/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): 2004-2006, Blender Foundation, full recode * * ***** END GPL LICENSE BLOCK ***** */ #include #include #include #include #include "MTC_matrixops.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "BLI_rand.h" #include "DNA_texture_types.h" #include "DNA_object_types.h" #include "DNA_lamp_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_material_types.h" #include "DNA_image_types.h" #include "DNA_node_types.h" #include "IMB_imbuf_types.h" #include "IMB_imbuf.h" #include "BKE_colortools.h" #include "BKE_image.h" #include "BKE_node.h" #include "BKE_plugin_types.h" #include "BKE_utildefines.h" #include "BKE_global.h" #include "BKE_main.h" #include "BKE_material.h" #include "BKE_library.h" #include "BKE_image.h" #include "BKE_texture.h" #include "BKE_key.h" #include "BKE_ipo.h" #include "envmap.h" #include "renderpipeline.h" #include "render_types.h" #include "rendercore.h" #include "shading.h" #include "texture.h" #include "renderdatabase.h" /* needed for UV */ /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* defined in pipeline.c, is hardcopy of active dynamic allocated Render */ /* only to be used here in this file, it's for speed */ extern struct Render R; /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ void init_render_texture(Render *re, Tex *tex) { int cfra= re->scene->r.cfra; if(re) cfra= re->r.cfra; /* imap test */ if(tex->ima && ELEM(tex->ima->source, IMA_SRC_MOVIE, IMA_SRC_SEQUENCE)) { BKE_image_user_calc_imanr(&tex->iuser, cfra, re?re->flag & R_SEC_FIELD:0); } if(tex->type==TEX_PLUGIN) { if(tex->plugin && tex->plugin->doit) { if(tex->plugin->cfra) { *(tex->plugin->cfra)= (float)cfra; //frame_to_float(re->scene, cfra); // XXX old animsys - timing stuff to be fixed } } } else if(tex->type==TEX_ENVMAP) { /* just in case */ tex->imaflag |= TEX_INTERPOL | TEX_MIPMAP; tex->extend= TEX_CLIP; if(tex->env) { if(tex->env->type==ENV_PLANE) tex->extend= TEX_EXTEND; /* only free envmap when rendermode was set to render envmaps, for previewrender */ if(G.rendering && re) { if (re->r.mode & R_ENVMAP) if(tex->env->stype==ENV_ANIM) BKE_free_envmapdata(tex->env); } } } if(tex->nodetree && tex->use_nodes) { ntreeBeginExecTree(tex->nodetree); /* has internal flag to detect it only does it once */ } } /* ------------------------------------------------------------------------- */ void init_render_textures(Render *re) { Tex *tex; tex= G.main->tex.first; while(tex) { if(tex->id.us) init_render_texture(re, tex); tex= tex->id.next; } } void end_render_texture(Tex *tex) { if(tex && tex->use_nodes && tex->nodetree) ntreeEndExecTree(tex->nodetree); } void end_render_textures(void) { Tex *tex; for(tex= G.main->tex.first; tex; tex= tex->id.next) if(tex->id.us) end_render_texture(tex); } /* ------------------------------------------------------------------------- */ /* this allows colorbanded textures to control normals as well */ static void tex_normal_derivate(Tex *tex, TexResult *texres) { if (tex->flag & TEX_COLORBAND) { float col[4]; if (do_colorband(tex->coba, texres->tin, col)) { float fac0, fac1, fac2, fac3; fac0= (col[0]+col[1]+col[2]); do_colorband(tex->coba, texres->nor[0], col); fac1= (col[0]+col[1]+col[2]); do_colorband(tex->coba, texres->nor[1], col); fac2= (col[0]+col[1]+col[2]); do_colorband(tex->coba, texres->nor[2], col); fac3= (col[0]+col[1]+col[2]); texres->nor[0]= 0.3333*(fac0 - fac1); texres->nor[1]= 0.3333*(fac0 - fac2); texres->nor[2]= 0.3333*(fac0 - fac3); return; } } texres->nor[0]= texres->tin - texres->nor[0]; texres->nor[1]= texres->tin - texres->nor[1]; texres->nor[2]= texres->tin - texres->nor[2]; } static int blend(Tex *tex, float *texvec, TexResult *texres) { float x, y, t; if(tex->flag & TEX_FLIPBLEND) { x= texvec[1]; y= texvec[0]; } else { x= texvec[0]; y= texvec[1]; } if(tex->stype==TEX_LIN) { /* lin */ texres->tin= (1.0+x)/2.0; } else if(tex->stype==TEX_QUAD) { /* quad */ texres->tin= (1.0+x)/2.0; if(texres->tin<0.0) texres->tin= 0.0; else texres->tin*= texres->tin; } else if(tex->stype==TEX_EASE) { /* ease */ texres->tin= (1.0+x)/2.0; if(texres->tin<=.0) texres->tin= 0.0; else if(texres->tin>=1.0) texres->tin= 1.0; else { t= texres->tin*texres->tin; texres->tin= (3.0*t-2.0*t*texres->tin); } } else if(tex->stype==TEX_DIAG) { /* diag */ texres->tin= (2.0+x+y)/4.0; } else if(tex->stype==TEX_RAD) { /* radial */ texres->tin= (atan2(y,x) / (2*M_PI) + 0.5); } else { /* sphere TEX_SPHERE */ texres->tin= 1.0-sqrt(x*x+ y*y+texvec[2]*texvec[2]); if(texres->tin<0.0) texres->tin= 0.0; if(tex->stype==TEX_HALO) texres->tin*= texres->tin; /* halo */ } BRICONT; return TEX_INT; } /* ------------------------------------------------------------------------- */ /* ************************************************************************* */ /* newnoise: all noisebased types now have different noisebases to choose from */ static int clouds(Tex *tex, float *texvec, TexResult *texres) { int rv = TEX_INT; texres->tin = BLI_gTurbulence(tex->noisesize, texvec[0], texvec[1], texvec[2], tex->noisedepth, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); if (texres->nor!=NULL) { // calculate bumpnormal texres->nor[0] = BLI_gTurbulence(tex->noisesize, texvec[0] + tex->nabla, texvec[1], texvec[2], tex->noisedepth, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); texres->nor[1] = BLI_gTurbulence(tex->noisesize, texvec[0], texvec[1] + tex->nabla, texvec[2], tex->noisedepth, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); texres->nor[2] = BLI_gTurbulence(tex->noisesize, texvec[0], texvec[1], texvec[2] + tex->nabla, tex->noisedepth, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } if (tex->stype==TEX_COLOR) { // in this case, int. value should really be computed from color, // and bumpnormal from that, would be too slow, looks ok as is texres->tr = texres->tin; texres->tg = BLI_gTurbulence(tex->noisesize, texvec[1], texvec[0], texvec[2], tex->noisedepth, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); texres->tb = BLI_gTurbulence(tex->noisesize, texvec[1], texvec[2], texvec[0], tex->noisedepth, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); BRICONTRGB; texres->ta = 1.0; return (rv | TEX_RGB); } BRICONT; return rv; } /* creates a sine wave */ static float tex_sin(float a) { a = 0.5 + 0.5*sin(a); return a; } /* creates a saw wave */ static float tex_saw(float a) { const float b = 2*M_PI; int n = (int)(a / b); a -= n*b; if (a < 0) a += b; return a / b; } /* creates a triangle wave */ static float tex_tri(float a) { const float b = 2*M_PI; const float rmax = 1.0; a = rmax - 2.0*fabs(floor((a*(1.0/b))+0.5) - (a*(1.0/b))); return a; } /* computes basic wood intensity value at x,y,z */ static float wood_int(Tex *tex, float x, float y, float z) { float wi=0; short wf = tex->noisebasis2; /* wave form: TEX_SIN=0, TEX_SAW=1, TEX_TRI=2 */ short wt = tex->stype; /* wood type: TEX_BAND=0, TEX_RING=1, TEX_BANDNOISE=2, TEX_RINGNOISE=3 */ float (*waveform[3])(float); /* create array of pointers to waveform functions */ waveform[0] = tex_sin; /* assign address of tex_sin() function to pointer array */ waveform[1] = tex_saw; waveform[2] = tex_tri; if ((wf>TEX_TRI) || (wfturbul*BLI_gNoise(tex->noisesize, x, y, z, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); wi = waveform[wf]((x + y + z)*10.0 + wi); } else if (wt==TEX_RINGNOISE) { wi = tex->turbul*BLI_gNoise(tex->noisesize, x, y, z, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); wi = waveform[wf](sqrt(x*x + y*y + z*z)*20.0 + wi); } return wi; } static int wood(Tex *tex, float *texvec, TexResult *texres) { int rv=TEX_INT; texres->tin = wood_int(tex, texvec[0], texvec[1], texvec[2]); if (texres->nor!=NULL) { /* calculate bumpnormal */ texres->nor[0] = wood_int(tex, texvec[0] + tex->nabla, texvec[1], texvec[2]); texres->nor[1] = wood_int(tex, texvec[0], texvec[1] + tex->nabla, texvec[2]); texres->nor[2] = wood_int(tex, texvec[0], texvec[1], texvec[2] + tex->nabla); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } BRICONT; return rv; } /* computes basic marble intensity at x,y,z */ static float marble_int(Tex *tex, float x, float y, float z) { float n, mi; short wf = tex->noisebasis2; /* wave form: TEX_SIN=0, TEX_SAW=1, TEX_TRI=2 */ short mt = tex->stype; /* marble type: TEX_SOFT=0, TEX_SHARP=1,TEX_SHAPER=2 */ float (*waveform[3])(float); /* create array of pointers to waveform functions */ waveform[0] = tex_sin; /* assign address of tex_sin() function to pointer array */ waveform[1] = tex_saw; waveform[2] = tex_tri; if ((wf>TEX_TRI) || (wfturbul * BLI_gTurbulence(tex->noisesize, x, y, z, tex->noisedepth, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); if (mt>=TEX_SOFT) { /* TEX_SOFT always true */ mi = waveform[wf](mi); if (mt==TEX_SHARP) { mi = sqrt(mi); } else if (mt==TEX_SHARPER) { mi = sqrt(sqrt(mi)); } } return mi; } static int marble(Tex *tex, float *texvec, TexResult *texres) { int rv=TEX_INT; texres->tin = marble_int(tex, texvec[0], texvec[1], texvec[2]); if (texres->nor!