/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2009 Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): André Pinto. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/render/intern/raytrace/bvh.h * \ingroup render */ #include "MEM_guardedalloc.h" #include "BLI_math.h" #include "raycounter.h" #include "rayintersection.h" #include "rayobject.h" #include "rayobject_hint.h" #include "rayobject_rtbuild.h" #include #ifdef __SSE__ #include #endif #ifndef __BVH_H__ #define __BVH_H__ #ifdef __SSE__ inline int test_bb_group4(__m128 *bb_group, const Isect *isec) { const __m128 tmin0 = _mm_setzero_ps(); const __m128 tmax0 = _mm_set_ps1(isec->dist); float start[3], idot_axis[3]; copy_v3_v3(start, isec->start); copy_v3_v3(idot_axis, isec->idot_axis); const __m128 tmin1 = _mm_max_ps(tmin0, _mm_mul_ps(_mm_sub_ps(bb_group[isec->bv_index[0]], _mm_set_ps1(start[0]) ), _mm_set_ps1(idot_axis[0])) ); const __m128 tmax1 = _mm_min_ps(tmax0, _mm_mul_ps(_mm_sub_ps(bb_group[isec->bv_index[1]], _mm_set_ps1(start[0]) ), _mm_set_ps1(idot_axis[0])) ); const __m128 tmin2 = _mm_max_ps(tmin1, _mm_mul_ps(_mm_sub_ps(bb_group[isec->bv_index[2]], _mm_set_ps1(start[1]) ), _mm_set_ps1(idot_axis[1])) ); const __m128 tmax2 = _mm_min_ps(tmax1, _mm_mul_ps(_mm_sub_ps(bb_group[isec->bv_index[3]], _mm_set_ps1(start[1]) ), _mm_set_ps1(idot_axis[1])) ); const __m128 tmin3 = _mm_max_ps(tmin2, _mm_mul_ps(_mm_sub_ps(bb_group[isec->bv_index[4]], _mm_set_ps1(start[2]) ), _mm_set_ps1(idot_axis[2])) ); const __m128 tmax3 = _mm_min_ps(tmax2, _mm_mul_ps(_mm_sub_ps(bb_group[isec->bv_index[5]], _mm_set_ps1(start[2]) ), _mm_set_ps1(idot_axis[2])) ); return _mm_movemask_ps(_mm_cmpge_ps(tmax3, tmin3)); } #endif /* * Determines the distance that the ray must travel to hit the bounding volume of the given node * Based on Tactical Optimization of Ray/Box Intersection, by Graham Fyffe * [http://tog.acm.org/resources/RTNews/html/rtnv21n1.html#art9] */ static int rayobject_bb_intersect_test(const Isect *isec, const float *_bb) { const float *bb = _bb; float t1x = (bb[isec->bv_index[0]] - isec->start[0]) * isec->idot_axis[0]; float t2x = (bb[isec->bv_index[1]] - isec->start[0]) * isec->idot_axis[0]; float t1y = (bb[isec->bv_index[2]] - isec->start[1]) * isec->idot_axis[1]; float t2y = (bb[isec->bv_index[3]] - isec->start[1]) * isec->idot_axis[1]; float t1z = (bb[isec->bv_index[4]] - isec->start[2]) * isec->idot_axis[2]; float t2z = (bb[isec->bv_index[5]] - isec->start[2]) * isec->idot_axis[2]; RE_RC_COUNT(isec->raycounter->bb.test); if (t1x > t2y || t2x < t1y || t1x > t2z || t2x < t1z || t1y > t2z || t2y < t1z) return 0; if (t2x < 0.0 || t2y < 0.0 || t2z < 0.0) return 0; if (t1x > isec->dist || t1y > isec->dist || t1z > isec->dist) return 0; RE_RC_COUNT(isec->raycounter->bb.hit); return 1; } /* bvh tree generics */ template static void bvh_add(Tree *obj, RayObject *ob) { rtbuild_add(obj->builder, ob); } template inline bool is_leaf(Node *node) { return !RE_rayobject_isAligned(node); } template static void bvh_done(Tree *obj); template static void bvh_free(Tree *obj) { if (obj->builder) rtbuild_free(obj->builder); if (obj->node_arena) BLI_memarena_free(obj->node_arena); MEM_freeN(obj); } template static void bvh_bb(Tree *obj, float *min, float *max) { if (obj->root) bvh_node_merge_bb(obj->root, min, max); } template static float bvh_cost(Tree *obj) { assert(obj->cost >= 0.0); return obj->cost; } /* bvh tree nodes generics */ template static inline int bvh_node_hit_test(Node *node, Isect *isec) { return rayobject_bb_intersect_test(isec, (const float *)node->bb); } template static inline void bvh_node_merge_bb(Node *node, float min[3], float max[3]) { if (is_leaf(node)) { RE_rayobject_merge_bb((RayObject *)node, min, max); } else { DO_MIN(node->bb, min); DO_MAX(node->bb + 3, max); } } /* * recursively transverse a BVH looking for a rayhit using a local stack */ template static inline void bvh_node_push_childs(Node *node, Isect *isec, Node **stack, int &stack_pos); template static int bvh_node_stack_raycast(Node *root, Isect *isec) { Node *stack[MAX_STACK_SIZE]; int hit = 0, stack_pos = 0; if (!TEST_ROOT && !is_leaf(root)) bvh_node_push_childs(root, isec, stack, stack_pos); else stack[stack_pos++] = root; while (stack_pos) { Node *node = stack[--stack_pos]; if (!is_leaf(node)) { if (bvh_node_hit_test(node, isec)) { bvh_node_push_childs(node, isec, stack, stack_pos); assert(stack_pos <= MAX_STACK_SIZE); } } else { hit |= RE_rayobject_intersect( (RayObject *)node, isec); if (SHADOW && hit) return hit; } } return hit; } #ifdef __SSE__ /* * Generic SIMD bvh recursion * this was created to be able to use any simd (with the cost of some memmoves) * it can take advantage of any SIMD width and doens't needs any special tree care */ template static int bvh_node_stack_raycast_simd(Node *root, Isect *isec) { Node *stack[MAX_STACK_SIZE]; int hit = 0, stack_pos = 0; if (!TEST_ROOT) { if (!is_leaf(root)) { if (!is_leaf(root->child)) bvh_node_push_childs(root, isec, stack, stack_pos); else return RE_rayobject_intersect( (RayObject *)root->child, isec); } else return RE_rayobject_intersect( (RayObject *)root, isec); } else { if (!is_leaf(root)) stack[stack_pos++] = root; else return RE_rayobject_intersect( (RayObject *)root, isec); } while (true) { //Use SIMD 4 if (stack_pos >= 4) { __m128 t_bb[6]; Node *t_node[4]; stack_pos -= 4; /* prepare the 4BB for SIMD */ t_node[0] = stack[stack_pos + 0]->child; t_node[1] = stack[stack_pos + 1]->child; t_node[2] = stack[stack_pos + 2]->child; t_node[3] = stack[stack_pos + 3]->child; const float *bb0 = stack[stack_pos + 0]->bb; const float *bb1 = stack[stack_pos + 1]->bb; const float *bb2 = stack[stack_pos + 2]->bb; const float *bb3 = stack[stack_pos + 3]->bb; const __m128 x0y0x1y1 = _mm_shuffle_ps(_mm_load_ps(bb0), _mm_load_ps(bb1), _MM_SHUFFLE(1, 0, 1, 0) ); const __m128 x2y2x3y3 = _mm_shuffle_ps(_mm_load_ps(bb2), _mm_load_ps(bb3), _MM_SHUFFLE(1, 0, 1, 0) ); t_bb[0] = _mm_shuffle_ps(x0y0x1y1, x2y2x3y3, _MM_SHUFFLE(2, 0, 2, 0) ); t_bb[1] = _mm_shuffle_ps(x0y0x1y1, x2y2x3y3, _MM_SHUFFLE(3, 1, 3, 1) ); const __m128 z0X0z1X1 = _mm_shuffle_ps(_mm_load_ps(bb0), _mm_load_ps(bb1), _MM_SHUFFLE(3, 2, 3, 2) ); const __m128 z2X2z3X3 = _mm_shuffle_ps(_mm_load_ps(bb2), _mm_load_ps(bb3), _MM_SHUFFLE(3, 2, 3, 2) ); t_bb[2] = _mm_shuffle_ps(z0X0z1X1, z2X2z3X3, _MM_SHUFFLE(2, 0, 2, 0) ); t_bb[3] = _mm_shuffle_ps(z0X0z1X1, z2X2z3X3, _MM_SHUFFLE(3, 1, 3, 1) ); const __m128 Y0Z0Y1Z1 = _mm_shuffle_ps(_mm_load_ps(bb0 + 4), _mm_load_ps(bb1 + 4), _MM_SHUFFLE(1, 0, 1, 0) ); const __m128 Y2Z2Y3Z3 = _mm_shuffle_ps(_mm_load_ps(bb2 + 4), _mm_load_ps(bb3 + 4), _MM_SHUFFLE(1, 0, 1, 0) ); t_bb[4] = _mm_shuffle_ps(Y0Z0Y1Z1, Y2Z2Y3Z3, _MM_SHUFFLE(2, 