/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributors: 2004/2005/2006 Blender Foundation, full recode * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ /** \file blender/render/intern/source/imagetexture.c * \ingroup render */ #include #include #include #include #include #ifndef WIN32 #include #else #include #endif #include "IMB_imbuf_types.h" #include "IMB_imbuf.h" #include "DNA_image_types.h" #include "DNA_scene_types.h" #include "DNA_texture_types.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_threads.h" #include "BLI_utildefines.h" #include "BKE_main.h" #include "BKE_image.h" #include "RE_render_ext.h" #include "renderpipeline.h" #include "render_types.h" #include "texture.h" /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* defined in pipeline.c, is hardcopy of active dynamic allocated Render */ /* only to be used here in this file, it's for speed */ extern struct Render R; /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ static void boxsample(ImBuf *ibuf, float minx, float miny, float maxx, float maxy, TexResult *texres, const short imaprepeat, const short imapextend); /* *********** IMAGEWRAPPING ****************** */ /* x and y have to be checked for image size */ static void ibuf_get_color(float col[4], struct ImBuf *ibuf, int x, int y) { int ofs = y * ibuf->x + x; if (ibuf->rect_float) { if (ibuf->channels==4) { const float *fp= ibuf->rect_float + 4*ofs; copy_v4_v4(col, fp); } else if (ibuf->channels==3) { const float *fp= ibuf->rect_float + 3*ofs; copy_v3_v3(col, fp); col[3]= 1.0f; } else { const float *fp= ibuf->rect_float + ofs; col[0]= col[1]= col[2]= col[3]= *fp; } } else { const char *rect = (char *)( ibuf->rect+ ofs); col[0] = ((float)rect[0])*(1.0f/255.0f); col[1] = ((float)rect[1])*(1.0f/255.0f); col[2] = ((float)rect[2])*(1.0f/255.0f); col[3] = ((float)rect[3])*(1.0f/255.0f); /* bytes are internally straight, however render pipeline seems to expect premul */ col[0] *= col[3]; col[1] *= col[3]; col[2] *= col[3]; } } int imagewrap(Tex *tex, Image *ima, ImBuf *ibuf, const float texvec[3], TexResult *texres, struct ImagePool *pool) { float fx, fy, val1, val2, val3; int x, y, retval; int xi, yi; /* original values */ texres->tin= texres->ta= texres->tr= texres->tg= texres->tb= 0.0f; /* we need to set retval OK, otherwise texture code generates normals itself... */ retval= texres->nor ? 3 : 1; /* quick tests */ if (ibuf==NULL && ima==NULL) return retval; if (ima) { /* hack for icon render */ if ((R.r.scemode & R_NO_IMAGE_LOAD) && !BKE_image_has_loaded_ibuf(ima)) return retval; ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool); ima->flag|= IMA_USED_FOR_RENDER; } if (ibuf==NULL || (ibuf->rect==NULL && ibuf->rect_float==NULL)) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } /* setup mapping */ if (tex->imaflag & TEX_IMAROT) { fy= texvec[0]; fx= texvec[1]; } else { fx= texvec[0]; fy= texvec[1]; } if (tex->extend == TEX_CHECKER) { int xs, ys; xs= (int)floor(fx); ys= (int)floor(fy); fx-= xs; fy-= ys; if ( (tex->flag & TEX_CHECKER_ODD) == 0) { if ((xs + ys) & 1) { /* pass */ } else { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } if ( (tex->flag & TEX_CHECKER_EVEN)==0) { if ((xs+ys) & 1) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } /* scale around center, (0.5, 0.5) */ if (tex->checkerdist<1.0f) { fx= (fx-0.5f)/(1.0f-tex->checkerdist) +0.5f; fy= (fy-0.5f)/(1.0f-tex->checkerdist) +0.5f; } } x= xi= (int)floorf(fx*ibuf->x); y= yi= (int)floorf(fy*ibuf->y); if (tex->extend == TEX_CLIPCUBE) { if (x<0 || y<0 || x>=ibuf->x || y>=ibuf->y || texvec[2]<-1.0f || texvec[2]>1.0f) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } else if ( tex->extend==TEX_CLIP || tex->extend==TEX_CHECKER) { if (x<0 || y<0 || x>=ibuf->x || y>=ibuf->y) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } else { if (tex->extend==TEX_EXTEND) { if (x>=ibuf->x) x = ibuf->x-1; else if (x<0) x= 0; } else { x= x % ibuf->x; if (x<0) x+= ibuf->x; } if (tex->extend==TEX_EXTEND) { if (y>=ibuf->y) y = ibuf->y-1; else if (y<0) y= 0; } else { y= y % ibuf->y; if (y<0) y+= ibuf->y; } } /* warning, no return before setting back! */ if ( (R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields) ) { ibuf->rect+= (ibuf->x*ibuf->y); } /* keep this before interpolation [#29761] */ if (ima) { if ((tex->imaflag & TEX_USEALPHA) && (ima->flag & IMA_IGNORE_ALPHA) == 0) { if ((tex->imaflag & TEX_CALCALPHA) == 0) { texres->talpha = true; } } } /* interpolate */ if (tex->imaflag & TEX_INTERPOL) { float filterx, filtery; filterx = (0.5f * tex->filtersize) / ibuf->x; filtery = (0.5f * tex->filtersize) / ibuf->y; /* important that this value is wrapped [#27782] * this applies the modifications made by the checks above, * back to the floating point values */ fx -= (float)(xi - x) / (float)ibuf->x; fy -= (float)(yi - y) / (float)ibuf->y; boxsample(ibuf, fx-filterx, fy-filtery, fx+filterx, fy+filtery, texres, (tex->extend==TEX_REPEAT), (tex->extend==TEX_EXTEND)); } else { /* no filtering */ ibuf_get_color(&texres->tr, ibuf, x, y); } if ( (R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields) ) { ibuf->rect-= (ibuf->x*ibuf->y); } if (texres->nor) { if (tex->imaflag & TEX_NORMALMAP) { /* qdn: normal from color * The invert of the red channel is to make * the normal map compliant with the outside world. * It needs to be done because in Blender * the normal used in the renderer points inward. It is generated * this way in calc_vertexnormals(). Should this ever change * this negate must be removed. */ texres->nor[0] = -2.f*(texres->tr - 0.5f); texres->nor[1] = 2.f*(texres->tg - 0.5f); texres->nor[2] = 2.f*(texres->tb - 0.5f); } else { /* bump: take three samples */ val1= texres->tr+texres->tg+texres->tb; if (xx-1) { float col[4]; ibuf_get_color(col, ibuf, x+1, y); val2= (col[0]+col[1]+col[2]); } else { val2= val1; } if (yy-1) { float col[4]; ibuf_get_color(col, ibuf, x, y+1); val3 = (col[0]+col[1]+col[2]); } else { val3 = val1; } /* do not mix up x and y here! */ texres->nor[0]= (val1-val2); texres->nor[1]= (val1-val3); } } if (texres->talpha) { texres->tin = texres->ta; } else if (tex->imaflag & TEX_CALCALPHA) { texres->ta = texres->tin = max_fff(texres->tr, texres->tg, texres->tb); } else { texres->ta = texres->tin = 1.0; } if (tex->flag & TEX_NEGALPHA) { texres->ta = 1.0f - texres->ta; } /* de-premul, this is being premulled in shade_input_do_shade() * do not de-premul for generated alpha, it is already in straight */ if (texres->ta!=1.0f && texres->ta>1e-4f && !(tex->imaflag & TEX_CALCALPHA)) { fx= 1.0f/texres->ta; texres->tr*= fx; texres->tg*= fx; texres->tb*= fx; } if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); BRICONTRGB; return retval; } static void clipx_rctf_swap(rctf *stack, short *count, float x1, float x2) { rctf *rf, *newrct; short a; a= *count; rf= stack; for (;a>0;a--) { if (rf->xminxmaxxmin+= (x2-x1); rf->xmax+= (x2-x1); } else { if (rf->xmax>x2) rf->xmax = x2; newrct= stack+ *count; (*count)++; newrct->xmax = x2; newrct->xmin = rf->xmin+(x2-x1); newrct->ymin = rf->ymin; newrct->ymax = rf->ymax; if (newrct->xmin ==newrct->xmax) (*count)--; rf->xmin = x1; } } else if (rf->xmax>x2) { if (rf->xmin>x2) { rf->xmin-= (x2-x1); rf->xmax-= (x2-x1); } else { if (rf->xminxmin = x1; newrct= stack+ *count; (*count)++; newrct->xmin = x1; newrct->xmax = rf->xmax-(x2-x1); newrct->ymin = rf->ymin; newrct->ymax = rf->ymax; if (newrct->xmin ==newrct->xmax) (*count)--; rf->xmax = x2; } } rf++; } } static void clipy_rctf_swap(rctf *stack, short *count, float y1, float y2) { rctf *rf, *newrct; short a; a= *count; rf= stack; for (;a>0;a--) { if (rf->yminymaxymin+= (y2-y1); rf->ymax+= (y2-y1); } else { if (rf->ymax>y2) rf->ymax = y2; newrct= stack+ *count; (*count)++; newrct->ymax = y2; newrct->ymin = rf->ymin+(y2-y1); newrct->xmin = rf->xmin; newrct->xmax = rf->xmax; if (newrct->ymin==newrct->ymax) (*count)--; rf->ymin = y1; } } else if (rf->ymax>y2) { if (rf->ymin>y2) { rf->ymin-= (y2-y1); rf->ymax-= (y2-y1); } else { if (rf->yminymin = y1; newrct= stack+ *count; (*count)++; newrct->ymin = y1; newrct->ymax = rf->ymax-(y2-y1); newrct->xmin = rf->xmin; newrct->xmax = rf->xmax; if (newrct->ymin==newrct->ymax) (*count)--; rf->ymax = y2; } } rf++; } } static float square_rctf(rctf *rf) { float x, y; x = BLI_rctf_size_x(rf); y = BLI_rctf_size_y(rf); return x * y; } static float clipx_rctf(rctf *rf, float x1, float x2) { float size; size = BLI_rctf_size_x(rf); if (rf->xminxmin = x1; } if (rf->xmax>x2) { rf->xmax = x2; } if (rf->xmin > rf->xmax) { rf->xmin = rf->xmax; return 0.0; } else if (size != 0.0f) { return BLI_rctf_size_x(rf) / size; } return 1.0; } static float clipy_rctf(rctf *rf, float y1, float y2) { float size; size = BLI_rctf_size_y(rf); if (rf->yminymin = y1; } if (rf->ymax>y2) { rf->ymax = y2; } if (rf->ymin > rf->ymax) { rf->ymin = rf->ymax; return 0.0; } else if (size != 0.0f) { return BLI_rctf_size_y(rf) / size; } return 1.0; } static void boxsampleclip(struct ImBuf *ibuf, rctf *rf, TexResult *texres) { /* sample box, is clipped already, and minx etc. have been set at ibuf size. * Enlarge with antialiased edges of the pixels */ float muly, mulx, div, col[4]; int x, y, startx, endx, starty, endy; startx= (int)floor(rf->xmin); endx= (int)floor(rf->xmax); starty= (int)floor(rf->ymin); endy= (int)floor(rf->ymax); if (startx < 0) startx= 0; if (starty < 0) starty= 0; if (endx>=ibuf->x) endx= ibuf->x-1; if (endy>=ibuf->y) endy= ibuf->y-1; if (starty==endy && startx==endx) { ibuf_get_color(&texres->tr, ibuf, startx, starty); } else { div= texres->tr= texres->tg= texres->tb= texres->ta= 0.0; for (y=starty; y<=endy; y++) { muly= 1.0; if (starty==endy) { /* pass */ } else { if (y==starty) muly= 1.0f-(rf->ymin - y); if (y==endy) muly= (rf->ymax - y); } if (startx==endx) { mulx= muly; ibuf_get_color(col, ibuf, startx, y); texres->ta+= mulx*col[3]; texres->tr+= mulx*col[0]; texres->tg+= mulx*col[1]; texres->tb+= mulx*col[2]; div+= mulx; } else { for (x=startx; x<=endx; x++) { mulx= muly; if (x==startx) mulx*= 1.0f-(rf->xmin - x); if (x==endx) mulx*= (rf->xmax - x); ibuf_get_color(col, ibuf, x, y); if (mulx==1.0f) { texres->ta+= col[3]; texres->tr+= col[0]; texres->tg+= col[1]; texres->tb+= col[2]; div+= 1.0f; } else { texres->ta+= mulx*col[3]; texres->tr+= mulx*col[0]; texres->tg+= mulx*col[1]; texres->tb+= mulx*col[2]; div+= mulx; } } } } if (div!