=NULL) { /* calculate bumpnormal */ texres->nor[0] = marble_int(tex, texvec[0] + tex->nabla, texvec[1], texvec[2]); texres->nor[1] = marble_int(tex, texvec[0], texvec[1] + tex->nabla, texvec[2]); texres->nor[2] = marble_int(tex, texvec[0], texvec[1], texvec[2] + tex->nabla); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } BRICONT; return rv; } /* ------------------------------------------------------------------------- */ static int magic(Tex *tex, float *texvec, TexResult *texres) { float x, y, z, turb=1.0; int n; n= tex->noisedepth; turb= tex->turbul/5.0; x= sin( ( texvec[0]+texvec[1]+texvec[2])*5.0 ); y= cos( (-texvec[0]+texvec[1]-texvec[2])*5.0 ); z= -cos( (-texvec[0]-texvec[1]+texvec[2])*5.0 ); if(n>0) { x*= turb; y*= turb; z*= turb; y= -cos(x-y+z); y*= turb; if(n>1) { x= cos(x-y-z); x*= turb; if(n>2) { z= sin(-x-y-z); z*= turb; if(n>3) { x= -cos(-x+y-z); x*= turb; if(n>4) { y= -sin(-x+y+z); y*= turb; if(n>5) { y= -cos(-x+y+z); y*= turb; if(n>6) { x= cos(x+y+z); x*= turb; if(n>7) { z= sin(x+y-z); z*= turb; if(n>8) { x= -cos(-x-y+z); x*= turb; if(n>9) { y= -sin(x-y+z); y*= turb; } } } } } } } } } } if(turb!=0.0) { turb*= 2.0; x/= turb; y/= turb; z/= turb; } texres->tr= 0.5-x; texres->tg= 0.5-y; texres->tb= 0.5-z; texres->tin= 0.3333*(texres->tr+texres->tg+texres->tb); BRICONTRGB; texres->ta= 1.0; return TEX_RGB; } /* ------------------------------------------------------------------------- */ /* newnoise: stucci also modified to use different noisebasis */ static int stucci(Tex *tex, float *texvec, TexResult *texres) { float nor[3], b2, ofs; int retval= TEX_INT; b2= BLI_gNoise(tex->noisesize, texvec[0], texvec[1], texvec[2], (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); ofs= tex->turbul/200.0; if(tex->stype) ofs*=(b2*b2); nor[0] = BLI_gNoise(tex->noisesize, texvec[0]+ofs, texvec[1], texvec[2], (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); nor[1] = BLI_gNoise(tex->noisesize, texvec[0], texvec[1]+ofs, texvec[2], (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); nor[2] = BLI_gNoise(tex->noisesize, texvec[0], texvec[1], texvec[2]+ofs, (tex->noisetype!=TEX_NOISESOFT), tex->noisebasis); texres->tin= nor[2]; if(texres->nor) { VECCOPY(texres->nor, nor); tex_normal_derivate(tex, texres); if(tex->stype==TEX_WALLOUT) { texres->nor[0]= -texres->nor[0]; texres->nor[1]= -texres->nor[1]; texres->nor[2]= -texres->nor[2]; } retval |= TEX_NOR; } if(tex->stype==TEX_WALLOUT) texres->tin= 1.0f-texres->tin; if(texres->tin<0.0f) texres->tin= 0.0f; return retval; } /* ------------------------------------------------------------------------- */ /* newnoise: musgrave terrain noise types */ static float mg_mFractalOrfBmTex(Tex *tex, float *texvec, TexResult *texres) { int rv = TEX_INT; float (*mgravefunc)(float, float, float, float, float, float, int); if (tex->stype==TEX_MFRACTAL) mgravefunc = mg_MultiFractal; else mgravefunc = mg_fBm; texres->tin = tex->ns_outscale*mgravefunc(texvec[0], texvec[1], texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->noisebasis); if (texres->nor!=NULL) { float offs= tex->nabla/tex->noisesize; // also scaling of texvec /* calculate bumpnormal */ texres->nor[0] = tex->ns_outscale*mgravefunc(texvec[0] + offs, texvec[1], texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->noisebasis); texres->nor[1] = tex->ns_outscale*mgravefunc(texvec[0], texvec[1] + offs, texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->noisebasis); texres->nor[2] = tex->ns_outscale*mgravefunc(texvec[0], texvec[1], texvec[2] + offs, tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->noisebasis); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } BRICONT; return rv; } static float mg_ridgedOrHybridMFTex(Tex *tex, float *texvec, TexResult *texres) { int rv = TEX_INT; float (*mgravefunc)(float, float, float, float, float, float, float, float, int); if (tex->stype==TEX_RIDGEDMF) mgravefunc = mg_RidgedMultiFractal; else mgravefunc = mg_HybridMultiFractal; texres->tin = tex->ns_outscale*mgravefunc(texvec[0], texvec[1], texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->mg_gain, tex->noisebasis); if (texres->nor!=NULL) { float offs= tex->nabla/tex->noisesize; // also scaling of texvec /* calculate bumpnormal */ texres->nor[0] = tex->ns_outscale*mgravefunc(texvec[0] + offs, texvec[1], texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->mg_gain, tex->noisebasis); texres->nor[1] = tex->ns_outscale*mgravefunc(texvec[0], texvec[1] + offs, texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->mg_gain, tex->noisebasis); texres->nor[2] = tex->ns_outscale*mgravefunc(texvec[0], texvec[1], texvec[2] + offs, tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->mg_gain, tex->noisebasis); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } BRICONT; return rv; } static float mg_HTerrainTex(Tex *tex, float *texvec, TexResult *texres) { int rv = TEX_INT; texres->tin = tex->ns_outscale*mg_HeteroTerrain(texvec[0], texvec[1], texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->noisebasis); if (texres->nor!=NULL) { float offs= tex->nabla/tex->noisesize; // also scaling of texvec /* calculate bumpnormal */ texres->nor[0] = tex->ns_outscale*mg_HeteroTerrain(texvec[0] + offs, texvec[1], texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->noisebasis); texres->nor[1] = tex->ns_outscale*mg_HeteroTerrain(texvec[0], texvec[1] + offs, texvec[2], tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->noisebasis); texres->nor[2] = tex->ns_outscale*mg_HeteroTerrain(texvec[0], texvec[1], texvec[2] + offs, tex->mg_H, tex->mg_lacunarity, tex->mg_octaves, tex->mg_offset, tex->noisebasis); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } BRICONT; return rv; } static float mg_distNoiseTex(Tex *tex, float *texvec, TexResult *texres) { int rv = TEX_INT; texres->tin = mg_VLNoise(texvec[0], texvec[1], texvec[2], tex->dist_amount, tex->noisebasis, tex->noisebasis2); if (texres->nor!=NULL) { float offs= tex->nabla/tex->noisesize; // also scaling of texvec /* calculate bumpnormal */ texres->nor[0] = mg_VLNoise(texvec[0] + offs, texvec[1], texvec[2], tex->dist_amount, tex->noisebasis, tex->noisebasis2); texres->nor[1] = mg_VLNoise(texvec[0], texvec[1] + offs, texvec[2], tex->dist_amount, tex->noisebasis, tex->noisebasis2); texres->nor[2] = mg_VLNoise(texvec[0], texvec[1], texvec[2] + offs, tex->dist_amount, tex->noisebasis, tex->noisebasis2); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } BRICONT; return rv; } /* ------------------------------------------------------------------------- */ /* newnoise: Voronoi texture type, probably the slowest, especially with minkovsky, bumpmapping, could be done another way */ static float voronoiTex(Tex *tex, float *texvec, TexResult *texres) { int rv = TEX_INT; float da[4], pa[12]; /* distance and point coordinate arrays of 4 nearest neighbours */ float aw1 = fabs(tex->vn_w1); float aw2 = fabs(tex->vn_w2); float aw3 = fabs(tex->vn_w3); float aw4 = fabs(tex->vn_w4); float sc = (aw1 + aw2 + aw3 + aw4); if (sc!=0.f) sc = tex->ns_outscale/sc; voronoi(texvec[0], texvec[1], texvec[2], da, pa, tex->vn_mexp, tex->vn_distm); texres->tin = sc * fabs(tex->vn_w1*da[0] + tex->vn_w2*da[1] + tex->vn_w3*da[2] + tex->vn_w4*da[3]); if (tex->vn_coltype) { float ca[3]; /* cell color */ cellNoiseV(pa[0], pa[1], pa[2], ca); texres->tr = aw1*ca[0]; texres->tg = aw1*ca[1]; texres->tb = aw1*ca[2]; cellNoiseV(pa[3], pa[4], pa[5], ca); texres->tr += aw2*ca[0]; texres->tg += aw2*ca[1]; texres->tb += aw2*ca[2]; cellNoiseV(pa[6], pa[7], pa[8], ca); texres->tr += aw3*ca[0]; texres->tg += aw3*ca[1]; texres->tb += aw3*ca[2]; cellNoiseV(pa[9], pa[10], pa[11], ca); texres->tr += aw4*ca[0]; texres->tg += aw4*ca[1]; texres->tb += aw4*ca[2]; if (tex->vn_coltype>=2) { float t1 = (da[1]-da[0])*10; if (t1>1) t1=1; if (tex->vn_coltype==3) t1*=texres->tin; else t1*=sc; texres->tr *= t1; texres->tg *= t1; texres->tb *= t1; } else { texres->tr *= sc; texres->tg *= sc; texres->tb *= sc; } } if (texres->nor!