/** * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Matt Ebb, Raul Fernandez Hernandez (Farsthary) * * ***** END GPL LICENSE BLOCK ***** */ #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "BLI_rand.h" #include "BLI_voxel.h" #include "RE_shader_ext.h" #include "RE_raytrace.h" #include "DNA_material_types.h" #include "DNA_group_types.h" #include "DNA_lamp_types.h" #include "DNA_meta_types.h" #include "BKE_global.h" #include "render_types.h" #include "pixelshading.h" #include "shading.h" #include "texture.h" #include "volumetric.h" #include "volume_precache.h" #if defined( _MSC_VER ) && !defined( __cplusplus ) # define inline __inline #endif // defined( _MSC_VER ) && !defined( __cplusplus ) /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* defined in pipeline.c, is hardcopy of active dynamic allocated Render */ /* only to be used here in this file, it's for speed */ extern struct Render R; /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* luminance rec. 709 */ inline float luminance(float* col) { return (0.212671f*col[0] + 0.71516f*col[1] + 0.072169f*col[2]); } /* tracing */ static int vol_get_bounds(ShadeInput *shi, float *co, float *vec, float *hitco, Isect *isect, int intersect_type) { /* XXX TODO - get raytrace max distance from object instance's bounding box */ /* need to account for scaling only, but keep coords in camera space... * below code is WIP and doesn't work! VecSubf(bb_dim, shi->obi->obr->boundbox[1], shi->obi->obr->boundbox[2]); Mat3MulVecfl(shi->obi->nmat, bb_dim); maxsize = VecLength(bb_dim); */ VECCOPY(isect->start, co); VECCOPY(isect->vec, vec ); isect->labda = FLT_MAX; /* isect->end[0] = co[0] + vec[0] * maxsize; isect->end[1] = co[1] + vec[1] * maxsize; isect->end[2] = co[2] + vec[2] * maxsize; */ isect->mode= RE_RAY_MIRROR; isect->orig.ob = (void*)shi->obi; isect->last_hit = NULL; isect->lay= -1; if (intersect_type == VOL_BOUNDS_DEPTH) isect->orig.face = (void*)shi->vlr; else if (intersect_type == VOL_BOUNDS_SS) isect->orig.face= NULL; if(RE_rayobject_raycast(R.raytree, isect)) { hitco[0] = isect->start[0] + isect->labda*isect->vec[0]; hitco[1] = isect->start[1] + isect->labda*isect->vec[1]; hitco[2] = isect->start[2] + isect->labda*isect->vec[2]; return 1; } else { return 0; } } static void shade_intersection(ShadeInput *shi, float *col, Isect *is) { ShadeInput shi_new; ShadeResult shr_new; memset(&shi_new, 0, sizeof(ShadeInput)); shi_new.mask= shi->mask; shi_new.osatex= shi->osatex; shi_new.thread= shi->thread; shi_new.depth = shi->depth + 1; shi_new.volume_depth= shi->volume_depth + 1; shi_new.xs= shi->xs; shi_new.ys= shi->ys; shi_new.lay= shi->lay; shi_new.passflag= SCE_PASS_COMBINED; /* result of tracing needs no pass info */ shi_new.combinedflag= 0xFFFFFF; /* ray trace does all options */ shi_new.light_override= shi->light_override; shi_new.mat_override= shi->mat_override; VECCOPY(shi_new.camera_co, is->start); memset(&shr_new, 0, sizeof(ShadeResult)); /* hardcoded limit of 100 for now - prevents problems in weird geometry */ if (shi->volume_depth < 100) { shade_ray(is, &shi_new, &shr_new); } VecCopyf(col, shr_new.combined); col[3] = shr_new.alpha; } static void vol_trace_behind(ShadeInput *shi, VlakRen *vlr, float *co, float *col) { Isect isect; VECCOPY(isect.start, co); VECCOPY(isect.vec, shi->view); isect.labda = FLT_MAX; isect.mode= RE_RAY_MIRROR; isect.orig.ob = (void*) shi->obi; isect.orig.face = (void*)vlr; isect.last_hit = NULL; isect.lay= -1; /* check to see if there's anything behind the volume, otherwise shade the sky */ if(RE_rayobject_raycast(R.raytree, &isect)) { shade_intersection(shi, col, &isect); } else { shadeSkyView(col, co, shi->view, NULL, shi->thread); shadeSunView(col, shi->view); } } /* input shader data */ float vol_get_stepsize(struct ShadeInput *shi, int context) { if (shi->mat->vol.stepsize_type == MA_VOL_STEP_RANDOMIZED) { /* range between 0.75 and 1.25 */ const float rnd = 0.5f * BLI_thread_frand(shi->thread) + 0.75f; if (context == STEPSIZE_VIEW) return shi->mat->vol.stepsize * rnd; else if (context == STEPSIZE_SHADE) return shi->mat->vol.shade_stepsize * rnd; } else { // MA_VOL_STEP_CONSTANT if (context == STEPSIZE_VIEW) return shi->mat->vol.stepsize; else if (context == STEPSIZE_SHADE) return shi->mat->vol.shade_stepsize; } return shi->mat->vol.stepsize; } /* trilinear interpolation */ static void vol_get_precached_scattering(ShadeInput *shi, float *scatter_col, float *co) { VolumePrecache *vp = shi->obi->volume_precache; float bbmin[3], bbmax[3], dim[3]; float sample_co[3]; if (!vp) return; /* convert input coords to 0.0, 1.0 */ VECCOPY(bbmin, shi->obi->obr->boundbox[0]); VECCOPY(bbmax, shi->obi->obr->boundbox[1]); VecSubf(dim, bbmax, bbmin); sample_co[0] = ((co[0] - bbmin[0]) / dim[0]); sample_co[1] = ((co[1] - bbmin[1]) / dim[1]); sample_co[2] = ((co[2] - bbmin[2]) / dim[2]); scatter_col[0] = voxel_sample_trilinear(vp->data_r, vp->res, sample_co); scatter_col[1] = voxel_sample_trilinear(vp->data_g, vp->res, sample_co); scatter_col[2] = voxel_sample_trilinear(vp->data_b, vp->res, sample_co); } /* Meta object density, brute force for now * (might be good enough anyway, don't need huge number of metaobs to model volumetric objects */ static float metadensity(Object* ob, float* co) { float mat[4][4], imat[4][4], dens = 0.f; MetaBall* mb = (MetaBall*)ob->data; MetaElem* ml; /* transform co to meta-element */ float tco[3] = {co[0], co[1], co[2]}; Mat4MulMat4(mat, ob->obmat, R.viewmat); Mat4Invert(imat, mat); Mat4MulVecfl(imat, tco); for (ml = mb->elems.first; ml; ml=ml->next) { float bmat[3][3], dist2; /* element rotation transform */ float tp[3] = {ml->x - tco[0], ml->y - tco[1], ml->z - tco[2]}; QuatToMat3(ml->quat, bmat); Mat3Transp(bmat); // rot.only, so inverse == transpose Mat3MulVecfl(bmat, tp); /* MB_BALL default */ switch (ml->type) { case MB_ELIPSOID: tp[0] /= ml->expx, tp[1] /= ml->expy, tp[2] /= ml->expz; break; case MB_CUBE: tp[2] = (tp[2] > ml->expz) ? (tp[2] - ml->expz) : ((tp[2] < -ml->expz) ? (tp[2] + ml->expz) : 0.f); // no break, xy as plane case MB_PLANE: tp[1] = (tp[1] > ml->expy) ? (tp[1] - ml->expy) : ((tp[1] < -ml->expy) ? (tp[1] + ml->expy) : 0.f); // no break, x as tube case MB_TUBE: tp[0] = (tp[0] > ml->expx) ? (tp[0] - ml->expx) : ((tp[0] < -ml->expx) ? (tp[0] + ml->expx) : 0.f); } /* ml->rad2 is not set */ dist2 = 1.f - ((tp[0]*tp[0] + tp[1]*tp[1] + tp[2]*tp[2]) / (ml->rad*ml->rad)); if (dist2 > 0.f) dens += (ml->flag & MB_NEGATIVE) ? -ml->s*dist2*dist2*dist2 : ml->s*dist2*dist2*dist2; } dens -= mb->thresh; return (dens < 0.f) ? 