=0.0f) { div= 1.0f/div; texres->tb*= div; texres->tg*= div; texres->tr*= div; texres->ta*= div; } else { texres->tr= texres->tg= texres->tb= texres->ta= 0.0f; } } } static void boxsample(ImBuf *ibuf, float minx, float miny, float maxx, float maxy, TexResult *texres, const short imaprepeat, const short imapextend) { /* Sample box, performs clip. minx etc are in range 0.0 - 1.0 . * Enlarge with antialiased edges of pixels. * If variable 'imaprepeat' has been set, the * clipped-away parts are sampled as well. */ /* note: actually minx etc isn't in the proper range... this due to filter size and offset vectors for bump */ /* note: talpha must be initialized */ /* note: even when 'imaprepeat' is set, this can only repeat once in any direction. * the point which min/max is derived from is assumed to be wrapped */ TexResult texr; rctf *rf, stack[8]; float opp, tot, alphaclip= 1.0; short count=1; rf= stack; rf->xmin = minx*(ibuf->x); rf->xmax = maxx*(ibuf->x); rf->ymin = miny*(ibuf->y); rf->ymax = maxy*(ibuf->y); texr.talpha= texres->talpha; /* is read by boxsample_clip */ if (imapextend) { CLAMP(rf->xmin, 0.0f, ibuf->x-1); CLAMP(rf->xmax, 0.0f, ibuf->x-1); } else if (imaprepeat) clipx_rctf_swap(stack, &count, 0.0, (float)(ibuf->x)); else { alphaclip= clipx_rctf(rf, 0.0, (float)(ibuf->x)); if (alphaclip<=0.0f) { texres->tr= texres->tb= texres->tg= texres->ta= 0.0; return; } } if (imapextend) { CLAMP(rf->ymin, 0.0f, ibuf->y-1); CLAMP(rf->ymax, 0.0f, ibuf->y-1); } else if (imaprepeat) clipy_rctf_swap(stack, &count, 0.0, (float)(ibuf->y)); else { alphaclip*= clipy_rctf(rf, 0.0, (float)(ibuf->y)); if (alphaclip<=0.0f) { texres->tr= texres->tb= texres->tg= texres->ta= 0.0; return; } } if (count>1) { tot= texres->tr= texres->tb= texres->tg= texres->ta= 0.0; while (count--) { boxsampleclip(ibuf, rf, &texr); opp= square_rctf(rf); tot+= opp; texres->tr+= opp*texr.tr; texres->tg+= opp*texr.tg; texres->tb+= opp*texr.tb; if (texres->talpha) texres->ta+= opp*texr.ta; rf++; } if (tot!= 0.0f) { texres->tr/= tot; texres->tg/= tot; texres->tb/= tot; if (texres->talpha) texres->ta/= tot; } } else boxsampleclip(ibuf, rf, texres); if (texres->talpha==0) texres->ta= 1.0; if (alphaclip!=1.0f) { /* premul it all */ texres->tr*= alphaclip; texres->tg*= alphaclip; texres->tb*= alphaclip; texres->ta*= alphaclip; } } /*----------------------------------------------------------------------------------------------------------------- * from here, some functions only used for the new filtering */ /* anisotropic filters, data struct used instead of long line of (possibly unused) func args */ typedef struct afdata_t { float dxt[2], dyt[2]; int intpol, extflag; /* feline only */ float majrad, minrad, theta; int iProbes; float dusc, dvsc; } afdata_t; /* this only used here to make it easier to pass extend flags as single int */ enum {TXC_XMIR = 1, TXC_YMIR, TXC_REPT, TXC_EXTD}; /* similar to ibuf_get_color() but clips/wraps coords according to repeat/extend flags * returns true if out of range in clipmode */ static int ibuf_get_color_clip(float col[4], ImBuf *ibuf, int x, int y, int extflag) { int clip = 0; switch (extflag) { case TXC_XMIR: /* y rep */ x %= 2*ibuf->x; x += x < 0 ? 2*ibuf->x : 0; x = x >= ibuf->x ? 2*ibuf->x - x - 1 : x; y %= ibuf->y; y += y < 0 ? ibuf->y : 0; break; case TXC_YMIR: /* x rep */ x %= ibuf->x; x += x < 0 ? ibuf->x : 0; y %= 2*ibuf->y; y += y < 0 ? 2*ibuf->y : 0; y = y >= ibuf->y ? 2*ibuf->y - y - 1 : y; break; case TXC_EXTD: x = (x < 0) ? 0 : ((x >= ibuf->x) ? (ibuf->x - 1) : x); y = (y < 0) ? 0 : ((y >= ibuf->y) ? (ibuf->y - 1) : y); break; case TXC_REPT: x %= ibuf->x; x += (x < 0) ? ibuf->x : 0; y %= ibuf->y; y += (y < 0) ? ibuf->y : 0; break; default: { /* as extend, if clipped, set alpha to 0.0 */ if (x < 0) { x = 0; } /* TXF alpha: clip = 1; } */ if (x >= ibuf->x) { x = ibuf->x - 1; } /* TXF alpha: clip = 1; } */ if (y < 0) { y = 0; } /* TXF alpha: clip = 1; } */ if (y >= ibuf->y) { y = ibuf->y - 1; } /* TXF alpha: clip = 1; } */ } } if (ibuf->rect_float) { const float* fp = ibuf->rect_float + (x + y*ibuf->x)*ibuf->channels; if (ibuf->channels == 1) col[0] = col[1] = col[2] = col[3] = *fp; else { col[0] = fp[0]; col[1] = fp[1]; col[2] = fp[2]; col[3] = clip ? 0.f : (ibuf->channels == 4 ? fp[3] : 1.f); } } else { const char *rect = (char *)(ibuf->rect + x + y*ibuf->x); float inv_alpha_fac = (1.0f / 255.0f) * rect[3] * (1.0f / 255.0f); col[0] = rect[0] * inv_alpha_fac; col[1] = rect[1] * inv_alpha_fac; col[2] = rect[2] * inv_alpha_fac; col[3] = clip ? 0.f : rect[3]*(1.f/255.f); } return clip; } /* as above + bilerp */ static int ibuf_get_color_clip_bilerp(float col[4], ImBuf *ibuf, float u, float v, int intpol, int extflag) { if (intpol) { float c00[4], c01[4], c10[4], c11[4]; const float ufl = floorf(u -= 0.5f), vfl = floorf(v -= 0.5f); const float uf = u - ufl, vf = v - vfl; const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf; const int x1 = (int)ufl, y1 = (int)vfl, x2 = x1 + 1, y2 = y1 + 1; int clip = ibuf_get_color_clip(c00, ibuf, x1, y1, extflag); clip |= ibuf_get_color_clip(c10, ibuf, x2, y1, extflag); clip |= ibuf_get_color_clip(c01, ibuf, x1, y2, extflag); clip |= ibuf_get_color_clip(c11, ibuf, x2, y2, extflag); col[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0]; col[1] = w00*c00[1] + w10*c10[1] + w01*c01[1] + w11*c11[1]; col[2] = w00*c00[2] + w10*c10[2] + w01*c01[2] + w11*c11[2]; col[3] = clip ? 0.f : w00*c00[3] + w10*c10[3] + w01*c01[3] + w11*c11[3]; return clip; } return ibuf_get_color_clip(col, ibuf, (int)u, (int)v, extflag); } static void area_sample(TexResult *texr, ImBuf *ibuf, float fx, float fy, afdata_t *AFD) { int xs, ys, clip = 0; float tc[4], xsd, ysd, cw = 0.f; const float ux = ibuf->x*AFD->dxt[0], uy = ibuf->y*AFD->dxt[1]; const float vx = ibuf->x*AFD->dyt[0], vy = ibuf->y*AFD->dyt[1]; int xsam = (int)(0.5f*sqrtf(ux*ux + uy*uy) + 0.5f); int ysam = (int)(0.5f*sqrtf(vx*vx + vy*vy) + 0.5f); const int minsam = AFD->intpol ? 2 : 4; xsam = CLAMPIS(xsam, minsam, ibuf->x*2); ysam = CLAMPIS(ysam, minsam, ibuf->y*2); xsd = 1.f / xsam; ysd = 1.f / ysam; texr->tr = texr->tg = texr->tb = texr->ta = 0.f; for (ys=0; ysdxt[0] + sv*AFD->dyt[0]; const float pv = fy + su*AFD->dxt[1] + sv*AFD->dyt[1]; const int out = ibuf_get_color_clip_bilerp(tc, ibuf, pu*ibuf->x, pv*ibuf->y, AFD->intpol, AFD->extflag); clip |= out; cw += out ? 