=NULL) { float offs= tex->nabla/tex->noisesize; // also scaling of texvec /* calculate bumpnormal */ voronoi(texvec[0] + offs, texvec[1], texvec[2], da, pa, tex->vn_mexp, tex->vn_distm); texres->nor[0] = sc * fabs(tex->vn_w1*da[0] + tex->vn_w2*da[1] + tex->vn_w3*da[2] + tex->vn_w4*da[3]); voronoi(texvec[0], texvec[1] + offs, texvec[2], da, pa, tex->vn_mexp, tex->vn_distm); texres->nor[1] = sc * fabs(tex->vn_w1*da[0] + tex->vn_w2*da[1] + tex->vn_w3*da[2] + tex->vn_w4*da[3]); voronoi(texvec[0], texvec[1], texvec[2] + offs, da, pa, tex->vn_mexp, tex->vn_distm); texres->nor[2] = sc * fabs(tex->vn_w1*da[0] + tex->vn_w2*da[1] + tex->vn_w3*da[2] + tex->vn_w4*da[3]); tex_normal_derivate(tex, texres); rv |= TEX_NOR; } if (tex->vn_coltype) { BRICONTRGB; texres->ta = 1.0; return (rv | TEX_RGB); } BRICONT; return rv; } /* ------------------------------------------------------------------------- */ static int evalnodes(Tex *tex, float *texvec, float *dxt, float *dyt, TexResult *texres, short thread, short which_output) { short rv = TEX_INT; bNodeTree *nodes = tex->nodetree; ntreeTexExecTree(nodes, texres, texvec, dxt, dyt, 0, thread, tex, which_output, R.r.cfra); if(texres->nor) rv |= TEX_NOR; rv |= TEX_RGB; return rv; } /* ------------------------------------------------------------------------- */ static int texnoise(Tex *tex, TexResult *texres) { float div=3.0; int val, ran, loop; ran= BLI_rand(); val= (ran & 3); loop= tex->noisedepth; while(loop--) { ran= (ran>>2); val*= (ran & 3); div*= 3.0; } texres->tin= ((float)val)/div;; BRICONT; return TEX_INT; } /* ------------------------------------------------------------------------- */ static int plugintex(Tex *tex, float *texvec, float *dxt, float *dyt, int osatex, TexResult *texres) { PluginTex *pit; int rgbnor=0; float result[ 8 ]; texres->tin= 0.0; pit= tex->plugin; if(pit && pit->doit) { if(texres->nor) { if (pit->version < 6) { VECCOPY(pit->result+5, texres->nor); } else { VECCOPY(result+5, texres->nor); } } if (pit->version < 6) { if(osatex) rgbnor= ((TexDoitold)pit->doit)(tex->stype, pit->data, texvec, dxt, dyt); else rgbnor= ((TexDoitold)pit->doit)(tex->stype, pit->data, texvec, 0, 0); } else { if(osatex) rgbnor= ((TexDoit)pit->doit)(tex->stype, pit->data, texvec, dxt, dyt, result); else rgbnor= ((TexDoit)pit->doit)(tex->stype, pit->data, texvec, 0, 0, result); } if (pit->version < 6) { texres->tin = pit->result[0]; } else { texres->tin = result[0]; } if(rgbnor & TEX_NOR) { if(texres->nor) { if (pit->version < 6) { VECCOPY(texres->nor, pit->result+5); } else { VECCOPY(texres->nor, result+5); } } } if(rgbnor & TEX_RGB) { if (pit->version < 6) { texres->tr = pit->result[1]; texres->tg = pit->result[2]; texres->tb = pit->result[3]; texres->ta = pit->result[4]; } else { texres->tr = result[1]; texres->tg = result[2]; texres->tb = result[3]; texres->ta = result[4]; } BRICONTRGB; } BRICONT; } return rgbnor; } static int cubemap_glob(float *n, float x, float y, float z, float *adr1, float *adr2) { float x1, y1, z1, nor[3]; int ret; if(n==NULL) { nor[0]= x; nor[1]= y; nor[2]= z; // use local render coord } else { VECCOPY(nor, n); } MTC_Mat4Mul3Vecfl(R.viewinv, nor); x1= fabs(nor[0]); y1= fabs(nor[1]); z1= fabs(nor[2]); if(z1>=x1 && z1>=y1) { *adr1 = (x + 1.0) / 2.0; *adr2 = (y + 1.0) / 2.0; ret= 0; } else if(y1>=x1 && y1>=z1) { *adr1 = (x + 1.0) / 2.0; *adr2 = (z + 1.0) / 2.0; ret= 1; } else { *adr1 = (y + 1.0) / 2.0; *adr2 = (z + 1.0) / 2.0; ret= 2; } return ret; } /* ------------------------------------------------------------------------- */ /* mtex argument only for projection switches */ static int cubemap(MTex *mtex, VlakRen *vlr, float *n, float x, float y, float z, float *adr1, float *adr2) { int proj[4]={0, ME_PROJXY, ME_PROJXZ, ME_PROJYZ}, ret= 0; if(vlr) { int index; /* Mesh vertices have such flags, for others we calculate it once based on orco */ if((vlr->puno & (ME_PROJXY|ME_PROJXZ|ME_PROJYZ))==0) { /* test for v1, vlr can be faked for baking */ if(vlr->v1 && vlr->v1->orco) { float nor[3]; CalcNormFloat(vlr->v1->orco, vlr->v2->orco, vlr->v3->orco, nor); if( fabs(nor[0])puno |= ME_PROJXY; else if( fabs(nor[0])puno |= ME_PROJXZ; else vlr->puno |= ME_PROJYZ; } else return cubemap_glob(n, x, y, z, adr1, adr2); } if(mtex) { /* the mtex->proj{xyz} have type char. maybe this should be wider? */ /* casting to int ensures that the index type is right. */ index = (int) mtex->projx; proj[index]= ME_PROJXY; index = (int) mtex->projy; proj[index]= ME_PROJXZ; index = (int) mtex->projz; proj[index]= ME_PROJYZ; } if(vlr->puno & proj[1]) { *adr1 = (x + 1.0) / 2.0; *adr2 = (y + 1.0) / 2.0; } else if(vlr->puno & proj[2]) { *adr1 = (x + 1.0) / 2.0; *adr2 = (z + 1.0) / 2.0; ret= 1; } else { *adr1 = (y + 1.0) / 2.0; *adr2 = (z + 1.0) / 2.0; ret= 2; } } else { return cubemap_glob(n, x, y, z, adr1, adr2); } return ret; } /* ------------------------------------------------------------------------- */ static int cubemap_ob(Object *ob, float *n, float x, float y, float z, float *adr1, float *adr2) { float x1, y1, z1, nor[3]; int ret; if(n==NULL) return 0; VECCOPY(nor, n); if(ob) MTC_Mat4Mul3Vecfl(ob->imat, nor); x1= fabs(nor[0]); y1= fabs(nor[1]); z1= fabs(nor[2]); if(z1>=x1 && z1>=y1) { *adr1 = (x + 1.0) / 2.0; *adr2 = (y + 1.0) / 2.0; ret= 0; } else if(y1>=x1 && y1>=z1) { *adr1 = (x + 1.0) / 2.0; *adr2 = (z + 1.0) / 2.0; ret= 1; } else { *adr1 = (y + 1.0) / 2.0; *adr2 = (z + 1.0) / 2.0; ret= 2; } return ret; } /* ------------------------------------------------------------------------- */ static void do_2d_mapping(MTex *mtex, float *t, VlakRen *vlr, float *n, float *dxt, float *dyt) { Tex *tex; Object *ob= NULL; float fx, fy, fac1, area[8]; int ok, proj, areaflag= 0, wrap, texco; /* mtex variables localized, only cubemap doesn't cooperate yet... */ wrap= mtex->mapping; tex= mtex->tex; ob= mtex->object; texco= mtex->texco; if(R.osa==0) { if(wrap==MTEX_FLAT) { fx = (t[0] + 1.0) / 2.0; fy = (t[1] + 1.0) / 2.0; } else if(wrap==MTEX_TUBE) tubemap(t[0], t[1], t[2], &fx, &fy); else if(wrap==MTEX_SPHERE) spheremap(t[0], t[1], t[2], &fx, &fy); else { if(texco==TEXCO_OBJECT) cubemap_ob(ob, n, t[0], t[1], t[2], &fx, &fy); else if(texco==TEXCO_GLOB) cubemap_glob(n, t[0], t[1], t[2], &fx, &fy); else cubemap(mtex, vlr, n, t[0], t[1], t[2], &fx, &fy); } /* repeat */ if(tex->extend==TEX_REPEAT) { if(tex->xrepeat>1) { float origf= fx *= tex->xrepeat; if(fx>1.0) fx -= (int)(fx); else if(fx<0.0) fx+= 1-(int)(fx); if(tex->flag & TEX_REPEAT_XMIR) { int orig= (int)floor(origf); if(orig & 1) fx= 1.0-fx; } } if(tex->yrepeat>1) { float origf= fy *= tex->yrepeat; if(fy>1.0) fy -= (int)(fy); else if(fy<0.0) fy+= 1-(int)(fy); if(tex->flag & TEX_REPEAT_YMIR) { int orig= (int)floor(origf); if(orig & 1) fy= 1.0-fy; } } } /* crop */ if(tex->cropxmin!=0.0 || tex->cropxmax!=1.0) { fac1= tex->cropxmax - tex->cropxmin; fx= tex->cropxmin+ fx*fac1; } if(tex->cropymin!=0.0 || tex->cropymax!=1.0) { fac1= tex->cropymax - tex->cropymin; fy= tex->cropymin+ fy*fac1; } t[0]= fx; t[1]= fy; } else { if(wrap==MTEX_FLAT) { fx= (t[0] + 1.0) / 2.0; fy= (t[1] + 1.0) / 2.0; dxt[0]/= 2.0; dxt[1]/= 2.0; dxt[2]/= 2.0; dyt[0]/= 2.0; dyt[1]/= 2.0; dyt[2]/= 2.0; } else if ELEM(wrap, MTEX_TUBE, MTEX_SPHERE) { /* exception: the seam behind (y<0.0) */ ok= 1; if(t[1]<=0.0) { fx= t[0]+dxt[0]; fy= t[0]+dyt[0]; if(fx>=0.0 && fy>=0.0 && t[0]>=0.0); else if(fx<=0.0 && fy<=0.0 && t[0]<=0.0); else ok= 0; } if(ok) { if(wrap==MTEX_TUBE) { tubemap(t[0], t[1], t[2], area, area+1); tubemap(t[0]+dxt[0], t[1]+dxt[1], t[2]+dxt[2], area+2, area+3); tubemap(t[0]+dyt[0], t[1]+dyt[1], t[2]+dyt[2], area+4, area+5); } else { spheremap(t[0], t[1], t[2],area,area+1); spheremap(t[0]+dxt[0], t[1]+dxt[1], t[2]+dxt[2], area+2, area+3); spheremap(t[0]+dyt[0], t[1]+dyt[1], t[2]+dyt[2], area+4, area+5); } areaflag= 1; } else { if(wrap==MTEX_TUBE) tubemap(t[0], t[1], t[2], &fx, &fy); else spheremap(t[0], t[1], t[2], &fx, &fy); dxt[0]/= 2.0; dxt[1]/= 2.0; dyt[0]/= 2.0; dyt[1]/= 2.0; } } else { if(texco==TEXCO_OBJECT) proj = cubemap_ob(ob, n, t[0], t[1], t[2], &fx, &fy); else if (texco==TEXCO_GLOB) proj = cubemap_glob(n, t[0], t[1], t[2], &fx, &fy); else proj = cubemap(mtex, vlr, n, t[0], t[1], t[2], &fx, &fy); if(proj==1) { SWAP(float, dxt[1], dxt[2]); SWAP(float, dyt[1], dyt[2]); } else if(proj==2) { float f1= dxt[0], f2= dyt[0]; dxt[0]= dxt[1]; dyt[0]= dyt[1]; dxt[1]= dxt[2]; dyt[1]= dyt[2]; dxt[2]= f1; dyt[2]= f2; } dxt[0] *= 0.5f; dxt[1] *= 0.5f; dxt[2] *= 0.5f; dyt[0] *= 0.5f; dyt[1] *= 0.5f; dyt[2] *= 0.5f; } /* if area, then reacalculate dxt[] and dyt[] */ if(areaflag) { fx= area[0]; fy= area[1]; dxt[0]= area[2]-fx; dxt[1]= area[3]-fy; dyt[0]= area[4]-fx; dyt[1]= area[5]-fy; } /* repeat */ if(tex->extend==TEX_REPEAT) { float max= 1.0f; if(tex->xrepeat>1) { float origf= fx *= tex->xrepeat; // TXF: omit mirror here, see comments in do_material_tex() after do_2d_mapping() call if (tex->texfilter == TXF_BOX) { if(fx>1.0f) fx -= (int)(fx); else if(fx<0.0f) fx+= 1-(int)(fx); if(tex->flag & TEX_REPEAT_XMIR) { int orig= (int)floor(origf); if(orig & 1) fx= 1.0f-fx; } } max= tex->xrepeat; dxt[0]*= tex->xrepeat; dyt[0]*= tex->xrepeat; } if(tex->yrepeat>1) { float origf= fy *= tex->yrepeat; // TXF: omit mirror here, see comments in do_material_tex() after do_2d_mapping() call if (tex->texfilter == TXF_BOX) { if(fy>1.0f) fy -= (int)(fy); else if(fy<0.0f) fy+= 1-(int)(fy); if(tex->flag & TEX_REPEAT_YMIR) { int orig= (int)floor(origf); if(orig & 1) fy= 1.0f-fy; } } if(maxyrepeat) max= tex->yrepeat; dxt[1]*= tex->yrepeat; dyt[1]*= tex->yrepeat; } if(max!