = NULL; int(*in_edges)[2] = NULL; int *in_faces = NULL; int *in_faces_start_table = NULL; int *in_faces_len_table = NULL; Py_ssize_t vert_coords_len, edges_len, faces_len; CDT_input in; CDT_result *res = NULL; PyObject *out_vert_coords = NULL; PyObject *out_edges = NULL; PyObject *out_faces = NULL; PyObject *out_orig_verts = NULL; PyObject *out_orig_edges = NULL; PyObject *out_orig_faces = NULL; PyObject *ret_value = NULL; int i; if (!PyArg_ParseTuple(args, "OOOif|p:delaunay_2d_cdt", &vert_coords, &edges, &faces, &output_type, &epsilon, &need_ids)) { return NULL; } vert_coords_len = mathutils_array_parse_alloc_v( (float **)&in_coords, 2, vert_coords, error_prefix); if (vert_coords_len == -1) { return NULL; } edges_len = mathutils_array_parse_alloc_vi((int **)&in_edges, 2, edges, error_prefix); if (edges_len == -1) { goto exit_cdt; } faces_len = mathutils_array_parse_alloc_viseq( &in_faces, &in_faces_start_table, &in_faces_len_table, faces, error_prefix); if (faces_len == -1) { goto exit_cdt; } in.verts_len = (int)vert_coords_len; in.vert_coords = in_coords; in.edges_len = edges_len; in.faces_len = faces_len; in.edges = in_edges; in.faces = in_faces; in.faces_start_table = in_faces_start_table; in.faces_len_table = in_faces_len_table; in.epsilon = epsilon; in.need_ids = need_ids; res = BLI_delaunay_2d_cdt_calc(&in, output_type); ret_value = PyTuple_New(6); out_vert_coords = PyList_New(res->verts_len); for (i = 0; i < res->verts_len; i++) { item = Vector_CreatePyObject(res->vert_coords[i], 2, NULL); if (item == NULL) { Py_DECREF(ret_value); Py_DECREF(out_vert_coords); goto exit_cdt; } PyList_SET_ITEM(out_vert_coords, i, item); } PyTuple_SET_ITEM(ret_value, 0, out_vert_coords); out_edges = PyList_New(res->edges_len); for (i = 0; i < res->edges_len; i++) { item = PyTuple_New(2); PyTuple_SET_ITEM(item, 0, PyLong_FromLong((long)res->edges[i][0])); PyTuple_SET_ITEM(item, 1, PyLong_FromLong((long)res->edges[i][1])); PyList_SET_ITEM(out_edges, i, item); } PyTuple_SET_ITEM(ret_value, 1, out_edges); out_faces = list_of_lists_from_arrays( res->faces, res->faces_start_table, res->faces_len_table, res->faces_len); PyTuple_SET_ITEM(ret_value, 2, out_faces); out_orig_verts = list_of_lists_from_arrays( res->verts_orig, res->verts_orig_start_table, res->verts_orig_len_table, res->verts_len); PyTuple_SET_ITEM(ret_value, 3, out_orig_verts); out_orig_edges = list_of_lists_from_arrays( res->edges_orig, res->edges_orig_start_table, res->edges_orig_len_table, res->edges_len); PyTuple_SET_ITEM(ret_value, 4, out_orig_edges); out_orig_faces = list_of_lists_from_arrays( res->faces_orig, res->faces_orig_start_table, res->faces_orig_len_table, res->faces_len); PyTuple_SET_ITEM(ret_value, 5, out_orig_faces); exit_cdt: if (in_coords != NULL) { PyMem_Free(in_coords); } if (in_edges != NULL) { PyMem_Free(in_edges); } if (in_faces != NULL) { PyMem_Free(in_faces); } if (in_faces_start_table != NULL) { PyMem_Free(in_faces_start_table); } if (in_faces_len_table != NULL) { PyMem_Free(in_faces_len_table); } if (res) { BLI_delaunay_2d_cdt_free(res); } return ret_value; } #endif /* MATH_STANDALONE */ static PyMethodDef M_Geometry_methods[] = { {"intersect_ray_tri", (PyCFunction)M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc}, {"intersect_point_line", (PyCFunction)M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc}, {"intersect_point_tri", (PyCFunction)M_Geometry_intersect_point_tri, METH_VARARGS, M_Geometry_intersect_point_tri_doc}, {"closest_point_on_tri", (PyCFunction)M_Geometry_closest_point_on_tri, METH_VARARGS, M_Geometry_closest_point_on_tri_doc}, {"intersect_point_tri_2d", (PyCFunction)M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc}, {"intersect_point_quad_2d", (PyCFunction)M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc}, {"intersect_line_line", (PyCFunction)M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc}, {"intersect_line_line_2d", (PyCFunction)M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc}, {"intersect_line_plane", (PyCFunction)M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc}, {"intersect_plane_plane", (PyCFunction)M_Geometry_intersect_plane_plane, METH_VARARGS, M_Geometry_intersect_plane_plane_doc}, {"intersect_line_sphere", (PyCFunction)M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc}, {"intersect_line_sphere_2d", (PyCFunction)M_Geometry_intersect_line_sphere_2d, METH_VARARGS, M_Geometry_intersect_line_sphere_2d_doc}, {"distance_point_to_plane", (PyCFunction)M_Geometry_distance_point_to_plane, METH_VARARGS, M_Geometry_distance_point_to_plane_doc}, {"intersect_sphere_sphere_2d", (PyCFunction)M_Geometry_intersect_sphere_sphere_2d, METH_VARARGS, M_Geometry_intersect_sphere_sphere_2d_doc}, {"intersect_tri_tri_2d", (PyCFunction)M_Geometry_intersect_tri_tri_2d, METH_VARARGS, M_Geometry_intersect_tri_tri_2d_doc}, {"area_tri", (PyCFunction)M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc}, {"volume_tetrahedron", (PyCFunction)M_Geometry_volume_tetrahedron, METH_VARARGS, M_Geometry_volume_tetrahedron_doc}, {"normal", (PyCFunction)M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc}, {"barycentric_transform", (PyCFunction)M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc}, {"points_in_planes", (PyCFunction)M_Geometry_points_in_planes, METH_VARARGS, M_Geometry_points_in_planes_doc}, #ifndef MATH_STANDALONE {"interpolate_bezier", (PyCFunction)M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc}, {"tessellate_polygon", (PyCFunction)M_Geometry_tessellate_polygon, METH_O, M_Geometry_tessellate_polygon_doc}, {"convex_hull_2d", (PyCFunction)M_Geometry_convex_hull_2d, METH_O, M_Geometry_convex_hull_2d_doc}, {"delaunay_2d_cdt", (PyCFunction)M_Geometry_delaunay_2d_cdt, METH_VARARGS, M_Geometry_delaunay_2d_cdt_doc}, {"box_fit_2d", (PyCFunction)M_Geometry_box_fit_2d, METH_O, M_Geometry_box_fit_2d_doc}, {"box_pack_2d", (PyCFunction)M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc}, #endif {NULL, NULL, 0, NULL}, }; static struct PyModuleDef M_Geometry_module_def = { PyModuleDef_HEAD_INIT, "mathutils.geometry", /* m_name */ M_Geometry_doc, /* m_doc */ 0, /* m_size */ M_Geometry_methods, /* m_methods */ NULL, /* m_slots */ NULL, /* m_traverse */ NULL, /* m_clear */ NULL, /* m_free */ }; /*----------------------------MODULE INIT-------------------------*/ PyMODINIT_FUNC PyInit_mathutils_geometry(void) { PyObject *submodule = PyModule_Create(&M_Geometry_module_def); return submodule; }