0.f : dens; } float vol_get_density(struct ShadeInput *shi, float *co) { float density = shi->mat->vol.density; float density_scale = shi->mat->vol.density_scale; do_volume_tex(shi, co, MAP_DENSITY, NULL, &density); // if meta-object, modulate by metadensity without increasing it if (shi->obi->obr->ob->type == OB_MBALL) { const float md = metadensity(shi->obi->obr->ob, co); if (md < 1.f) density *= md; } return density * density_scale; } /* scattering multiplier, values above 1.0 are non-physical, * but can be useful to tweak lighting */ float vol_get_scattering_fac(ShadeInput *shi, float *co) { float scatter = shi->mat->vol.scattering; float col[3] = {0.0, 0.0, 0.0}; do_volume_tex(shi, co, MAP_SCATTERING, col, &scatter); return scatter; } /* compute emission component, amount of radiance to add per segment * can be textured with 'emit' */ void vol_get_emission(ShadeInput *shi, float *emission_col, float *co, float density) { float emission = shi->mat->vol.emission; VECCOPY(emission_col, shi->mat->vol.emission_col); do_volume_tex(shi, co, MAP_EMISSION+MAP_EMISSION_COL, emission_col, &emission); emission_col[0] = emission_col[0] * emission * density; emission_col[1] = emission_col[1] * emission * density; emission_col[2] = emission_col[2] * emission * density; } void vol_get_absorption(ShadeInput *shi, float *absorb_col, float *co) { float absorption = shi->mat->vol.absorption; VECCOPY(absorb_col, shi->mat->vol.absorption_col); do_volume_tex(shi, co, MAP_ABSORPTION+MAP_ABSORPTION_COL, absorb_col, &absorption); absorb_col[0] = (1.0f - absorb_col[0]) * absorption; absorb_col[1] = (1.0f - absorb_col[1]) * absorption; absorb_col[2] = (1.0f - absorb_col[2]) * absorption; } /* phase function - determines in which directions the light * is scattered in the volume relative to incoming direction * and view direction */ float vol_get_phasefunc(ShadeInput *shi, short phasefunc_type, float g, float *w, float *wp) { const float costheta = Inpf(w, wp); const float scale = M_PI; /* * Scale constant is required, since Blender's shading system doesn't normalise for * energy conservation - eg. scaling by 1/pi for a lambert shader. * This makes volumes darker than other solid objects, for the same lighting intensity. * To correct this, scale up the phase function values * until Blender's shading system supports this better. --matt */ switch (phasefunc_type) { case MA_VOL_PH_MIEHAZY: return scale * (0.5f + 4.5f * powf(0.5 * (1.f + costheta), 8.f)) / (4.f*M_PI); case MA_VOL_PH_MIEMURKY: return scale * (0.5f + 16.5f * powf(0.5 * (1.f + costheta), 32.f)) / (4.f*M_PI); case MA_VOL_PH_RAYLEIGH: return scale * 3.f/(16.f*M_PI) * (1 + costheta * costheta); case MA_VOL_PH_HG: return scale * (1.f / (4.f * M_PI) * (1.f - g*g) / powf(1.f + g*g - 2.f * g * costheta, 1.5f)); case MA_VOL_PH_SCHLICK: { const float k = 1.55f * g - .55f * g * g * g; const float kcostheta = k * costheta; return scale * (1.f / (4.f * M_PI) * (1.f - k*k) / ((1.f - kcostheta) * (1.f - kcostheta))); } case MA_VOL_PH_ISOTROPIC: default: return scale * (1.f / (4.f * M_PI)); } } /* Compute transmittance = e^(-attenuation) */ void vol_get_transmittance_seg(ShadeInput *shi, float *tr, float stepsize, float *co, float density) { /* input density = density at co */ float tau[3] = {0.f, 0.f, 0.f}; float absorb[3]; const float scatter_dens = vol_get_scattering_fac(shi, co) * density * stepsize; vol_get_absorption(shi, absorb, co); /* homogenous volume within the sampled distance */ tau[0] += scatter_dens * absorb[0]; tau[1] += scatter_dens * absorb[1]; tau[2] += scatter_dens * absorb[2]; tr[0] *= exp(-tau[0]); tr[1] *= exp(-tau[1]); tr[2] *= exp(-tau[2]); } /* Compute transmittance = e^(-attenuation) */ static void vol_get_transmittance(ShadeInput *shi, float *tr, float *co, float *endco) { float p[3] = {co[0], co[1], co[2]}; float step_vec[3] = {endco[0] - co[0], endco[1] - co[1], endco[2] - co[2]}; //const float ambtau = -logf(shi->mat->vol.depth_cutoff); // never zero float tau[3] = {0.f, 0.f, 0.f}; float t0 = 0.f; float t1 = Normalize(step_vec); float pt0 = t0; t0 += shi->mat->vol.shade_stepsize * ((shi->mat->vol.stepsize_type == MA_VOL_STEP_CONSTANT) ? 0.5f : BLI_thread_frand(shi->thread)); p[0] += t0 * step_vec[0]; p[1] += t0 * step_vec[1]; p[2] += t0 * step_vec[2]; VecMulf(step_vec, shi->mat->vol.shade_stepsize); for (; t0 < t1; pt0 = t0, t0 += shi->mat->vol.shade_stepsize) { float absorb[3]; const float d = vol_get_density(shi, p); const float stepd = (t0 - pt0) * d; const float scatter_dens = vol_get_scattering_fac(shi, p) * stepd; vol_get_absorption(shi, absorb, p); tau[0] += scatter_dens * absorb[0]; tau[1] += scatter_dens * absorb[1]; tau[2] += scatter_dens * absorb[2]; //if (luminance(tau) >= ambtau) break; VecAddf(p, p, step_vec); } /* return transmittance */ tr[0] = expf(-tau[0]); tr[1] = expf(-tau[1]); tr[2] = expf(-tau[2]); } void vol_shade_one_lamp(struct ShadeInput *shi, float *co, LampRen *lar, float *lacol) { float visifac, lv[3], lampdist; float tr[3]={1.0,1.0,1.0}; float hitco[3], *atten_co; float p; float scatter_fac; if (lar->mode & LA_LAYER) if((lar->lay & shi->obi->lay)==0) return; if ((lar->lay & shi->lay)==0) return; if (lar->energy == 0.0) return; if ((visifac= lamp_get_visibility(lar, co, lv, &lampdist)) == 0.f) return; VecCopyf(lacol, &lar->r); if(lar->mode & LA_TEXTURE) { shi->osatex= 0; do_lamp_tex(lar, lv, shi, lacol, LA_TEXTURE); } VecMulf(lacol, visifac); if (ELEM(lar->type, LA_SUN, LA_HEMI)) VECCOPY(lv, lar->vec); VecMulf(lv, -1.0f); if (shi->mat->vol.shade_type != MA_VOL_SHADE_NONE) { Isect is; /* find minimum of volume bounds, or lamp coord */ if (vol_get_bounds(shi, co, lv, hitco, &is, VOL_BOUNDS_SS)) { float dist = VecLenf(co, hitco); VlakRen *vlr = (VlakRen *)is.hit.face; /* simple internal shadowing */ if (vlr->mat->material_type == MA_TYPE_SURFACE) { lacol[0] = lacol[1] = lacol[2] = 0.0f; return; } if (ELEM(lar->type, LA_SUN, LA_HEMI)) /* infinite lights, can never be inside volume */ atten_co = hitco; else if ( lampdist < dist ) { atten_co = lar->co; } else atten_co = hitco; vol_get_transmittance(shi, tr, co, atten_co); VecMulVecf(lacol, lacol, tr); } else { /* Point is on the outside edge of the volume, * therefore no attenuation, full transmission. * Radiance from lamp remains unchanged */ } } p = vol_get_phasefunc(shi, shi->mat->vol.phasefunc_type, shi->mat->vol.phasefunc_g, shi->view, lv); VecMulf(lacol, p); scatter_fac = vol_get_scattering_fac(shi, co); VecMulf(lacol, scatter_fac); } /* single scattering only for now */ void vol_get_scattering(ShadeInput *shi, float *scatter_col, float *co, float stepsize, float density) { ListBase *lights; GroupObject *go; LampRen *lar; scatter_col[0] = scatter_col[1] = scatter_col[2] = 0.f; lights= get_lights(shi); for(go=lights->first; go; go= go->next) { float lacol[3] = {0.f, 0.f, 0.f}; lar= go->lampren; if (lar) { vol_shade_one_lamp(shi, co, lar, lacol); VecAddf(scatter_col, scatter_col, lacol); } } } /* The main