=1.0f) { dxt[2]*= max; dyt[2]*= max; } } /* crop */ if(tex->cropxmin!=0.0 || tex->cropxmax!=1.0) { fac1= tex->cropxmax - tex->cropxmin; fx= tex->cropxmin+ fx*fac1; dxt[0]*= fac1; dyt[0]*= fac1; } if(tex->cropymin!=0.0 || tex->cropymax!=1.0) { fac1= tex->cropymax - tex->cropymin; fy= tex->cropymin+ fy*fac1; dxt[1]*= fac1; dyt[1]*= fac1; } t[0]= fx; t[1]= fy; } } /* ************************************** */ static int multitex(Tex *tex, float *texvec, float *dxt, float *dyt, int osatex, TexResult *texres, short thread, short which_output) { float tmpvec[3]; int retval=0; /* return value, int:0, col:1, nor:2, everything:3 */ texres->talpha= 0; /* is set when image texture returns alpha (considered premul) */ if(tex->use_nodes && tex->nodetree) { retval = evalnodes(tex, texvec, dxt, dyt, texres, thread, which_output); } else switch(tex->type) { case 0: texres->tin= 0.0f; return 0; case TEX_CLOUDS: retval= clouds(tex, texvec, texres); break; case TEX_WOOD: retval= wood(tex, texvec, texres); break; case TEX_MARBLE: retval= marble(tex, texvec, texres); break; case TEX_MAGIC: retval= magic(tex, texvec, texres); break; case TEX_BLEND: retval= blend(tex, texvec, texres); break; case TEX_STUCCI: retval= stucci(tex, texvec, texres); break; case TEX_NOISE: retval= texnoise(tex, texres); break; case TEX_IMAGE: if(osatex) retval= imagewraposa(tex, tex->ima, NULL, texvec, dxt, dyt, texres); else retval= imagewrap(tex, tex->ima, NULL, texvec, texres); tag_image_time(tex->ima); /* tag image as having being used */ break; case TEX_PLUGIN: retval= plugintex(tex, texvec, dxt, dyt, osatex, texres); break; case TEX_ENVMAP: retval= envmaptex(tex, texvec, dxt, dyt, osatex, texres); break; case TEX_MUSGRAVE: /* newnoise: musgrave types */ /* ton: added this, for Blender convention reason. * artificer: added the use of tmpvec to avoid scaling texvec */ VECCOPY(tmpvec, texvec); VecMulf(tmpvec, 1.0/tex->noisesize); switch(tex->stype) { case TEX_MFRACTAL: case TEX_FBM: retval= mg_mFractalOrfBmTex(tex, tmpvec, texres); break; case TEX_RIDGEDMF: case TEX_HYBRIDMF: retval= mg_ridgedOrHybridMFTex(tex, tmpvec, texres); break; case TEX_HTERRAIN: retval= mg_HTerrainTex(tex, tmpvec, texres); break; } break; /* newnoise: voronoi type */ case TEX_VORONOI: /* ton: added this, for Blender convention reason. * artificer: added the use of tmpvec to avoid scaling texvec */ VECCOPY(tmpvec, texvec); VecMulf(tmpvec, 1.0/tex->noisesize); retval= voronoiTex(tex, tmpvec, texres); break; case TEX_DISTNOISE: /* ton: added this, for Blender convention reason. * artificer: added the use of tmpvec to avoid scaling texvec */ VECCOPY(tmpvec, texvec); VecMulf(tmpvec, 1.0/tex->noisesize); retval= mg_distNoiseTex(tex, tmpvec, texres); break; } if (tex->flag & TEX_COLORBAND) { float col[4]; if (do_colorband(tex->coba, texres->tin, col)) { texres->talpha= 1; texres->tr= col[0]; texres->tg= col[1]; texres->tb= col[2]; texres->ta= col[3]; retval |= 1; } } return retval; } /* Warning, if the texres's values are not declared zero, check the return value to be sure * the color values are set before using the r/g/b values, otherwise you may use uninitialized values - Campbell */ int multitex_ext(Tex *tex, float *texvec, float *dxt, float *dyt, int osatex, TexResult *texres) { return multitex_thread(tex, texvec, dxt, dyt, osatex, texres, 0, 0); } int multitex_thread(Tex *tex, float *texvec, float *dxt, float *dyt, int osatex, TexResult *texres, short thread, short which_output) { if(tex==NULL) { memset(texres, 0, sizeof(TexResult)); return 0; } /* Image requires 2d mapping conversion */ if(tex->type==TEX_IMAGE) { MTex mtex; float texvec_l[3], dxt_l[3], dyt_l[3]; mtex.mapping= MTEX_FLAT; mtex.tex= tex; mtex.object= NULL; mtex.texco= TEXCO_ORCO; VECCOPY(texvec_l, texvec); if(dxt && dyt) { VECCOPY(dxt_l, dxt); VECCOPY(dyt_l, dyt); } else { dxt_l[0]= dxt_l[1]= dxt_l[2]= 0.0f; dyt_l[0]= dyt_l[1]= dyt_l[2]= 0.0f; } do_2d_mapping(&mtex, texvec_l, NULL, NULL, dxt_l, dyt_l); return multitex(tex, texvec_l, dxt_l, dyt_l, osatex, texres, thread, which_output); } else return multitex(tex, texvec, dxt, dyt, osatex, texres, thread, which_output); } /* ------------------------------------------------------------------------- */ /* in = destination, tex = texture, out = previous color */ /* fact = texture strength, facg = button strength value */ void texture_rgb_blend(float *in, float *tex, float *out, float fact, float facg, int blendtype) { float facm, col; switch(blendtype) { case MTEX_BLEND: fact*= facg; facm= 1.0-fact; in[0]= (fact*tex[0] + facm*out[0]); in[1]= (fact*tex[1] + facm*out[1]); in[2]= (fact*tex[2] + facm*out[2]); break; case MTEX_MUL: fact*= facg; facm= 1.0-facg; in[0]= (facm+fact*tex[0])*out[0]; in[1]= (facm+fact*tex[1])*out[1]; in[2]= (facm+fact*tex[2])*out[2]; break; case MTEX_SCREEN: fact*= facg; facm= 1.0-facg; in[0]= 1.0 - (facm+fact*(1.0-tex[0])) * (1.0-out[0]); in[1]= 1.0 - (facm+fact*(1.0-tex[1])) * (1.0-out[1]); in[2]= 1.0 - (facm+fact*(1.0-tex[2])) * (1.0-out[2]); break; case MTEX_OVERLAY: fact*= facg; facm= 1.0-facg; if(out[0] < 0.5f) in[0] = out[0] * (facm + 2.0f*fact*tex[0]); else in[0] = 1.0f - (facm + 2.0f*fact*(1.0 - tex[0])) * (1.0 - out[0]); if(out[1] < 0.5f) in[1] = out[1] * (facm + 2.0f*fact*tex[1]); else in[1] = 1.0f - (facm + 2.0f*fact*(1.0 - tex[1])) * (1.0 - out[1]); if(out[2] < 0.5f) in[2] = out[2] * (facm + 2.0f*fact*tex[2]); else in[2] = 1.0f - (facm + 2.0f*fact*(1.0 - tex[2])) * (1.0 - out[2]); break; case MTEX_SUB: fact= -fact; case MTEX_ADD: fact*= facg; in[0]= (fact*tex[0] + out[0]); in[1]= (fact*tex[1] + out[1]); in[2]= (fact*tex[2] + out[2]); break; case MTEX_DIV: fact*= facg; facm= 1.0-fact; if(tex[0]!=0.0) in[0]= facm*out[0] + fact*out[0]/tex[0]; if(tex[1]!=0.0) in[1]= facm*out[1] + fact*out[1]/tex[1]; if(tex[2]!=0.0) in[2]= facm*out[2] + fact*out[2]/tex[2]; break; case MTEX_DIFF: fact*= facg; facm= 1.0-fact; in[0]= facm*out[0] + fact*fabs(tex[0]-out[0]); in[1]= facm*out[1] + fact*fabs(tex[1]-out[1]); in[2]= facm*out[2] + fact*fabs(tex[2]-out[2]); break; case MTEX_DARK: fact*= facg; facm= 1.0-fact; col= fact*tex[0]; if(col < out[0]) in[0]= col; else in[0]= out[0]; col= fact*tex[1]; if(col < out[1]) in[1]= col; else in[1]= out[1]; col= fact*tex[2]; if(col < out[2]) in[2]= col; else in[2]= out[2]; break; case MTEX_LIGHT: fact*= facg; facm= 1.0-fact; col= fact*tex[0]; if(col > out[0]) in[0]= col; else in[0]= out[0]; col= fact*tex[1]; if(col > out[1]) in[1]= col; else in[1]= out[1]; col= fact*tex[2]; if(col > out[2]) in[2]= col; else in[2]= out[2]; break; case MTEX_BLEND_HUE: fact*= facg; VECCOPY(in, out); ramp_blend(MA_RAMP_HUE, in, in+1, in+2, fact, tex); break; case MTEX_BLEND_SAT: fact*= facg; VECCOPY(in, out); ramp_blend(MA_RAMP_SAT, in, in+1, in+2, fact, tex); break; case MTEX_BLEND_VAL: fact*= facg; VECCOPY(in, out); ramp_blend(MA_RAMP_VAL, in, in+1, in+2, fact, tex); break; case MTEX_BLEND_COLOR: fact*= facg; VECCOPY(in, out); ramp_blend(MA_RAMP_COLOR, in, in+1, in+2, fact, tex); break; } } float texture_value_blend(float tex, float out, float fact, float facg, int blendtype, int flip) { float in=0.0, facm, col; fact*= facg; facm= 1.0-fact; if(flip) SWAP(float, fact, facm); switch(blendtype) { case MTEX_BLEND: in= fact*tex + facm*out; break; case MTEX_MUL: facm= 1.0-facg; in= (facm+fact*tex)*out; break; case MTEX_SCREEN: facm= 1.0-facg; in= 1.0-(facm+fact*(1.0-tex))*(1.0-out); break; case MTEX_SUB: fact= -fact; case MTEX_ADD: in= fact*tex + out; break; case MTEX_DIV: if(tex!