0.f : 1.f; texr->tr += tc[0]; texr->tg += tc[1]; texr->tb += tc[2]; texr->ta += texr->talpha ? tc[3] : 0.f; } } xsd *= ysd; texr->tr *= xsd; texr->tg *= xsd; texr->tb *= xsd; /* clipping can be ignored if alpha used, texr->ta already includes filtered edge */ texr->ta = texr->talpha ? texr->ta*xsd : (clip ? cw*xsd : 1.f); } /* test if a float value is 'nan' * there is a C99 function for this: isnan(), but blender seems to use C90 (according to gcc warns), * and may not be supported by other compilers either */ /* TODO(sergey): Consider using isnan(), it's used in the other areas. */ #ifndef ISNAN # define ISNAN(x) ((x) != (x)) #endif typedef struct ReadEWAData { ImBuf *ibuf; afdata_t *AFD; } ReadEWAData; static void ewa_read_pixel_cb(void *userdata, int x, int y, float result[4]) { ReadEWAData *data = (ReadEWAData *) userdata; ibuf_get_color_clip(result, data->ibuf, x, y, data->AFD->extflag); } static void ewa_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, afdata_t *AFD) { ReadEWAData data; float uv[2] = {fx, fy}; data.ibuf = ibuf; data.AFD = AFD; BLI_ewa_filter(ibuf->x, ibuf->y, AFD->intpol != 0, texr->talpha, uv, AFD->dxt, AFD->dyt, ewa_read_pixel_cb, &data, &texr->tr); } static void feline_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, afdata_t *AFD) { const int maxn = AFD->iProbes - 1; const float ll = ((AFD->majrad == AFD->minrad) ? 2.f*AFD->majrad : 2.f*(AFD->majrad - AFD->minrad)) / (maxn ? (float)maxn : 1.f); float du = maxn ? cosf(AFD->theta)*ll : 0.f; float dv = maxn ? sinf(AFD->theta)*ll : 0.f; /* const float D = -0.5f*(du*du + dv*dv) / (AFD->majrad*AFD->majrad); */ const float D = (EWA_MAXIDX + 1)*0.25f*(du*du + dv*dv) / (AFD->majrad*AFD->majrad); float d; /* TXF alpha: cw = 0.f; */ int n; /* TXF alpha: clip = 0; */ /* have to use same scaling for du/dv here as for Ux/Vx/Uy/Vy (*after* D calc.) */ du *= AFD->dusc; dv *= AFD->dvsc; d = texr->tr = texr->tb = texr->tg = texr->ta = 0.f; for (n=-maxn; n<=maxn; n+=2) { float tc[4]; const float hn = n*0.5f; const float u = fx + hn*du, v = fy + hn*dv; /*const float wt = expf(n*n*D); * can use ewa table here too */ const float wt = EWA_WTS[(int)(n*n*D)]; /*const int out =*/ ibuf_get_color_clip_bilerp(tc, ibuf, ibuf->x*u, ibuf->y*v, AFD->intpol, AFD->extflag); /* TXF alpha: clip |= out; * TXF alpha: cw += out ? 0.f : wt; */ texr->tr += tc[0]*wt; texr->tg += tc[1]*wt; texr->tb += tc[2]*wt; texr->ta += texr->talpha ? tc[3]*wt : 0.f; d += wt; } d = 1.f/d; texr->tr *= d; texr->tg *= d; texr->tb *= d; /* clipping can be ignored if alpha used, texr->ta already includes filtered edge */ texr->ta = texr->talpha ? texr->ta*d : 1.f; // TXF alpha: (clip ? cw*d : 1.f); } #undef EWA_MAXIDX static void alpha_clip_aniso(ImBuf *ibuf, float minx, float miny, float maxx, float maxy, int extflag, TexResult *texres) { float alphaclip; rctf rf; /* TXF apha: we're doing the same alphaclip here as boxsample, but i'm doubting * if this is actually correct for the all the filtering algorithms .. */ if (!(extflag == TXC_REPT || extflag == TXC_EXTD)) { rf.xmin = minx*(ibuf->x); rf.xmax = maxx*(ibuf->x); rf.ymin = miny*(ibuf->y); rf.ymax = maxy*(ibuf->y); alphaclip = clipx_rctf(&rf, 0.0, (float)(ibuf->x)); alphaclip *= clipy_rctf(&rf, 0.0, (float)(ibuf->y)); alphaclip = max_ff(alphaclip, 0.0f); if (alphaclip!=1.0f) { /* premul it all */ texres->tr*= alphaclip; texres->tg*= alphaclip; texres->tb*= alphaclip; texres->ta*= alphaclip; } } } static void image_mipmap_test(Tex *tex, ImBuf *ibuf) { if (tex->imaflag & TEX_MIPMAP) { if ((ibuf->flags & IB_fields) == 0) { if (ibuf->mipmap[0] && (ibuf->userflags & IB_MIPMAP_INVALID)) { BLI_lock_thread(LOCK_IMAGE); if (ibuf->userflags & IB_MIPMAP_INVALID) { IMB_remakemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP); ibuf->userflags &= ~IB_MIPMAP_INVALID; } BLI_unlock_thread(LOCK_IMAGE); } if (ibuf->mipmap[0] == NULL) { BLI_lock_thread(LOCK_IMAGE); if (ibuf->mipmap[0] == NULL) IMB_makemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP); BLI_unlock_thread(LOCK_IMAGE); } /* if no mipmap could be made, fall back on non-mipmap render */ if (ibuf->mipmap[0] == NULL) { tex->imaflag &= ~TEX_MIPMAP; } } } } static int imagewraposa_aniso(Tex *tex, Image *ima, ImBuf *ibuf, const float texvec[3], float dxt[2], float dyt[2], TexResult *texres, struct ImagePool *pool) { TexResult texr; float fx, fy, minx, maxx, miny, maxy; float maxd, val1, val2, val3; int curmap, retval, intpol, extflag = 0; afdata_t AFD; void (*filterfunc)(TexResult*, ImBuf*, float, float, afdata_t*); switch (tex->texfilter) { case TXF_EWA: filterfunc = ewa_eval; break; case TXF_FELINE: filterfunc = feline_eval; break; case TXF_AREA: default: filterfunc = area_sample; } texres->tin = texres->ta = texres->tr = texres->tg = texres->tb = 0.f; /* we need to set retval OK, otherwise texture code generates normals itself... */ retval = texres->nor ? 