volumetric integrator, using an emission/absorption/scattering model. Incoming radiance = outgoing radiance from behind surface * beam transmittance/attenuation + added radiance from all points along the ray due to participating media --> radiance for each segment = (radiance added by scattering + radiance added by emission) * beam transmittance/attenuation */ static void volumeintegrate(struct ShadeInput *shi, float *col, float *co, float *endco) { float tr[3] = {1.0f, 1.0f, 1.0f}; float radiance[3] = {0.f, 0.f, 0.f}, d_radiance[3] = {0.f, 0.f, 0.f}; float stepsize = vol_get_stepsize(shi, STEPSIZE_VIEW); int nsteps, s; float emit_col[3], scatter_col[3] = {0.0, 0.0, 0.0}; float stepvec[3], step_sta[3], step_end[3], step_mid[3]; float density; const float depth_cutoff = shi->mat->vol.depth_cutoff; /* ray marching */ nsteps = (int)((VecLenf(co, endco) / stepsize) + 0.5); VecSubf(stepvec, endco, co); VecMulf(stepvec, 1.0f / nsteps); VecCopyf(step_sta, co); VecAddf(step_end, step_sta, stepvec); /* get radiance from all points along the ray due to participating media */ for (s = 0; s < nsteps; s++) { density = vol_get_density(shi, step_sta); /* there's only any use in shading here if there's actually some density to shade! */ if (density > 0.01f) { /* transmittance component (alpha) */ vol_get_transmittance_seg(shi, tr, stepsize, co, density); step_mid[0] = step_sta[0] + (stepvec[0] * 0.5); step_mid[1] = step_sta[1] + (stepvec[1] * 0.5); step_mid[2] = step_sta[2] + (stepvec[2] * 0.5); /* incoming light via emission or scattering (additive) */ vol_get_emission(shi, emit_col, step_mid, density); if (shi->obi->volume_precache) vol_get_precached_scattering(shi, scatter_col, step_mid); else vol_get_scattering(shi, scatter_col, step_mid, stepsize, density); VecMulf(scatter_col, density); VecAddf(d_radiance, emit_col, scatter_col); /* Lv += Tr * (Lve() + Ld) */ VecMulVecf(d_radiance, tr, d_radiance); VecMulf(d_radiance, stepsize); VecAddf(radiance, radiance, d_radiance); } VecCopyf(step_sta, step_end); VecAddf(step_end, step_end, stepvec); /* luminance rec. 709 */ if ((0.2126*tr[0] + 0.7152*tr[1] + 0.0722*tr[2]) < depth_cutoff) break; } /* multiply original color (behind volume) with beam transmittance over entire distance */ VecMulVecf(col, tr, col); VecAddf(col, col, radiance); /* alpha <-- transmission luminance */ col[3] = 1.0f -(0.2126*tr[0] + 0.7152*tr[1] + 0.0722*tr[2]); } /* the main entry point for volume shading */ static void volume_trace(struct ShadeInput *shi, struct ShadeResult *shr, int inside_volume) { float hitco[3], col[4] = {0.f,0.f,0.f,0.f}; float *startco, *endco; int trace_behind = 1; const int ztransp= ((shi->depth==0) && (shi->mat->mode & MA_TRANSP) && (shi->mat->mode & MA_ZTRANSP)); Isect is; /* check for shading an internal face a volume object directly */ if (inside_volume == VOL_SHADE_INSIDE) trace_behind = 0; else if (inside_volume == VOL_SHADE_OUTSIDE) { if (shi->flippednor) inside_volume = VOL_SHADE_INSIDE; } if (ztransp && inside_volume == VOL_SHADE_INSIDE) { MatInside *mi; int render_this=0; /* don't render the backfaces of ztransp volume materials. * volume shading renders the internal volume from between the * near view intersection of the solid volume to the * intersection on the other side, as part of the shading of * the front face. * Because ztransp renders both front and back faces independently * this will double up, so here we prevent rendering the backface as well, * which would otherwise render the volume in between the camera and the backface * --matt */ for (mi=R.render_volumes_inside.first; mi; mi=mi->next) { /* weak... */ if (mi->ma == shi->mat) render_this=1; } if (!render_this) return; } if (inside_volume == VOL_SHADE_INSIDE) { startco = shi->camera_co; endco = shi->co; if (trace_behind) { if (!ztransp) /* trace behind the volume object */ vol_trace_behind(shi, shi->vlr, endco, col); } else { /* we're tracing through the volume between the camera * and a solid surface, so use that pre-shaded radiance */ QUATCOPY(col, shr->combined); } /* shade volume from 'camera' to 1st hit point */ volumeintegrate(shi, col, startco, endco); } /* trace to find a backface, the other side bounds of the volume */ /* (ray intersect ignores front faces here) */ else if (vol_get_bounds(shi, shi->co, shi->view, hitco, &is, VOL_BOUNDS_DEPTH)) { VlakRen *vlr = (VlakRen *)is.hit.face; startco = shi->co; endco = hitco; if (!ztransp) { /* if it's another face in the same material */ if (vlr->mat == shi->mat) { /* trace behind the 2nd (raytrace) hit point */ vol_trace_behind(shi, (VlakRen *)is.hit.face, endco, col); } else { shade_intersection(shi, col, &is); } } /* shade volume from 1st hit point to 2nd hit point */ volumeintegrate(shi, col, startco, endco); } if (ztransp) col[3] = col[3]>1.f?1.f:col[3]; else col[3] = 1.f; VecCopyf(shr->combined, col); shr->alpha = col[3]; VECCOPY(shr->diff, shr->combined); } /* Traces a shadow through the object, * pretty much gets the transmission over a ray path */ void shade_volume_shadow(struct ShadeInput *shi, struct ShadeResult *shr, struct Isect *last_is) { float hitco[3]; float tr[3] = {1.0,1.0,1.0}; Isect is; float *startco, *endco; float density=0.f; memset(shr, 0, sizeof(ShadeResult)); /* if 1st hit normal is facing away from the camera, * then we're inside the volume already. */ if (shi->flippednor) { startco = last_is->start; endco = shi->co; } /* trace to find a backface, the other side bounds of the volume */ /* (ray intersect ignores front faces here) */ else if (vol_get_bounds(shi, shi->co, shi->view, hitco, &is, VOL_BOUNDS_DEPTH)) { startco = shi->co; endco = hitco; } else { shr->combined[0] = shr->combined[1] = shr->combined[2] = 0.f; shr->alpha = shr->combined[3] = 1.f; return; } density = vol_get_density(shi, startco); vol_get_transmittance(shi, tr, startco, endco); VecCopyf(shr->combined, tr); shr->combined[3] = 1.0f -(0.2126*tr[0] + 0.7152*tr[1] + 0.0722*tr[2]); shr->alpha = shr->combined[3]; } /* delivers a fully filled in ShadeResult, for all passes */ void shade_volume_outside(ShadeInput *shi, ShadeResult *shr) { memset(shr, 0, sizeof(ShadeResult)); volume_trace(shi, shr, VOL_SHADE_OUTSIDE); } void shade_volume_inside(ShadeInput *shi, ShadeResult *shr) { MatInside *m; Material *mat_backup; ObjectInstanceRen *obi_backup; float prev_alpha = shr->alpha; //if (BLI_countlist(&R.render_volumes_inside) == 0) return; /* XXX: extend to multiple volumes perhaps later */ mat_backup = shi->mat; obi_backup = shi->obi; m = R.render_volumes_inside.first; shi->mat = m->ma; shi->obi = m->obi; shi->obr = m->obi->obr; volume_trace(shi, shr, VOL_SHADE_INSIDE); shr->alpha += prev_alpha; CLAMP(shr->alpha, 0.f, 1.f); shi->mat = mat_backup; shi->obi = obi_backup; shi->obr = obi_backup->obr; }