=0.0) in= facm*out + fact*out/tex; break; case MTEX_DIFF: in= facm*out + fact*fabs(tex-out); break; case MTEX_DARK: col= fact*tex; if(col < out) in= col; else in= out; break; case MTEX_LIGHT: col= fact*tex; if(col > out) in= col; else in= out; break; } return in; } static void texco_mapping(ShadeInput* shi, Tex* tex, MTex* mtex, float* co, float* dx, float* dy, float* texvec, float* dxt, float* dyt) { // new: first swap coords, then map, then trans/scale if (tex->type == TEX_IMAGE) { // placement texvec[0] = mtex->projx ? co[mtex->projx - 1] : 0.f; texvec[1] = mtex->projy ? co[mtex->projy - 1] : 0.f; texvec[2] = mtex->projz ? co[mtex->projz - 1] : 0.f; if (shi->osatex) { if (mtex->projx) { dxt[0] = dx[mtex->projx - 1]; dyt[0] = dy[mtex->projx - 1]; } else dxt[0] = dyt[0] = 0.f; if (mtex->projy) { dxt[1] = dx[mtex->projy - 1]; dyt[1] = dy[mtex->projy - 1]; } else dxt[1] = dyt[1] = 0.f; if (mtex->projz) { dxt[2] = dx[mtex->projz - 1]; dyt[2] = dy[mtex->projz - 1]; } else dxt[2] = dyt[2] = 0.f; } do_2d_mapping(mtex, texvec, shi->vlr, shi->facenor, dxt, dyt); // translate and scale texvec[0] = mtex->size[0]*(texvec[0] - 0.5f) + mtex->ofs[0] + 0.5f; texvec[1] = mtex->size[1]*(texvec[1] - 0.5f) + mtex->ofs[1] + 0.5f; if (shi->osatex) { dxt[0] = mtex->size[0]*dxt[0]; dxt[1] = mtex->size[1]*dxt[1]; dyt[0] = mtex->size[0]*dyt[0]; dyt[1] = mtex->size[1]*dyt[1]; } /* problem: repeat-mirror is not a 'repeat' but 'extend' in imagetexture.c */ // TXF: bug was here, only modify texvec when repeat mode set, old code affected other modes too. // New texfilters solve mirroring differently so that it also works correctly when // textures are scaled (sizeXYZ) as well as repeated. See also modification in do_2d_mapping(). // (since currently only done in osa mode, results will look incorrect without osa TODO) if (tex->extend == TEX_REPEAT && (tex->flag & TEX_REPEAT_XMIR)) { if (tex->texfilter == TXF_BOX) texvec[0] -= floorf(texvec[0]); // this line equivalent to old code, same below else if (texvec[0] < 0.f || texvec[0] > 1.f) { const float tx = 0.5f*texvec[0]; texvec[0] = 2.f*(tx - floorf(tx)); if (texvec[0] > 1.f) texvec[0] = 2.f - texvec[0]; } } if (tex->extend == TEX_REPEAT && (tex->flag & TEX_REPEAT_YMIR)) { if (tex->texfilter == TXF_BOX) texvec[1] -= floorf(texvec[1]); else if (texvec[1] < 0.f || texvec[1] > 1.f) { const float ty = 0.5f*texvec[1]; texvec[1] = 2.f*(ty - floorf(ty)); if (texvec[1] > 1.f) texvec[1] = 2.f - texvec[1]; } } } else { // procedural // placement texvec[0] = mtex->size[0]*(mtex->projx ? (co[mtex->projx - 1] + mtex->ofs[0]) : mtex->ofs[0]); texvec[1] = mtex->size[1]*(mtex->projy ? (co[mtex->projy - 1] + mtex->ofs[1]) : mtex->ofs[1]); texvec[2] = mtex->size[2]*(mtex->projz ? (co[mtex->projz - 1] + mtex->ofs[2]) : mtex->ofs[2]); if (shi->osatex) { if (mtex->projx) { dxt[0] = mtex->size[0]*dx[mtex->projx - 1]; dyt[0] = mtex->size[0]*dy[mtex->projx - 1]; } else dxt[0] = 0.f; if (mtex->projy) { dxt[1] = mtex->size[1]*dx[mtex->projy - 1]; dyt[1] = mtex->size[1]*dy[mtex->projy - 1]; } else dxt[1] = 0.f; if (mtex->projz) { dxt[2] = mtex->size[2]*dx[mtex->projz - 1]; dyt[2] = mtex->size[2]*dy[mtex->projz - 1]; } else dxt[2]= 0.f; } } } void do_material_tex(ShadeInput *shi) { MTex *mtex; Tex *tex; TexResult texres= {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0, NULL}; float *co = NULL, *dx = NULL, *dy = NULL; float fact, facm, factt, facmm, stencilTin=1.0; float texvec[3], dxt[3], dyt[3], tempvec[3], norvec[3], warpvec[3]={0.0f, 0.0f, 0.0f}, Tnor=1.0; int tex_nr, rgbnor= 0, warpdone=0; float nu[3], nv[3], nn[3] = {0,0,0}, dudnu = 1.f, dudnv = 0.f, dvdnu = 0.f, dvdnv = 1.f; // bump mapping int nunvdone= 0; if (R.r.scemode & R_NO_TEX) return; /* here: test flag if there's a tex (todo) */ for(tex_nr=0; tex_nrmat->septex & (1<mat->mtex[tex_nr]) { mtex= shi->mat->mtex[tex_nr]; tex= mtex->tex; if(tex==0) continue; /* which coords */ if(mtex->texco==TEXCO_ORCO) { if(mtex->texflag & MTEX_DUPLI_MAPTO) { co= shi->duplilo; dx= dxt; dy= dyt; dxt[0]= dxt[1]= dxt[2]= 0.0f; dyt[0]= dyt[1]= dyt[2]= 0.0f; } else { co= shi->lo; dx= shi->dxlo; dy= shi->dylo; } } else if(mtex->texco==TEXCO_STICKY) { co= shi->sticky; dx= shi->dxsticky; dy= shi->dysticky; } else if(mtex->texco==TEXCO_OBJECT) { Object *ob= mtex->object; if(ob) { co= tempvec; dx= dxt; dy= dyt; VECCOPY(tempvec, shi->co); if(mtex->texflag & MTEX_OB_DUPLI_ORIG) if(shi->obi && shi->obi->duplitexmat) MTC_Mat4MulVecfl(shi->obi->duplitexmat, tempvec); MTC_Mat4MulVecfl(ob->imat, tempvec); if(shi->osatex) { VECCOPY(dxt, shi->dxco); VECCOPY(dyt, shi->dyco); MTC_Mat4Mul3Vecfl(ob->imat, dxt); MTC_Mat4Mul3Vecfl(ob->imat, dyt); } } else { /* if object doesn't exist, do not use orcos (not initialized) */ co= shi->co; dx= shi->dxco; dy= shi->dyco; } } else if(mtex->texco==TEXCO_REFL) { co= shi->ref; dx= shi->dxref; dy= shi->dyref; } else if(mtex->texco==TEXCO_NORM) { co= shi->orn; dx= shi->dxno; dy= shi->dyno; } else if(mtex->texco==TEXCO_TANGENT) { co= shi->tang; dx= shi->dxno; dy= shi->dyno; } else if(mtex->texco==TEXCO_GLOB) { co= shi->gl; dx= shi->dxco; dy= shi->dyco; } else if(mtex->texco==TEXCO_UV) { if(mtex->texflag & MTEX_DUPLI_MAPTO) { co= shi->dupliuv; dx= dxt; dy= dyt; dxt[0]= dxt[1]= dxt[2]= 0.0f; dyt[0]= dyt[1]= dyt[2]= 0.0f; } else { ShadeInputUV *suv= &shi->uv[shi->actuv]; int i = shi->actuv; if(mtex->uvname[0] != 0) { for(i = 0; i < shi->totuv; i++) { if(strcmp(shi->uv[i].name, mtex->uvname)==0) { suv= &shi->uv[i]; break; } } } co= suv->uv; dx= suv->dxuv; dy= suv->dyuv; // uvmapping only, calculation of normal tangent u/v partial derivatives // (should not be here, dudnu, dudnv, dvdnu & dvdnv should probably be part of ShadeInputUV struct, // nu/nv in ShadeInput and this calculation should then move to shadeinput.c, shade_input_set_shade_texco() func.) // NOTE: test for shi->obr->ob here, since vlr/obr/obi can be 'fake' when called from fastshade(), another reason to move it.. if ((mtex->texflag & MTEX_NEW_BUMP) && shi->obr && shi->obr->ob) { if(mtex->mapto & (MAP_NORM|MAP_DISPLACE|MAP_WARP)) { MTFace* tf = RE_vlakren_get_tface(shi->obr, shi->vlr, i, NULL, 0); int j1 = shi->i1, j2 = shi->i2, j3 = shi->i3; vlr_set_uv_indices(shi->vlr, &j1, &j2, &j3); if (tf) { float *uv1 = tf->uv[j1], *uv2 = tf->uv[j2], *uv3 = tf->uv[j3]; const float an[3] = {fabsf(nn[0]), fabsf(nn[1]), fabsf(nn[2])}; const int a1 = (an[0] > an[1] && an[0] > an[2]) ? 1 : 0; const int a2 = (an[2] > an[0] && an[2] > an[1]) ? 1 : 2; const float dp1_a1 = shi->v1->co[a1] - shi->v3->co[a1]; const float dp1_a2 = shi->v1->co[a2] - shi->v3->co[a2]; const float dp2_a1 = shi->v2->co[a1] - shi->v3->co[a1]; const float dp2_a2 = shi->v2->co[a2] - shi->v3->co[a2]; const float du1 = uv1[0] - uv3[0], du2 = uv2[0] - uv3[0]; const float dv1 = uv1[1] - uv3[1], dv2 = uv2[1] - uv3[1]; const float dpdu_a1 = dv2*dp1_a1 - dv1*dp2_a1; const float dpdu_a2 = dv2*dp1_a2 - dv1*dp2_a2; const float dpdv_a1 = du1*dp2_a1 - du2*dp1_a1; const float dpdv_a2 = du1*dp2_a2 - du2*dp1_a2; float d = dpdu_a1*dpdv_a2 - dpdv_a1*dpdu_a2; float uvd = du1*dv2 - dv1*du2; if (uvd == 0.f) uvd = 1e-5f; if (d == 0.f) d = 1e-5f; d = uvd / d; dudnu = (dpdv_a2*nu[a1] - dpdv_a1*nu[a2])*d; dvdnu = (dpdu_a1*nu[a2] - dpdu_a2*nu[a1])*d; dudnv = (dpdv_a2*nv[a1] - dpdv_a1*nv[a2])*d; dvdnv = (dpdu_a1*nv[a2] - dpdu_a2*nv[a1])*d; } } } } } else if(mtex->texco==TEXCO_WINDOW) { co= shi->winco; dx= shi->dxwin; dy= shi->dywin; } else if(mtex->texco==TEXCO_STRAND) { co= tempvec; dx= dxt; dy= dyt; co[0]= shi->strandco; co[1]= co[2]= 0.0f; dx[0]= shi->dxstrand; dx[1]= dx[2]= 0.0f; dy[0]= shi->dystrand; dy[1]= dy[2]= 0.0f; } else if(mtex->texco==TEXCO_STRESS) { co= tempvec; dx= dxt; dy= dyt; co[0]= shi->stress; co[1]= co[2]= 0.0f; dx[0]= 0.0f; dx[1]= dx[2]= 0.0f; dy[0]= 0.0f; dy[1]= dy[2]= 0.0f; } else continue; // can happen when texco defines disappear and it renders old files /* the pointer defines if bumping happens */ if(mtex->mapto & (MAP_NORM|MAP_DISPLACE|MAP_WARP)) { texres.nor= norvec; norvec[0]= norvec[1]= norvec[2]= 0.0; } else texres.nor= NULL; if(warpdone) { VECADD(tempvec, co, warpvec); co= tempvec; } if(mtex->texflag & MTEX_NEW_BUMP) { // compute ortho basis around normal if(!nunvdone) { // render normal is negated nn[0] = -shi->vn[0]; nn[1] = -shi->vn[1]; nn[2] = -shi->vn[2]; VecOrthoBasisf(nn, nu, nv); nunvdone= 1; } if(texres.nor) { TexResult ttexr = {0, 0, 0, 0, 0, texres.talpha, NULL}; // temp TexResult float tco[3], texv[3], cd, ud, vd, du, dv, idu, idv; const int fromrgb = ((tex->type == TEX_IMAGE) || ((tex->flag & TEX_COLORBAND)!