3 : 1; /* quick tests */ if (ibuf==NULL && ima==NULL) return retval; if (ima) { /* hack for icon render */ if ((R.r.scemode & R_NO_IMAGE_LOAD) && !BKE_image_has_loaded_ibuf(ima)) { return retval; } ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool); } if ((ibuf == NULL) || ((ibuf->rect == NULL) && (ibuf->rect_float == NULL))) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } if (ima) { ima->flag |= IMA_USED_FOR_RENDER; } /* mipmap test */ image_mipmap_test(tex, ibuf); if (ima) { if ((tex->imaflag & TEX_USEALPHA) && (ima->flag & IMA_IGNORE_ALPHA) == 0) { if ((tex->imaflag & TEX_CALCALPHA) == 0) { texres->talpha = 1; } } } texr.talpha = texres->talpha; if (tex->imaflag & TEX_IMAROT) { fy = texvec[0]; fx = texvec[1]; } else { fx = texvec[0]; fy = texvec[1]; } if (ibuf->flags & IB_fields) { if (R.r.mode & R_FIELDS) { /* field render */ if (R.flag & R_SEC_FIELD) { /* correction for 2nd field */ /* fac1= 0.5/( (float)ibuf->y ); */ /* fy-= fac1; */ } else /* first field */ fy += 0.5f/( (float)ibuf->y ); } } /* pixel coordinates */ minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]); maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]); miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]); maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]); /* tex_sharper has been removed */ minx = (maxx - minx)*0.5f; miny = (maxy - miny)*0.5f; if (tex->imaflag & TEX_FILTER_MIN) { /* make sure the filtersize is minimal in pixels (normal, ref map can have miniature pixel dx/dy) */ const float addval = (0.5f * tex->filtersize) / (float)MIN2(ibuf->x, ibuf->y); if (addval > minx) minx = addval; if (addval > miny) miny = addval; } else if (tex->filtersize != 1.f) { minx *= tex->filtersize; miny *= tex->filtersize; dxt[0] *= tex->filtersize; dxt[1] *= tex->filtersize; dyt[0] *= tex->filtersize; dyt[1] *= tex->filtersize; } if (tex->imaflag & TEX_IMAROT) { float t; SWAP(float, minx, miny); /* must rotate dxt/dyt 90 deg * yet another blender problem is that swapping X/Y axes (or any tex proj switches) should do something similar, * but it doesn't, it only swaps coords, so filter area will be incorrect in those cases. */ t = dxt[0]; dxt[0] = dxt[1]; dxt[1] = -t; t = dyt[0]; dyt[0] = dyt[1]; dyt[1] = -t; } /* side faces of unit-cube */ minx = (minx > 0.25f) ? 0.25f : ((minx < 1e-5f) ? 1e-5f : minx); miny = (miny > 0.25f) ? 0.25f : ((miny < 1e-5f) ? 1e-5f : miny); /* repeat and clip */ if (tex->extend == TEX_REPEAT) { if ((tex->flag & (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) == (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) extflag = TXC_EXTD; else if (tex->flag & TEX_REPEAT_XMIR) extflag = TXC_XMIR; else if (tex->flag & TEX_REPEAT_YMIR) extflag = TXC_YMIR; else extflag = TXC_REPT; } else if (tex->extend == TEX_EXTEND) extflag = TXC_EXTD; if (tex->extend == TEX_CHECKER) { int xs = (int)floorf(fx), ys = (int)floorf(fy); /* both checkers available, no boundary exceptions, checkerdist will eat aliasing */ if ((tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN)) { fx -= xs; fy -= ys; } else { int xs1 = (int)floorf(fx - minx); int ys1 = (int)floorf(fy - miny); int xs2 = (int)floorf(fx + minx); int ys2 = (int)floorf(fy + miny); if ((xs1 != xs2) || (ys1 != ys2)) { if (tex->flag & TEX_CHECKER_ODD) { fx -= ((xs1 + ys) & 1) ? xs2 : xs1; fy -= ((ys1 + xs) & 1) ? ys2 : ys1; } if (tex->flag & TEX_CHECKER_EVEN) { fx -= ((xs1 + ys) & 1) ? xs1 : xs2; fy -= ((ys1 + xs) & 1) ? ys1 : ys2; } } else { if ((tex->flag & TEX_CHECKER_ODD) == 0 && ((xs + ys) & 1) == 0) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } if ((tex->flag & TEX_CHECKER_EVEN) == 0 && (xs + ys) & 1) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } fx -= xs; fy -= ys; } } /* scale around center, (0.5, 0.5) */ if (tex->checkerdist < 1.f) { const float omcd = 1.f / (1.f - tex->checkerdist); fx = (fx - 0.5f)*omcd + 0.5f; fy = (fy - 0.5f)*omcd + 0.5f; minx *= omcd; miny *= omcd; } } if (tex->extend == TEX_CLIPCUBE) { if ((fx + minx) < 0.f || (fy + miny) < 0.f || (fx - minx) > 1.f || (fy - miny) > 1.f || texvec[2] < -1.f || texvec[2] > 1.f) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } else if (tex->extend == TEX_CLIP || tex->extend == TEX_CHECKER) { if ((fx + minx) < 0.f || (fy + miny) < 0.f || (fx - minx) > 1.f || (fy - miny) > 1.f) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } else { if (tex->extend == TEX_EXTEND) { fx = (fx > 1.f) ? 1.f : ((fx < 0.f) ? 0.f : fx); fy = (fy > 1.f) ? 1.f : ((fy < 0.f) ? 0.f : fy); } else { fx -= floorf(fx); fy -= floorf(fy); } } intpol = tex->imaflag & TEX_INTERPOL; /* warning no return! */ if ((R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields)) ibuf->rect += ibuf->x*ibuf->y; /* struct common data */ copy_v2_v2(AFD.dxt, dxt); copy_v2_v2(AFD.dyt, dyt); AFD.intpol = intpol; AFD.extflag = extflag; /* brecht: added stupid clamping here, large dx/dy can give very large * filter sizes which take ages to render, it may be better to do this * more intelligently later in the code .. probably it's not noticeable */ if (AFD.dxt[0]*AFD.dxt[0] + AFD.dxt[1]*AFD.dxt[1] > 2.0f*2.0f) mul_v2_fl(AFD.dxt, 2.0f/len_v2(AFD.dxt)); if (AFD.dyt[0]*AFD.dyt[0] + AFD.dyt[1]*AFD.dyt[1] > 2.0f*2.0f) mul_v2_fl(AFD.dyt, 2.0f/len_v2(AFD.dyt)); /* choice: */ if (tex->imaflag & TEX_MIPMAP) { ImBuf *previbuf, *curibuf; float levf; int maxlev; ImBuf *mipmaps[IB_MIPMAP_LEVELS + 1]; /* modify ellipse minor axis if too eccentric, use for area sampling as well * scaling dxt/dyt as done in pbrt is not the same * (as in ewa_eval(), scale by sqrt(ibuf->x) to maximize precision) */ const float ff = sqrtf(ibuf->x), q = ibuf->y/ff; const float Ux = dxt[0]*ff, Vx = dxt[1]*q, Uy = dyt[0]*ff, Vy = dyt[1]*q; const float A = Vx*Vx + Vy*Vy; const float B = -2.f*(Ux*Vx + Uy*Vy); const float C = Ux*Ux + Uy*Uy; const float F = A*C - B*B*0.25f; float a, b, th, ecc; BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc); if (tex->texfilter == TXF_FELINE) { float fProbes; a *= ff; b *= ff; a = max_ff(a, 1.0f); b = max_ff(b, 1.0f); fProbes = 2.f*(a / b) - 1.f; AFD.iProbes = iroundf(fProbes); AFD.iProbes = MIN2(AFD.iProbes, tex->afmax); if (AFD.iProbes < fProbes) b = 2.f*a / (float)(AFD.iProbes + 1); AFD.majrad = a/ff; AFD.minrad = b/ff; AFD.theta = th; AFD.dusc = 1.f/ff; AFD.dvsc = ff / (float)ibuf->y; } else { /* EWA & area */ if (ecc > (float)tex->afmax) b = a / (float)tex->afmax; b *= ff; } maxd = max_ff(b, 1e-8f); levf = ((float)M_LOG2E) * logf(maxd); curmap = 0; maxlev = 1; mipmaps[0] = ibuf; while (curmap < IB_MIPMAP_LEVELS) { mipmaps[curmap + 1] = ibuf->mipmap[curmap]; if (ibuf->mipmap[curmap]) maxlev++; curmap++; } /* mipmap level */ if (levf < 0.f) { /* original image only */ previbuf = curibuf = mipmaps[0]; levf = 0.f; } else if (levf >= maxlev - 1) { previbuf = curibuf = mipmaps[maxlev - 1]; levf = 0.f; if (tex->texfilter == TXF_FELINE) AFD.iProbes = 1; } else { const int lev = ISNAN(levf) ? 