0, 2, 0) ); t_bb[5] = _mm_shuffle_ps(Y0Z0Y1Z1, Y2Z2Y3Z3, _MM_SHUFFLE(3, 1, 3, 1) ); #if 0 for (int i = 0; i < 4; i++) { Node *t = stack[stack_pos + i]; assert(!is_leaf(t)); float *bb = ((float *)t_bb) + i; bb[4 * 0] = t->bb[0]; bb[4 * 1] = t->bb[1]; bb[4 * 2] = t->bb[2]; bb[4 * 3] = t->bb[3]; bb[4 * 4] = t->bb[4]; bb[4 * 5] = t->bb[5]; t_node[i] = t->child; } #endif RE_RC_COUNT(isec->raycounter->simd_bb.test); int res = test_bb_group4(t_bb, isec); for (int i = 0; i < 4; i++) if (res & (1 << i)) { RE_RC_COUNT(isec->raycounter->simd_bb.hit); if (!is_leaf(t_node[i])) { for (Node *t = t_node[i]; t; t = t->sibling) { assert(stack_pos < MAX_STACK_SIZE); stack[stack_pos++] = t; } } else { hit |= RE_rayobject_intersect( (RayObject *)t_node[i], isec); if (hit && isec->mode == RE_RAY_SHADOW) return hit; } } } else if (stack_pos > 0) { Node *node = stack[--stack_pos]; assert(!is_leaf(node)); if (bvh_node_hit_test(node, isec)) { if (!is_leaf(node->child)) { bvh_node_push_childs(node, isec, stack, stack_pos); assert(stack_pos <= MAX_STACK_SIZE); } else { hit |= RE_rayobject_intersect( (RayObject *)node->child, isec); if (hit && isec->mode == RE_RAY_SHADOW) return hit; } } } else break; } return hit; } #endif /* * recursively transverse a BVH looking for a rayhit using system stack */ #if 0 template static int bvh_node_raycast(Node *node, Isect *isec) { int hit = 0; if (bvh_test_node(node, isec)) { if (isec->idot_axis[node->split_axis] > 0.0f) { int i; for (i = 0; i < BVH_NCHILDS; i++) if (!is_leaf(node->child[i])) { if (node->child[i] == 0) break; hit |= bvh_node_raycast(node->child[i], isec); if (hit && isec->mode == RE_RAY_SHADOW) return hit; } else { hit |= RE_rayobject_intersect( (RayObject *)node->child[i], isec); if (hit && isec->mode == RE_RAY_SHADOW) return hit; } } else { int i; for (i = BVH_NCHILDS - 1; i >= 0; i--) if (!is_leaf(node->child[i])) { if (node->child[i]) { hit |= dfs_raycast(node->child[i], isec); if (hit && isec->mode == RE_RAY_SHADOW) return hit; } } else { hit |= RE_rayobject_intersect( (RayObject *)node->child[i], isec); if (hit && isec->mode == RE_RAY_SHADOW) return hit; } } } return hit; } #endif template void bvh_dfs_make_hint(Node *node, LCTSHint *hint, int reserve_space, HintObject *hintObject) { assert(hint->size + reserve_space + 1 <= RE_RAY_LCTS_MAX_SIZE); if (is_leaf(node)) { hint->stack[hint->size++] = (RayObject *)node; } else { int childs = count_childs(node); if (hint->size + reserve_space + childs <= RE_RAY_LCTS_MAX_SIZE) { int result = hint_test_bb(hintObject, node->bb, node->bb + 3); if (result == HINT_RECURSE) { /* We are 100% sure the ray will be pass inside this node */ bvh_dfs_make_hint_push_siblings(node->child, hint, reserve_space, hintObject); } else if (result == HINT_ACCEPT) { hint->stack[hint->size++] = (RayObject *)node; } } else { hint->stack[hint->size++] = (RayObject *)node; } } } template static RayObjectAPI *bvh_get_api(int maxstacksize); template static inline RayObject *bvh_create_tree(int size) { Tree *obj = (Tree *)MEM_callocN(sizeof(Tree), "BVHTree"); assert(RE_rayobject_isAligned(obj)); /* RayObject API assumes real data to be 4-byte aligned */ obj->rayobj.api = bvh_get_api(DFS_STACK_SIZE); obj->root = NULL; obj->node_arena = NULL; obj->builder = rtbuild_create(size); return RE_rayobject_unalignRayAPI((RayObject *) obj); } #endif