=0)); const float bf = 0.04f*Tnor*((mtex->maptoneg & MAP_NORM) ? -mtex->norfac : mtex->norfac); // disable internal bump eval float* nvec = texres.nor; texres.nor = NULL; // du & dv estimates, constant value defaults du = dv = 0.01f; // two methods, either constant based on main image resolution, // (which also works without osa, though of course not always good (or even very bad) results), // or based on tex derivative max values (osa only). Not sure which is best... if (!shi->osatex && (tex->type == TEX_IMAGE) && tex->ima) { // in case we have no proper derivatives, fall back to // computing du/dv it based on image size ImBuf* ibuf = BKE_image_get_ibuf(tex->ima, &tex->iuser); if (ibuf) { du = 1.f/(float)ibuf->x; dv = 1.f/(float)ibuf->y; } } else if (shi->osatex) { // we have derivatives, can compute proper du/dv if (tex->type == TEX_IMAGE) { // 2d image, use u & v max. of dx/dy 2d vecs const float adx[2] = {fabsf(dx[0]), fabsf(dx[1])}; const float ady[2] = {fabsf(dy[0]), fabsf(dy[1])}; du = MAX2(adx[0], ady[0]); dv = MAX2(adx[1], ady[1]); } else { // 3d procedural, estimate from all dx/dy elems const float adx[3] = {fabsf(dx[0]), fabsf(dx[1]), fabsf(dx[2])}; const float ady[3] = {fabsf(dy[0]), fabsf(dy[1]), fabsf(dy[2])}; du = MAX3(adx[0], adx[1], adx[2]); dv = MAX3(ady[1], ady[1], ady[2]); } } // center, main return value texco_mapping(shi, tex, mtex, co, dx, dy, texvec, dxt, dyt); rgbnor = multitex(tex, texvec, dxt, dyt, shi->osatex, &texres, shi->thread, mtex->which_output); cd = fromrgb ? (texres.tr + texres.tg + texres.tb)*0.33333333f : texres.tin; if (mtex->texco == TEXCO_UV) { // for the uv case, use the same value for both du/dv, // since individually scaling the normal derivatives makes them useless... du = MIN2(du, dv); idu = (du < 1e-6f) ? bf : (bf/du); // +u val tco[0] = co[0] + dudnu*du; tco[1] = co[1] + dvdnu*du; tco[2] = 0.f; texco_mapping(shi, tex, mtex, tco, dx, dy, texv, dxt, dyt); multitex(tex, texv, dxt, dyt, shi->osatex, &ttexr, shi->thread, mtex->which_output); ud = idu*(cd - (fromrgb ? (ttexr.tr + ttexr.tg + ttexr.tb)*0.33333333f : ttexr.tin)); // +v val tco[0] = co[0] + dudnv*du; tco[1] = co[1] + dvdnv*du; tco[2] = 0.f; texco_mapping(shi, tex, mtex, tco, dx, dy, texv, dxt, dyt); multitex(tex, texv, dxt, dyt, shi->osatex, &ttexr, shi->thread, mtex->which_output); vd = idu*(cd - (fromrgb ? (ttexr.tr + ttexr.tg + ttexr.tb)*0.33333333f : ttexr.tin)); } else { float tu[3] = {nu[0], nu[1], nu[2]}, tv[3] = {nv[0], nv[1], nv[2]}; idu = (du < 1e-6f) ? bf : (bf/du); idv = (dv < 1e-6f) ? bf : (bf/dv); if ((mtex->texco == TEXCO_ORCO) && shi->obr && shi->obr->ob) { Mat4Mul3Vecfl(shi->obr->ob->imat, tu); Mat4Mul3Vecfl(shi->obr->ob->imat, tv); Normalize(tu); Normalize(tv); } else if (mtex->texco == TEXCO_GLOB) { Mat4Mul3Vecfl(R.viewinv, tu); Mat4Mul3Vecfl(R.viewinv, tv); } else if (mtex->texco == TEXCO_OBJECT && mtex->object) { Mat4Mul3Vecfl(mtex->object->imat, tu); Mat4Mul3Vecfl(mtex->object->imat, tv); Normalize(tu); Normalize(tv); } // +u val tco[0] = co[0] + tu[0]*du; tco[1] = co[1] + tu[1]*du; tco[2] = co[2] + tu[2]*du; texco_mapping(shi, tex, mtex, tco, dx, dy, texv, dxt, dyt); multitex(tex, texv, dxt, dyt, shi->osatex, &ttexr, shi->thread, mtex->which_output); ud = idu*(cd - (fromrgb ? (ttexr.tr + ttexr.tg + ttexr.tb)*0.33333333f : ttexr.tin)); // +v val tco[0] = co[0] + tv[0]*dv; tco[1] = co[1] + tv[1]*dv; tco[2] = co[2] + tv[2]*dv; texco_mapping(shi, tex, mtex, tco, dx, dy, texv, dxt, dyt); multitex(tex, texv, dxt, dyt, shi->osatex, &ttexr, shi->thread, mtex->which_output); vd = idv*(cd - (fromrgb ? (ttexr.tr + ttexr.tg + ttexr.tb)*0.33333333f : ttexr.tin)); } // bumped normal nu[0] += ud*nn[0]; nu[1] += ud*nn[1]; nu[2] += ud*nn[2]; nv[0] += vd*nn[0]; nv[1] += vd*nn[1]; nv[2] += vd*nn[2]; Crossf(nvec, nu, nv); nvec[0] = -nvec[0]; nvec[1] = -nvec[1]; nvec[2] = -nvec[2]; texres.nor = nvec; rgbnor |= TEX_NOR; } else { texco_mapping(shi, tex, mtex, co, dx, dy, texvec, dxt, dyt); rgbnor = multitex(tex, texvec, dxt, dyt, shi->osatex, &texres, shi->thread, mtex->which_output); } } else { texco_mapping(shi, tex, mtex, co, dx, dy, texvec, dxt, dyt); rgbnor = multitex(tex, texvec, dxt, dyt, shi->osatex, &texres, shi->thread, mtex->which_output); } /* texture output */ if( (rgbnor & TEX_RGB) && (mtex->texflag & MTEX_RGBTOINT)) { texres.tin= (0.35*texres.tr+0.45*texres.tg+0.2*texres.tb); rgbnor-= TEX_RGB; } if(mtex->texflag & MTEX_NEGATIVE) { if(rgbnor & TEX_RGB) { texres.tr= 1.0-texres.tr; texres.tg= 1.0-texres.tg; texres.tb= 1.0-texres.tb; } texres.tin= 1.0-texres.tin; } if(mtex->texflag & MTEX_STENCIL) { if(rgbnor & TEX_RGB) { fact= texres.ta; texres.ta*= stencilTin; stencilTin*= fact; } else { fact= texres.tin; texres.tin*= stencilTin; stencilTin*= fact; } } else { Tnor*= stencilTin; } if(texres.nor) { if((rgbnor & TEX_NOR)==0) { /* make our own normal */ if(rgbnor & TEX_RGB) { texres.nor[0]= texres.tr; texres.nor[1]= texres.tg; texres.nor[2]= texres.tb; } else { float co_nor= 0.5*cos(texres.tin-0.5); float si= 0.5*sin(texres.tin-0.5); float f1, f2; f1= shi->vn[0]; f2= shi->vn[1]; texres.nor[0]= f1*co_nor+f2*si; texres.nor[1]= f2*co_nor-f1*si; f1= shi->vn[1]; f2= shi->vn[2]; texres.nor[1]= f1*co_nor+f2*si; texres.nor[2]= f2*co_nor-f1*si; } } // warping, local space if(mtex->mapto & MAP_WARP) { warpvec[0]= mtex->warpfac*texres.nor[0]; warpvec[1]= mtex->warpfac*texres.nor[1]; warpvec[2]= mtex->warpfac*texres.nor[2]; warpdone= 1; } #if 0 if(mtex->texflag & MTEX_VIEWSPACE) { // rotate to global coords if(mtex->texco==TEXCO_ORCO || mtex->texco==TEXCO_UV) { if(shi->vlr && shi->obr && shi->obr->ob) { float len= Normalize(texres.nor); // can be optimized... (ton) Mat4Mul3Vecfl(shi->obr->ob->obmat, texres.nor); Mat4Mul3Vecfl(R.viewmat, texres.nor); Normalize(texres.nor); VecMulf(texres.nor, len); } } } #endif } /* mapping */ if(mtex->mapto & (MAP_COL+MAP_COLSPEC+MAP_COLMIR)) { float tcol[3], colfac; /* stencil maps on the texture control slider, not texture intensity value */ colfac= mtex->colfac*stencilTin; tcol[0]=texres.tr; tcol[1]=texres.tg; tcol[2]=texres.tb; if((rgbnor & TEX_RGB)==0) { tcol[0]= mtex->r; tcol[1]= mtex->g; tcol[2]= mtex->b; } else if(mtex->mapto & MAP_ALPHA) { texres.tin= stencilTin; } else texres.tin= texres.ta; /* inverse gamma correction */ if (R.r.color_mgt_flag & R_COLOR_MANAGEMENT) { color_manage_linearize(tcol, tcol); } if(mtex->mapto & MAP_COL) { texture_rgb_blend(&shi->r, tcol, &shi->r, texres.tin, colfac, mtex->blendtype); } if(mtex->mapto & MAP_COLSPEC) { texture_rgb_blend(&shi->specr, tcol, &shi->specr, texres.tin, colfac, mtex->blendtype); } if(mtex->mapto & MAP_COLMIR) { // exception for envmap only if(tex->type==TEX_ENVMAP && mtex->blendtype==MTEX_BLEND) { fact= texres.tin*colfac; facm= 1.0- fact; shi->refcol[0]= fact + facm*shi->refcol[0]; shi->refcol[1]= fact*tcol[0] + facm*shi->refcol[1]; shi->refcol[2]= fact*tcol[1] + facm*shi->refcol[2]; shi->refcol[3]= fact*tcol[2] + facm*shi->refcol[3]; } else { texture_rgb_blend(&shi->mirr, tcol, &shi->mirr, texres.tin, colfac, mtex->blendtype); } } } if( (mtex->mapto & MAP_NORM) ) { if(texres.nor) { if(mtex->maptoneg & MAP_NORM) tex->norfac= -mtex->norfac; else tex->norfac= mtex->norfac; /* we need to code blending modes for normals too once.. now 1 exception hardcoded */ if ((tex->type==TEX_IMAGE) && (tex->imaflag & TEX_NORMALMAP)) { /* qdn: for normalmaps, to invert the normalmap vector, it is better to negate x & y instead of subtracting the vector as was done before */ tex->norfac = mtex->norfac; if (mtex->maptoneg & MAP_NORM) { texres.nor[0] = -texres.nor[0]; texres.nor[1] = -texres.nor[1]; } fact = Tnor*tex->norfac; if (fact>1.f) fact = 1.f; facm = 1.f-fact; if(mtex->normapspace == MTEX_NSPACE_TANGENT) { /* qdn: tangent space */ float B[3], tv[3]; Crossf(B, shi->vn, shi->nmaptang); /* bitangent */ /* transform norvec from tangent space to object surface in camera space */ tv[0] = texres.nor[0]*shi->nmaptang[0] + texres.nor[1]*B[0] + texres.nor[2]*shi->vn[0]; tv[1] = texres.nor[0]*shi->nmaptang[1] + texres.nor[1]*B[1] + texres.nor[2]*shi->vn[1]; tv[2] = texres.nor[0]*shi->nmaptang[2] + texres.nor[1]*B[2] + texres.nor[2]*shi->vn[2]; shi->vn[0]= facm*shi->vn[0] + fact*tv[0]; shi->vn[1]= facm*shi->vn[1] + fact*tv[1]; shi->vn[2]= facm*shi->vn[2] + fact*tv[2]; } else { float nor[3]; VECCOPY(nor, texres.nor); if(mtex->normapspace == MTEX_NSPACE_CAMERA); else if(mtex->normapspace == MTEX_NSPACE_WORLD) { Mat4Mul3Vecfl(R.viewmat, nor); } else if(mtex->normapspace == MTEX_NSPACE_OBJECT) { if(shi->obr && shi->obr->ob) Mat4Mul3Vecfl(shi->obr->ob->obmat, nor); Mat4Mul3Vecfl(R.viewmat, nor); } Normalize(nor); /* qdn: worldspace */ shi->vn[0]= facm*shi->vn[0] + fact*nor[0]; shi->vn[1]= facm*shi->vn[1] + fact*nor[1]; shi->vn[2]= facm*shi->vn[2] + fact*nor[2]; } } else { if (mtex->texflag & MTEX_NEW_BUMP) { shi->vn[0] = texres.nor[0]; shi->vn[1] = texres.nor[1]; shi->vn[2] = texres.nor[2]; } else { float nor[3], dot; if(shi->mat->mode & MA_TANGENT_V) { shi->tang[0]+= Tnor*tex->norfac*texres.nor[0]; shi->tang[1]+= Tnor*tex->norfac*texres.nor[1]; shi->tang[2]+= Tnor*tex->norfac*texres.nor[2]; } /* prevent bump to become negative normal */ nor[0]= Tnor*tex->norfac*texres.nor[0]; nor[1]= Tnor*tex->norfac*texres.nor[1]; nor[2]= Tnor*tex->norfac*texres.nor[2]; dot= 