0 : (int)levf; curibuf = mipmaps[lev]; previbuf = mipmaps[lev + 1]; levf -= floorf(levf); } /* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */ if (texres->nor && ((tex->imaflag & TEX_NORMALMAP) == 0)) { /* color & normal */ filterfunc(texres, curibuf, fx, fy, &AFD); val1 = texres->tr + texres->tg + texres->tb; filterfunc(&texr, curibuf, fx + dxt[0], fy + dxt[1], &AFD); val2 = texr.tr + texr.tg + texr.tb; filterfunc(&texr, curibuf, fx + dyt[0], fy + dyt[1], &AFD); val3 = texr.tr + texr.tg + texr.tb; /* don't switch x or y! */ texres->nor[0] = val1 - val2; texres->nor[1] = val1 - val3; if (previbuf != curibuf) { /* interpolate */ filterfunc(&texr, previbuf, fx, fy, &AFD); /* rgb */ texres->tr += levf*(texr.tr - texres->tr); texres->tg += levf*(texr.tg - texres->tg); texres->tb += levf*(texr.tb - texres->tb); texres->ta += levf*(texr.ta - texres->ta); /* normal */ val1 += levf*((texr.tr + texr.tg + texr.tb) - val1); filterfunc(&texr, previbuf, fx + dxt[0], fy + dxt[1], &AFD); val2 += levf*((texr.tr + texr.tg + texr.tb) - val2); filterfunc(&texr, previbuf, fx + dyt[0], fy + dyt[1], &AFD); val3 += levf*((texr.tr + texr.tg + texr.tb) - val3); texres->nor[0] = val1 - val2; /* vals have been interpolated above! */ texres->nor[1] = val1 - val3; } } else { /* color */ filterfunc(texres, curibuf, fx, fy, &AFD); if (previbuf != curibuf) { /* interpolate */ filterfunc(&texr, previbuf, fx, fy, &AFD); texres->tr += levf*(texr.tr - texres->tr); texres->tg += levf*(texr.tg - texres->tg); texres->tb += levf*(texr.tb - texres->tb); texres->ta += levf*(texr.ta - texres->ta); } alpha_clip_aniso(ibuf, fx-minx, fy-miny, fx+minx, fy+miny, extflag, texres); } } else { /* no mipmap */ /* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */ if (tex->texfilter == TXF_FELINE) { const float ff = sqrtf(ibuf->x), q = ibuf->y/ff; const float Ux = dxt[0]*ff, Vx = dxt[1]*q, Uy = dyt[0]*ff, Vy = dyt[1]*q; const float A = Vx*Vx + Vy*Vy; const float B = -2.f*(Ux*Vx + Uy*Vy); const float C = Ux*Ux + Uy*Uy; const float F = A*C - B*B*0.25f; float a, b, th, ecc, fProbes; BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc); a *= ff; b *= ff; a = max_ff(a, 1.0f); b = max_ff(b, 1.0f); fProbes = 2.f*(a / b) - 1.f; /* no limit to number of Probes here */ AFD.iProbes = iroundf(fProbes); if (AFD.iProbes < fProbes) b = 2.f*a / (float)(AFD.iProbes + 1); AFD.majrad = a/ff; AFD.minrad = b/ff; AFD.theta = th; AFD.dusc = 1.f/ff; AFD.dvsc = ff / (float)ibuf->y; } if (texres->nor && ((tex->imaflag & TEX_NORMALMAP) == 0)) { /* color & normal */ filterfunc(texres, ibuf, fx, fy, &AFD); val1 = texres->tr + texres->tg + texres->tb; filterfunc(&texr, ibuf, fx + dxt[0], fy + dxt[1], &AFD); val2 = texr.tr + texr.tg + texr.tb; filterfunc(&texr, ibuf, fx + dyt[0], fy + dyt[1], &AFD); val3 = texr.tr + texr.tg + texr.tb; /* don't switch x or y! */ texres->nor[0] = val1 - val2; texres->nor[1] = val1 - val3; } else { filterfunc(texres, ibuf, fx, fy, &AFD); alpha_clip_aniso(ibuf, fx-minx, fy-miny, fx+minx, fy+miny, extflag, texres); } } if (tex->imaflag & TEX_CALCALPHA) texres->ta = texres->tin = texres->ta * max_fff(texres->tr, texres->tg, texres->tb); else texres->tin = texres->ta; if (tex->flag & TEX_NEGALPHA) texres->ta = 1.f - texres->ta; if ((R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields)) ibuf->rect -= ibuf->x*ibuf->y; if (texres->nor && (tex->imaflag & TEX_NORMALMAP)) { /* normal from color */ /* The invert of the red channel is to make * the normal map compliant with the outside world. * It needs to be done because in Blender * the normal used in the renderer points inward. It is generated * this way in calc_vertexnormals(). Should this ever change * this negate must be removed. */ texres->nor[0] = -2.f*(texres->tr - 0.5f); texres->nor[1] = 2.f*(texres->tg - 0.5f); texres->nor[2] = 2.f*(texres->tb - 0.5f); } /* de-premul, this is being premulled in shade_input_do_shade() * TXF: this currently does not (yet?) work properly, destroys edge AA in clip/checker mode, so for now commented out * also disabled in imagewraposa() to be able to compare results with blender's default texture filtering */ /* brecht: tried to fix this, see "TXF alpha" comments */ /* do not de-premul for generated alpha, it is already in straight */ if (texres->ta!=1.0f && texres->ta>1e-4f && !(tex->imaflag & TEX_CALCALPHA)) { fx = 1.f/texres->ta; texres->tr *= fx; texres->tg *= fx; texres->tb *= fx; } if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); BRICONTRGB; return retval; } int imagewraposa(Tex *tex, Image *ima, ImBuf *ibuf, const float texvec[3], const float DXT[2], const float DYT[2], TexResult *texres, struct ImagePool *pool) { TexResult texr; float fx, fy, minx, maxx, miny, maxy, dx, dy, dxt[2], dyt[2]; float maxd, pixsize, val1, val2, val3; int curmap, retval, imaprepeat, imapextend; /* TXF: since dxt/dyt might be modified here and since they might be needed after imagewraposa() call, * make a local copy here so that original vecs remain untouched */ copy_v2_v2(dxt, DXT); copy_v2_v2(dyt, DYT); /* anisotropic filtering */ if (tex->texfilter != TXF_BOX) return imagewraposa_aniso(tex, ima, ibuf, texvec, dxt, dyt, texres, pool); texres->tin= texres->ta= texres->tr= texres->tg= texres->tb= 0.0f; /* we need to set retval OK, otherwise texture code generates normals itself... */ retval = texres->nor ? 3 : 1; /* quick tests */ if (ibuf==NULL && ima==NULL) return retval; if (ima) { /* hack for icon render */ if ((R.r.scemode & R_NO_IMAGE_LOAD) && !BKE_image_has_loaded_ibuf(ima)) return retval; ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool); ima->flag|= IMA_USED_FOR_RENDER; } if (ibuf==NULL || (ibuf->rect==NULL && ibuf->rect_float==NULL)) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } /* mipmap test */ image_mipmap_test(tex, ibuf); if (ima) { if ((tex->imaflag & TEX_USEALPHA) && (ima->flag & IMA_IGNORE_ALPHA) == 0) { if ((tex->imaflag & TEX_CALCALPHA) == 0) { texres->talpha = true; } } } texr.talpha= texres->talpha; if (tex->imaflag & TEX_IMAROT) { fy= texvec[0]; fx= texvec[1]; } else { fx= texvec[0]; fy= texvec[1]; } if (ibuf->flags & IB_fields) { if (R.r.mode & R_FIELDS) { /* field render */ if (R.flag & R_SEC_FIELD) { /* correction for 2nd field */ /* fac1= 0.5/( (float)ibuf->y ); */ /* fy-= fac1; */ } else { /* first field */ fy+= 0.5f/( (float)ibuf->y ); } } } /* pixel coordinates */ minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]); maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]); miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]); maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]); /* tex_sharper has been removed */ minx= (maxx-minx)/2.0f; miny= (maxy-miny)/2.0f; if (tex->imaflag & TEX_FILTER_MIN) { /* make sure the filtersize is minimal in pixels (normal, ref map can have miniature pixel dx/dy) */ float addval= (0.5f * tex->filtersize) / (float) MIN2(ibuf->x, ibuf->y); if (addval > minx) minx= addval; if (addval > miny) miny= addval; } else if (tex->filtersize!=1.0f) { minx*= tex->filtersize; miny*= tex->filtersize; dxt[0]*= tex->filtersize; dxt[1]*= tex->filtersize; dyt[0]*= tex->filtersize; dyt[1]*= tex->filtersize; } if (tex->imaflag & TEX_IMAROT) SWAP(float, minx, miny); if (minx>0.25f) minx= 0.25f; else if (minx<0.00001f) minx= 0.00001f; /* side faces of unit-cube */ if (miny>0.25f) miny= 0.25f; else if (miny<0.00001f) miny= 0.00001f; /* repeat and clip */ imaprepeat= (tex->extend==TEX_REPEAT); imapextend= (tex->extend==TEX_EXTEND); if (tex->extend == TEX_REPEAT) { if (tex->flag & (TEX_REPEAT_XMIR|TEX_REPEAT_YMIR)) { imaprepeat= 0; imapextend= 1; } } if (tex->extend == TEX_CHECKER) { int xs, ys, xs1, ys1, xs2, ys2, boundary; xs= (int)floor(fx); ys= (int)floor(fy); /* both checkers available, no boundary exceptions, checkerdist will eat aliasing */ if ( (tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN) ) { fx-= xs; fy-= ys; } else { xs1= (int)floor(fx-minx); ys1= (int)floor(fy-miny); xs2= (int)floor(fx+minx); ys2= (int)floor(fy+miny); boundary= (xs1!=xs2) || (ys1!=ys2); if (boundary==0) { if ( (tex->flag & TEX_CHECKER_ODD)==0) { if ((xs + ys) & 1) { /* pass */ } else { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } if ( (tex->flag & TEX_CHECKER_EVEN)==0) { if ((xs + ys) & 1) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } fx-= xs; fy-= ys; } else { if (tex->flag & TEX_CHECKER_ODD) { if ((xs1+ys) & 1) fx-= xs2; else fx-= xs1; if ((ys1+xs) & 1) fy-= ys2; else fy-= ys1; } if (tex->flag & TEX_CHECKER_EVEN) { if ((xs1+ys) & 1) fx-= xs1; else fx-= xs2; if ((ys1+xs) & 1) fy-= ys1; else fy-= ys2; } } } /* scale around center, (0.5, 0.5) */ if (tex->checkerdist<1.0f) { fx= (fx-0.5f)/(1.0f-tex->checkerdist) +0.5f; fy= (fy-0.5f)/(1.0f-tex->checkerdist) +0.5f; minx/= (1.0f-tex->checkerdist); miny/= (1.0f-tex->checkerdist); } } if (tex->extend == TEX_CLIPCUBE) { if (fx+minx<0.0f || fy+miny<0.0f || fx-minx>1.0f || fy-miny>1.0f || texvec[2]<-1.0f || texvec[2]>1.0f) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } else if (tex->extend==TEX_CLIP || tex->extend==TEX_CHECKER) { if (fx+minx<0.0f || fy+miny<0.0f || fx-minx>1.0f || fy-miny>1.0f) { if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); return retval; } } else { if (imapextend) { if (fx>1.0f) fx = 1.0f; else if (fx<0.0f) fx= 0.0f; } else { if (fx>1.0f) fx -= (int)(fx); else if (fx<0.0f) fx+= 1-(int)(fx); } if (imapextend) { if (fy>1.0f) fy = 1.0f; else if (fy<0.0f) fy= 0.0f; } else { if (fy>1.0f) fy -= (int)(fy); else if (fy<0.0f) fy+= 1-(int)(fy); } } /* warning no return! */ if ( (R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields) ) { ibuf->rect+= (ibuf->x*ibuf->y); } /* choice: */ if (tex->imaflag & TEX_MIPMAP) { ImBuf *previbuf, *curibuf; float bumpscale; dx = minx; dy = miny; maxd = max_ff(dx, dy); if (maxd > 0.5f) maxd = 0.5f; pixsize = 1.0f / (float) MIN2(ibuf->x, ibuf->y); bumpscale= pixsize/maxd; if (bumpscale>1.0f) bumpscale= 1.0f; else bumpscale*=bumpscale; curmap= 0; previbuf= curibuf= ibuf; while (curmapmipmap[curmap]) { if (maxd < pixsize) break; previbuf= curibuf; curibuf= ibuf->mipmap[curmap]; pixsize= 1.0f / (float)MIN2(curibuf->x, curibuf->y); curmap++; } if (previbuf!