0.5f + 0.5f*INPR(nor, shi->vn); shi->vn[0]+= dot*nor[0]; shi->vn[1]+= dot*nor[1]; shi->vn[2]+= dot*nor[2]; } } Normalize(shi->vn); /* this makes sure the bump is passed on to the next texture */ shi->orn[0]= -shi->vn[0]; shi->orn[1]= -shi->vn[1]; shi->orn[2]= -shi->vn[2]; /* reflection vector */ calc_R_ref(shi); } } if( mtex->mapto & MAP_DISPLACE ) { /* Now that most textures offer both Nor and Intensity, allow */ /* both to work, and let user select with slider. */ if(texres.nor) { if(mtex->maptoneg & MAP_DISPLACE) tex->norfac= -mtex->norfac; else tex->norfac= mtex->norfac; shi->displace[0]+= 0.2f*Tnor*tex->norfac*texres.nor[0]; shi->displace[1]+= 0.2f*Tnor*tex->norfac*texres.nor[1]; shi->displace[2]+= 0.2f*Tnor*tex->norfac*texres.nor[2]; } if(rgbnor & TEX_RGB) { if(texres.talpha) texres.tin= texres.ta; else texres.tin= (0.35f*texres.tr+0.45f*texres.tg+0.2f*texres.tb); } if(mtex->maptoneg & MAP_DISPLACE) { factt= (texres.tin-0.5f)*mtex->dispfac*stencilTin; facmm= 1.0f-factt; } else { factt= (0.5f-texres.tin)*mtex->dispfac*stencilTin; facmm= 1.0f-factt; } if(mtex->blendtype==MTEX_BLEND) { shi->displace[0]= factt*shi->vn[0] + facmm*shi->displace[0]; shi->displace[1]= factt*shi->vn[1] + facmm*shi->displace[1]; shi->displace[2]= factt*shi->vn[2] + facmm*shi->displace[2]; } else if(mtex->blendtype==MTEX_MUL) { shi->displace[0]*= factt*shi->vn[0]; shi->displace[1]*= factt*shi->vn[1]; shi->displace[2]*= factt*shi->vn[2]; } else { /* add or sub */ if(mtex->blendtype==MTEX_SUB) factt= -factt; else factt= factt; shi->displace[0]+= factt*shi->vn[0]; shi->displace[1]+= factt*shi->vn[1]; shi->displace[2]+= factt*shi->vn[2]; } } if(mtex->mapto & MAP_VARS) { /* stencil maps on the texture control slider, not texture intensity value */ float varfac= mtex->varfac*stencilTin; if(rgbnor & TEX_RGB) { if(texres.talpha) texres.tin= texres.ta; else texres.tin= (0.35*texres.tr+0.45*texres.tg+0.2*texres.tb); } if(mtex->mapto & MAP_REF) { int flip= mtex->maptoneg & MAP_REF; shi->refl= texture_value_blend(mtex->def_var, shi->refl, texres.tin, varfac, mtex->blendtype, flip); if(shi->refl<0.0) shi->refl= 0.0; } if(mtex->mapto & MAP_SPEC) { int flip= mtex->maptoneg & MAP_SPEC; shi->spec= texture_value_blend(mtex->def_var, shi->spec, texres.tin, varfac, mtex->blendtype, flip); if(shi->spec<0.0) shi->spec= 0.0; } if(mtex->mapto & MAP_EMIT) { int flip= mtex->maptoneg & MAP_EMIT; shi->emit= texture_value_blend(mtex->def_var, shi->emit, texres.tin, varfac, mtex->blendtype, flip); if(shi->emit<0.0) shi->emit= 0.0; } if(mtex->mapto & MAP_ALPHA) { int flip= mtex->maptoneg & MAP_ALPHA; shi->alpha= texture_value_blend(mtex->def_var, shi->alpha, texres.tin, varfac, mtex->blendtype, flip); if(shi->alpha<0.0) shi->alpha= 0.0; else if(shi->alpha>1.0) shi->alpha= 1.0; } if(mtex->mapto & MAP_HAR) { int flip= mtex->maptoneg & MAP_HAR; float har; // have to map to 0-1 har= ((float)shi->har)/128.0; har= 128.0*texture_value_blend(mtex->def_var, har, texres.tin, varfac, mtex->blendtype, flip); if(har<1.0) shi->har= 1; else if(har>511.0) shi->har= 511; else shi->har= (int)har; } if(mtex->mapto & MAP_RAYMIRR) { int flip= mtex->maptoneg & MAP_RAYMIRR; shi->ray_mirror= texture_value_blend(mtex->def_var, shi->ray_mirror, texres.tin, varfac, mtex->blendtype, flip); if(shi->ray_mirror<0.0) shi->ray_mirror= 0.0; else if(shi->ray_mirror>1.0) shi->ray_mirror= 1.0; } if(mtex->mapto & MAP_TRANSLU) { int flip= mtex->maptoneg & MAP_TRANSLU; shi->translucency= texture_value_blend(mtex->def_var, shi->translucency, texres.tin, varfac, mtex->blendtype, flip); if(shi->translucency<0.0) shi->translucency= 0.0; else if(shi->translucency>1.0) shi->translucency= 1.0; } if(mtex->mapto & MAP_LAYER) { int flip= mtex->maptoneg & MAP_LAYER; shi->layerfac= texture_value_blend(mtex->def_var, shi->layerfac, texres.tin, varfac, mtex->blendtype, flip); if(shi->layerfac<0.0) shi->layerfac= 0.0; else if(shi->layerfac>1.0) shi->layerfac= 1.0; } if(mtex->mapto & MAP_AMB) { int flip= mtex->maptoneg & MAP_AMB; shi->amb= texture_value_blend(mtex->def_var, shi->amb, texres.tin, varfac, mtex->blendtype, flip); if(shi->amb<0.0) shi->amb= 0.0; else if(shi->amb>1.0) shi->amb= 1.0; shi->ambr= shi->amb*R.wrld.ambr; shi->ambg= shi->amb*R.wrld.ambg; shi->ambb= shi->amb*R.wrld.ambb; } } } } } /* ------------------------------------------------------------------------- */ void do_halo_tex(HaloRen *har, float xn, float yn, float *colf) { MTex *mtex; TexResult texres= {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0, NULL}; float texvec[3], dxt[3], dyt[3], fact, facm, dx; int rgb, osatex; if (R.r.scemode & R_NO_TEX) return; mtex= har->mat->mtex[0]; if(mtex->tex==NULL) return; /* no normal mapping */ texres.nor= NULL; texvec[0]= xn/har->rad; texvec[1]= yn/har->rad; texvec[2]= 0.0; osatex= (har->mat->texco & TEXCO_OSA); /* placement */ if(mtex->projx) texvec[0]= mtex->size[0]*(texvec[mtex->projx-1]+mtex->ofs[0]); else texvec[0]= mtex->size[0]*(mtex->ofs[0]); if(mtex->projy) texvec[1]= mtex->size[1]*(texvec[mtex->projy-1]+mtex->ofs[1]); else texvec[1]= mtex->size[1]*(mtex->ofs[1]); if(mtex->projz) texvec[2]= mtex->size[2]*(texvec[mtex->projz-1]+mtex->ofs[2]); else texvec[2]= mtex->size[2]*(mtex->ofs[2]); if(osatex) { dx= 1.0/har->rad; if(mtex->projx) { dxt[0]= mtex->size[0]*dx; dyt[0]= mtex->size[0]*dx; } else dxt[0]= dyt[0]= 0.0; if(mtex->projy) { dxt[1]= mtex->size[1]*dx; dyt[1]= mtex->size[1]*dx; } else dxt[1]= dyt[1]= 0.0; if(mtex->projz) { dxt[2]= 0.0; dyt[2]= 0.0; } else dxt[2]= dyt[2]= 0.0; } if(mtex->tex->type==TEX_IMAGE) do_2d_mapping(mtex, texvec, NULL, NULL, dxt, dyt); rgb= multitex(mtex->tex, texvec, dxt, dyt, osatex, &texres, 0, mtex->which_output); /* texture output */ if(rgb && (mtex->texflag & MTEX_RGBTOINT)) { texres.tin= (0.35*texres.tr+0.45*texres.tg+0.2*texres.tb); rgb= 0; } if(mtex->texflag & MTEX_NEGATIVE) { if(rgb) { texres.tr= 1.0-texres.tr; texres.tg= 1.0-texres.tg; texres.tb= 1.0-texres.tb; } else texres.tin= 1.0-texres.tin; } /* mapping */ if(mtex->mapto & MAP_COL) { if(rgb==0) { texres.tr= mtex->r; texres.tg= mtex->g; texres.tb= mtex->b; } else if(mtex->mapto & MAP_ALPHA) { texres.tin= 1.0; } else texres.tin= texres.ta; /* inverse gamma correction */ if (R.r.color_mgt_flag & R_COLOR_MANAGEMENT) { color_manage_linearize(&texres.tr, &texres.tr); } fact= texres.tin*mtex->colfac; facm= 1.0-fact; if(mtex->blendtype==MTEX_MUL) { facm= 1.0-mtex->colfac; } if(mtex->blendtype==MTEX_SUB) fact= -fact; if(mtex->blendtype==MTEX_BLEND) { colf[0]= (fact*texres.tr + facm*har->r); colf[1]= (fact*texres.tg + facm*har->g); colf[2]= (fact*texres.tb + facm*har->b); } else if(mtex->blendtype==MTEX_MUL) { colf[0]= (facm+fact*texres.tr)*har->r; colf[1]= (facm+fact*texres.tg)*har->g; colf[2]= (facm+fact*texres.tb)*har->b; } else { colf[0]= (fact*texres.tr + har->r); colf[1]= (fact*texres.tg + har->g); colf[2]= (fact*texres.tb + har->b); CLAMP(colf[0], 0.0, 1.0); CLAMP(colf[1], 0.0, 1.0); CLAMP(colf[2], 0.0, 1.0); } } if(mtex->mapto & MAP_ALPHA) { if(rgb) { if(texres.talpha) texres.tin= texres.ta; else texres.tin= (0.35*texres.tr+0.45*texres.tg+0.2*texres.tb); } colf[3]*= texres.tin; } } /* ------------------------------------------------------------------------- */ /* hor and zen are RGB vectors, blend is 1 float, should all be initialized */ void do_sky_tex(float *rco, float *lo, float *dxyview, float *hor, float *zen, float *blend, int skyflag, short thread) { MTex *mtex; TexResult texres= {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0, NULL}; float *co, fact, stencilTin=1.0; float tempvec[3], texvec[3], dxt[3], dyt[3]; int tex_nr, rgb= 0, ok; if (R.r.scemode & R_NO_TEX) return; /* todo: add flag to test if there's a tex */ texres.nor= NULL; for(tex_nr=0; tex_nrtex==0) continue; /* if(mtex->mapto==0) continue; */ /* which coords */ co= lo; /* dxt dyt just from 1 value */ if(dxyview) { dxt[0]= dxt[1]= dxt[2]= dxyview[0]; dyt[0]= dyt[1]= dyt[2]= dxyview[1]; } else { dxt[0]= dxt[1]= dxt[2]= 0.0; dyt[0]= dyt[1]= dyt[2]= 0.0; } /* Grab the mapping settings for this texture */ switch(mtex->texco) { case TEXCO_ANGMAP: /* only works with texture being "real" */ fact= (1.0/M_PI)*acos(lo[2])/(sqrt(lo[0]*lo[0] + lo[1]*lo[1])); tempvec[0]= lo[0]*fact; tempvec[1]= lo[1]*fact; tempvec[2]= 0.0; co= tempvec; break; case TEXCO_H_SPHEREMAP: case TEXCO_H_TUBEMAP: if(skyflag & WO_ZENUP) { if(mtex->texco==TEXCO_H_TUBEMAP) tubemap(lo[0], lo[2], lo[1], tempvec, tempvec+1); else spheremap(lo[0], lo[2], lo[1], tempvec, tempvec+1); /* tube/spheremap maps for outside view, not inside */ tempvec[0]= 1.0-tempvec[0]; /* only top half */ tempvec[1]= 2.0*tempvec[1]-1.0; tempvec[2]= 0.0; /* and correction for do_2d_mapping */ tempvec[0]= 2.0*tempvec[0]-1.0; tempvec[1]= 2.0*tempvec[1]-1.0; co= tempvec; } else { /* potentially dangerous... check with multitex! */ continue; } break; case TEXCO_OBJECT: if(mtex->object) { VECCOPY(tempvec, lo); MTC_Mat4MulVecfl(mtex->object->imat, tempvec); co= tempvec; } break; case TEXCO_GLOB: if(rco) { VECCOPY(tempvec, rco); MTC_Mat4MulVecfl(R.viewinv, tempvec); co= tempvec; } else co= lo; // VECCOPY(shi->dxgl, shi->dxco); // MTC_Mat3MulVecfl(R.imat, shi->dxco); // VECCOPY(shi->dygl, shi->dyco); // MTC_Mat3MulVecfl(R.imat, shi->dyco); break; } /* placement */ if(mtex->projx) texvec[0]= mtex->size[0]*(co[mtex->projx-1]+mtex->ofs[0]); else texvec[0]= mtex->size[0]*(mtex->ofs[0]); if(mtex->projy) texvec[1]= mtex->size[1]*(co[mtex->projy-1]+mtex->ofs[1]); else texvec[1]= mtex->size[1]*(mtex->ofs[1]); if(mtex->projz) texvec[2]= mtex->size[2]*(co[mtex->projz-1]+mtex->ofs[2]); else texvec[2]= mtex->size[2]*(mtex->ofs[2]); /* texture */ if(mtex->tex->type==TEX_IMAGE) do_2d_mapping(mtex, texvec, NULL, NULL, dxt, dyt); rgb= multitex(mtex->tex, texvec, dxt, dyt, R.osa, &texres, thread, mtex->which_output); /* texture output */ if(rgb && (mtex->texflag & MTEX_RGBTOINT)) { texres.tin= (0.35*texres.tr+0.45*texres.tg+0.2*texres.tb); rgb= 0; } if(mtex->texflag & MTEX_NEGATIVE) { if(rgb) { texres.tr= 1.0-texres.tr; texres.tg= 1.0-texres.tg; texres.tb= 1.0-texres.tb; } else texres.tin= 1.0-texres.tin; } if(mtex->texflag & MTEX_STENCIL) { if(rgb) { fact= texres.ta; texres.ta*= stencilTin; stencilTin*= fact; } else { fact= texres.tin; texres.tin*= stencilTin; stencilTin*= fact; } } else { if(rgb) texres.ta *= stencilTin; else texres.tin*= stencilTin; } /* color mapping */ if(mtex->mapto & (WOMAP_HORIZ+WOMAP_ZENUP+WOMAP_ZENDOWN)) { float tcol[3]; if(rgb==0) { texres.tr= mtex->r; texres.tg= mtex->g; texres.tb= mtex->b; } else texres.tin= texres.ta; tcol[0]= texres.tr; tcol[1]= texres.tg; tcol[2]= texres.tb; /* inverse gamma correction */ if (R.r.color_mgt_flag & R_COLOR_MANAGEMENT) { color_manage_linearize(tcol, tcol); } if(mtex->mapto & WOMAP_HORIZ) { texture_rgb_blend(hor, tcol, hor, texres.tin, mtex->colfac, mtex->blendtype); } if(mtex->mapto & (WOMAP_ZENUP+WOMAP_ZENDOWN)) { ok= 0; if(R.wrld.skytype & WO_SKYREAL) { if((skyflag & WO_ZENUP)) { if(mtex->mapto & WOMAP_ZENUP) ok= 1; } else if(mtex->mapto & WOMAP_ZENDOWN) ok= 1; } else ok= 1; if(ok) { texture_rgb_blend(zen, tcol, zen, texres.tin, mtex->colfac, mtex->blendtype); } } } if(mtex->mapto & WOMAP_BLEND) { if(rgb) texres.tin= (0.35*texres.tr+0.45*texres.tg+0.2*texres.tb); *blend= texture_value_blend(mtex->def_var, *blend, texres.tin, mtex->varfac, mtex->blendtype, 0); } } } } /* ------------------------------------------------------------------------- */ /* colf supposed to be initialized with la->r,g,b */ void do_lamp_tex(LampRen *la, float *lavec, ShadeInput *shi, float *colf, int effect) { Object *ob; MTex *mtex; Tex *tex; TexResult texres= {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0, NULL}; float *co = NULL, *dx = NULL, *dy = NULL, fact, stencilTin=1.0; float texvec[3], dxt[3], dyt[3], tempvec[3]; int i, tex_nr, rgb= 0; if (R.r.scemode & R_NO_TEX) return; tex_nr= 0; for(; tex_nrmtex[tex_nr]) { mtex= la->mtex[tex_nr]; tex= mtex->tex; if(tex==NULL) continue; texres.nor= NULL; /* which coords */ if(mtex->texco==TEXCO_OBJECT) { ob= mtex->object; if(ob) { co= tempvec; dx= dxt; dy= dyt; VECCOPY(tempvec, shi->co); MTC_Mat4MulVecfl(ob->imat, tempvec); if(shi->osatex) { VECCOPY(dxt, shi->dxco); VECCOPY(dyt, shi->dyco); MTC_Mat4Mul3Vecfl(ob->imat, dxt); MTC_Mat4Mul3Vecfl(ob->imat, dyt); } } else { co= shi->co; dx= shi->dxco; dy= shi->dyco; } } else if(mtex->texco==TEXCO_GLOB) { co= shi->gl; dx= shi->dxco; dy= shi->dyco; VECCOPY(shi->gl, shi->co); MTC_Mat4MulVecfl(R.viewinv, shi->gl); } else if(mtex->texco==TEXCO_VIEW) { VECCOPY(tempvec, lavec); MTC_Mat3MulVecfl(la->imat, tempvec); if(la->type==LA_SPOT) { tempvec[0]*= la->spottexfac; tempvec[1]*= la->spottexfac; } co= tempvec; dx= dxt; dy= dyt; if(shi->osatex) { VECCOPY(dxt, shi->dxlv); VECCOPY(dyt, shi->dylv); /* need some matrix conversion here? la->imat is a [3][3] matrix!!! **/ MTC_Mat3MulVecfl(la->imat, dxt); MTC_Mat3MulVecfl(la->imat, dyt); VecMulf(dxt, la->spottexfac); VecMulf(dyt, la->spottexfac); } } /* placement */ if(mtex->projx && co) texvec[0]= mtex->size[0]*(co[mtex->projx-1]+mtex->ofs[0]); else texvec[0]= mtex->size[0]*(mtex->ofs[0]); if(mtex->projy && co) texvec[1]= mtex->size[1]*(co[mtex->projy-1]+mtex->ofs[1]); else texvec[1]= mtex->size[1]*(mtex->ofs[1]); if(mtex->projz && co) texvec[2]= mtex->size[2]*(co[mtex->projz-1]+mtex->ofs[2]); else texvec[2]= mtex->size[2]*(mtex->ofs[2]); if(shi->osatex) { if (!dx) { for(i=0;i<2;i++) { dxt[i] = dyt[i] = 0.0; } } else { if(mtex->projx) { dxt[0]= mtex->size[0]*dx[mtex->projx-1]; dyt[0]= mtex->size[0]*dy[mtex->projx-1]; } else { dxt[0]= 0.0; dyt[0]= 0.0; } if(mtex->projy) { dxt[1]= mtex->size[1]*dx[mtex->projy-1]; dyt[1]= mtex->size[1]*dy[mtex->projy-1]; } else { dxt[1]= 0.0; dyt[1]= 0.0; } if(mtex->projz) { dxt[2]= mtex->size[2]*dx[mtex->projz-1]; dyt[2]= mtex->size[2]*dy[mtex->projz-1]; } else { dxt[2]= 0.0; dyt[2]= 0.0; } } } /* texture */ if(tex->type==TEX_IMAGE) { do_2d_mapping(mtex, texvec, NULL, NULL, dxt, dyt); } rgb= multitex(tex, texvec, dxt, dyt, shi->osatex, &texres, shi->thread, mtex->which_output); /* texture output */ if(rgb && (mtex->texflag & MTEX_RGBTOINT)) { texres.tin= (0.35*texres.tr+0.45*texres.tg+0.2*texres.tb); rgb= 0; } if(mtex->texflag & MTEX_NEGATIVE) { if(rgb) { texres.tr= 1.0-texres.tr; texres.tg= 1.0-texres.tg; texres.tb= 1.0-texres.tb; } else texres.tin= 1.0-texres.tin; } if(mtex->texflag & MTEX_STENCIL) { if(rgb) { fact= texres.ta; texres.ta*= stencilTin; stencilTin*= fact; } else { fact= texres.tin; texres.tin*= stencilTin; stencilTin*= fact; } } else { if(rgb) texres.ta*= stencilTin; else texres.tin*= stencilTin; } /* mapping */ if(((mtex->mapto & LAMAP_COL) && (effect & LA_TEXTURE))||((mtex->mapto & LAMAP_SHAD) && (effect & LA_SHAD_TEX))) { float col[3]; if(rgb==0) { texres.tr= mtex->r; texres.tg= mtex->g; texres.tb= mtex->b; } else if(mtex->mapto & MAP_ALPHA) { texres.tin= stencilTin; } else texres.tin= texres.ta; /* inverse gamma correction */ if (R.r.color_mgt_flag & R_COLOR_MANAGEMENT) { color_manage_linearize(&texres.tr, &texres.tr); } /* lamp colors were premultiplied with this */ col[0]= texres.tr*la->energy; col[1]= texres.tg*la->energy; col[2]= texres.tb*la->energy; texture_rgb_blend(colf, col, colf, texres.tin, mtex->colfac, mtex->blendtype); } } } } /* ------------------------------------------------------------------------- */ int externtex(MTex *mtex, float *vec, float *tin, float *tr, float *tg, float *tb, float *ta) { Tex *tex; TexResult texr; float dxt[3], dyt[3], texvec[3]; int rgb; tex= mtex->tex; if(tex==NULL) return 0; texr.nor= NULL; /* placement */ if(mtex->projx) texvec[0]= mtex->size[0]*(vec[mtex->projx-1]+mtex->ofs[0]); else texvec[0]= mtex->size[0]*(mtex->ofs[0]); if(mtex->projy) texvec[1]= mtex->size[1]*(vec[mtex->projy-1]+mtex->ofs[1]); else texvec[1]= mtex->size[1]*(mtex->ofs[1]); if(mtex->projz) texvec[2]= mtex->size[2]*(vec[mtex->projz-1]+mtex->ofs[2]); else texvec[2]= mtex->size[2]*(mtex->ofs[2]); /* texture */ if(tex->type==TEX_IMAGE) { do_2d_mapping(mtex, texvec, NULL, NULL, dxt, dyt); } rgb= multitex(tex, texvec, dxt, dyt, 0, &texr, 0, mtex->which_output); if(rgb) { texr.tin= (0.35*texr.tr+0.45*texr.tg+0.2*texr.tb); } else { texr.tr= mtex->r; texr.tg= mtex->g; texr.tb= mtex->b; } *tin= texr.tin; *tr= texr.tr; *tg= texr.tg; *tb= texr.tb; *ta= texr.ta; return (rgb != 0); } /* ------------------------------------------------------------------------- */ void render_realtime_texture(ShadeInput *shi, Image *ima) { TexResult texr; static Tex imatex[BLENDER_MAX_THREADS]; // threadsafe static int firsttime= 1; Tex *tex; float texvec[3], dx[2], dy[2]; ShadeInputUV *suv= &shi->uv[shi->actuv]; int a; if(R.r.scemode & R_NO_TEX) return; if(firsttime) { BLI_lock_thread(LOCK_IMAGE); if(firsttime) { for(a=0; athread]; tex->iuser.ok= ima->ok; texvec[0]= 0.5+0.5*suv->uv[0]; texvec[1]= 0.5+0.5*suv->uv[1]; texvec[2] = 0; // initalize it because imagewrap looks at it. if(shi->osatex) { dx[0]= 0.5*suv->dxuv[0]; dx[1]= 0.5*suv->dxuv[1]; dy[0]= 0.5*suv->dyuv[0]; dy[1]= 0.5*suv->dyuv[1]; } texr.nor= NULL; if(shi->osatex) imagewraposa(tex, ima, NULL, texvec, dx, dy, &texr); else imagewrap(tex, ima, NULL, texvec, &texr); shi->vcol[0]*= texr.tr; shi->vcol[1]*= texr.tg; shi->vcol[2]*= texr.tb; shi->vcol[3]*= texr.ta; } /* eof */