=curibuf || (tex->imaflag & TEX_INTERPOL)) { /* sample at least 1 pixel */ if (minx < 0.5f / ibuf->x) minx = 0.5f / ibuf->x; if (miny < 0.5f / ibuf->y) miny = 0.5f / ibuf->y; } if (texres->nor && (tex->imaflag & TEX_NORMALMAP)==0) { /* a bit extra filter */ //minx*= 1.35f; //miny*= 1.35f; boxsample(curibuf, fx-minx, fy-miny, fx+minx, fy+miny, texres, imaprepeat, imapextend); val1= texres->tr+texres->tg+texres->tb; boxsample(curibuf, fx-minx+dxt[0], fy-miny+dxt[1], fx+minx+dxt[0], fy+miny+dxt[1], &texr, imaprepeat, imapextend); val2= texr.tr + texr.tg + texr.tb; boxsample(curibuf, fx-minx+dyt[0], fy-miny+dyt[1], fx+minx+dyt[0], fy+miny+dyt[1], &texr, imaprepeat, imapextend); val3= texr.tr + texr.tg + texr.tb; /* don't switch x or y! */ texres->nor[0]= (val1-val2); texres->nor[1]= (val1-val3); if (previbuf!=curibuf) { /* interpolate */ boxsample(previbuf, fx-minx, fy-miny, fx+minx, fy+miny, &texr, imaprepeat, imapextend); /* calc rgb */ dx= 2.0f*(pixsize-maxd)/pixsize; if (dx>=1.0f) { texres->ta= texr.ta; texres->tb= texr.tb; texres->tg= texr.tg; texres->tr= texr.tr; } else { dy= 1.0f-dx; texres->tb= dy*texres->tb+ dx*texr.tb; texres->tg= dy*texres->tg+ dx*texr.tg; texres->tr= dy*texres->tr+ dx*texr.tr; texres->ta= dy*texres->ta+ dx*texr.ta; } val1= dy*val1+ dx*(texr.tr + texr.tg + texr.tb); boxsample(previbuf, fx-minx+dxt[0], fy-miny+dxt[1], fx+minx+dxt[0], fy+miny+dxt[1], &texr, imaprepeat, imapextend); val2= dy*val2+ dx*(texr.tr + texr.tg + texr.tb); boxsample(previbuf, fx-minx+dyt[0], fy-miny+dyt[1], fx+minx+dyt[0], fy+miny+dyt[1], &texr, imaprepeat, imapextend); val3= dy*val3+ dx*(texr.tr + texr.tg + texr.tb); texres->nor[0]= (val1-val2); /* vals have been interpolated above! */ texres->nor[1]= (val1-val3); if (dx<1.0f) { dy= 1.0f-dx; texres->tb= dy*texres->tb+ dx*texr.tb; texres->tg= dy*texres->tg+ dx*texr.tg; texres->tr= dy*texres->tr+ dx*texr.tr; texres->ta= dy*texres->ta+ dx*texr.ta; } } texres->nor[0]*= bumpscale; texres->nor[1]*= bumpscale; } else { maxx= fx+minx; minx= fx-minx; maxy= fy+miny; miny= fy-miny; boxsample(curibuf, minx, miny, maxx, maxy, texres, imaprepeat, imapextend); if (previbuf!=curibuf) { /* interpolate */ boxsample(previbuf, minx, miny, maxx, maxy, &texr, imaprepeat, imapextend); fx= 2.0f*(pixsize-maxd)/pixsize; if (fx>=1.0f) { texres->ta= texr.ta; texres->tb= texr.tb; texres->tg= texr.tg; texres->tr= texr.tr; } else { fy= 1.0f-fx; texres->tb= fy*texres->tb+ fx*texr.tb; texres->tg= fy*texres->tg+ fx*texr.tg; texres->tr= fy*texres->tr+ fx*texr.tr; texres->ta= fy*texres->ta+ fx*texr.ta; } } } } else { const int intpol = tex->imaflag & TEX_INTERPOL; if (intpol) { /* sample 1 pixel minimum */ if (minx < 0.5f / ibuf->x) minx = 0.5f / ibuf->x; if (miny < 0.5f / ibuf->y) miny = 0.5f / ibuf->y; } if (texres->nor && (tex->imaflag & TEX_NORMALMAP)==0) { boxsample(ibuf, fx-minx, fy-miny, fx+minx, fy+miny, texres, imaprepeat, imapextend); val1= texres->tr+texres->tg+texres->tb; boxsample(ibuf, fx-minx+dxt[0], fy-miny+dxt[1], fx+minx+dxt[0], fy+miny+dxt[1], &texr, imaprepeat, imapextend); val2= texr.tr + texr.tg + texr.tb; boxsample(ibuf, fx-minx+dyt[0], fy-miny+dyt[1], fx+minx+dyt[0], fy+miny+dyt[1], &texr, imaprepeat, imapextend); val3= texr.tr + texr.tg + texr.tb; /* don't switch x or y! */ texres->nor[0]= (val1-val2); texres->nor[1]= (val1-val3); } else boxsample(ibuf, fx-minx, fy-miny, fx+minx, fy+miny, texres, imaprepeat, imapextend); } if (tex->imaflag & TEX_CALCALPHA) { texres->ta = texres->tin = texres->ta * max_fff(texres->tr, texres->tg, texres->tb); } else { texres->tin = texres->ta; } if (tex->flag & TEX_NEGALPHA) texres->ta= 1.0f-texres->ta; if ( (R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields) ) { ibuf->rect-= (ibuf->x*ibuf->y); } if (texres->nor && (tex->imaflag & TEX_NORMALMAP)) { /* qdn: normal from color * The invert of the red channel is to make * the normal map compliant with the outside world. * It needs to be done because in Blender * the normal used in the renderer points inward. It is generated * this way in calc_vertexnormals(). Should this ever change * this negate must be removed. */ texres->nor[0] = -2.f*(texres->tr - 0.5f); texres->nor[1] = 2.f*(texres->tg - 0.5f); texres->nor[2] = 2.f*(texres->tb - 0.5f); } /* de-premul, this is being premulled in shade_input_do_shade() */ /* do not de-premul for generated alpha, it is already in straight */ if (texres->ta!=1.0f && texres->ta>1e-4f && !(tex->imaflag & TEX_CALCALPHA)) { mul_v3_fl(&texres->tr, 1.0f / texres->ta); } if (ima) BKE_image_pool_release_ibuf(ima, ibuf, pool); BRICONTRGB; return retval; } void image_sample(Image *ima, float fx, float fy, float dx, float dy, float result[4], struct ImagePool *pool) { TexResult texres; ImBuf *ibuf = BKE_image_pool_acquire_ibuf(ima, NULL, pool); if (UNLIKELY(ibuf == NULL)) { zero_v4(result); return; } if ( (R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields) ) ibuf->rect+= (ibuf->x*ibuf->y); texres.talpha = true; /* boxsample expects to be initialized */ boxsample(ibuf, fx, fy, fx + dx, fy + dy, &texres, 0, 1); copy_v4_v4(result, &texres.tr); if ( (R.flag & R_SEC_FIELD) && (ibuf->flags & IB_fields) ) ibuf->rect-= (ibuf->x*ibuf->y); ima->flag|= IMA_USED_FOR_RENDER; BKE_image_pool_release_ibuf(ima, ibuf, pool); } void ibuf_sample(ImBuf *ibuf, float fx, float fy, float dx, float dy, float result[4]) { TexResult texres = {0}; afdata_t AFD; AFD.dxt[0] = dx; AFD.dxt[1] = dx; AFD.dyt[0] = dy; AFD.dyt[1] = dy; //copy_v2_v2(AFD.dxt, dx); //copy_v2_v2(AFD.dyt, dy); AFD.intpol = 1; AFD.extflag = TXC_EXTD; ewa_eval(&texres, ibuf, fx, fy, &AFD); copy_v4_v4(result, &texres.tr); }