/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) Blender Foundation * All rights reserved. */ #pragma once /** \file * \ingroup sim */ #include namespace Eigen { namespace internal { /** \internal Low-level conjugate gradient algorithm * \param mat: The matrix A * \param rhs: The right hand side vector b * \param x: On input and initial solution, on output the computed solution. * \param precond: A preconditioner being able to efficiently solve for an * approximation of Ax=b (regardless of b) * \param iters: On input the max number of iteration, * on output the number of performed iterations. * \param tol_error: On input the tolerance error, * on output an estimation of the relative error. */ template EIGEN_DONT_INLINE void constrained_conjugate_gradient(const MatrixType &mat, const Rhs &rhs, Dest &x, const FilterMatrixType &filter, const Preconditioner &precond, int &iters, typename Dest::RealScalar &tol_error) { using std::abs; using std::sqrt; typedef typename Dest::RealScalar RealScalar; typedef typename Dest::Scalar Scalar; typedef Matrix VectorType; RealScalar tol = tol_error; int maxIters = iters; int n = mat.cols(); VectorType residual = filter * (rhs - mat * x); /* initial residual */ RealScalar rhsNorm2 = (filter * rhs).squaredNorm(); if (rhsNorm2 == 0) { /* XXX TODO: set constrained result here. */ x.setZero(); iters = 0; tol_error = 0; return; } RealScalar threshold = tol * tol * rhsNorm2; RealScalar residualNorm2 = residual.squaredNorm(); if (residualNorm2 < threshold) { iters = 0; tol_error = sqrt(residualNorm2 / rhsNorm2); return; } VectorType p(n); p = filter * precond.solve(residual); /* initial search direction */ VectorType z(n), tmp(n); RealScalar absNew = numext::real( residual.dot(p)); /* the square of the absolute value of r scaled by invM */ int i = 0; while (i < maxIters) { tmp.noalias() = filter * (mat * p); /* the bottleneck of the algorithm */ Scalar alpha = absNew / p.dot(tmp); /* the amount we travel on dir */ x += alpha * p; /* update solution */ residual -= alpha * tmp; /* update residue */ residualNorm2 = residual.squaredNorm(); if (residualNorm2 < threshold) { break; } z = precond.solve(residual); /* approximately solve for "A z = residual" */ RealScalar absOld = absNew; absNew = numext::real(residual.dot(z)); /* update the absolute value of r */ RealScalar beta = absNew / absOld; /* calculate the Gram-Schmidt value used to create the new search direction */ p = filter * (z + beta * p); /* update search direction */ i++; } tol_error = sqrt(residualNorm2 / rhsNorm2); iters = i; } } // namespace internal #if 0 /* unused */ template struct MatrixFilter { MatrixFilter() : m_cmat(NULL) { } MatrixFilter(const MatrixType &cmat) : m_cmat(&cmat) { } void setMatrix(const MatrixType &cmat) { m_cmat = &cmat; } template void apply(VectorType v) const { v = (*m_cmat) * v; } protected: const MatrixType *m_cmat; }; #endif template> class ConstrainedConjugateGradient; namespace internal { template struct traits< ConstrainedConjugateGradient<_MatrixType, _UpLo, _FilterMatrixType, _Preconditioner>> { typedef _MatrixType MatrixType; typedef _FilterMatrixType FilterMatrixType; typedef _Preconditioner Preconditioner; }; } // namespace internal /** \ingroup IterativeLinearSolvers_Module * \brief A conjugate gradient solver for sparse self-adjoint problems with additional constraints * * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient * algorithm. The sparse matrix A must be self-adjoint. The vectors x and b can be either dense or * sparse. * * \tparam _MatrixType: the type of the sparse matrix A, can be a dense or a sparse matrix. * \tparam _UpLo: the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * \tparam _Preconditioner: the type of the pre-conditioner. Default is #DiagonalPreconditioner * * The maximal number of iterations and tolerance value can be controlled via the * setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the * maximal number of iterations and NumTraits::epsilon() for the tolerance. * * This class can be used as the direct solver classes. Here is a typical usage example: * \code * int n = 10000; * VectorXd x(n), b(n); * SparseMatrix A(n,n); * // fill A and b * ConjugateGradient > cg; * cg.compute(A); * x = cg.solve(b); * std::cout << "#iterations: " << cg.iterations() << std::endl; * std::cout << "estimated error: " << cg.error() << std::endl; * // update b, and solve again * x = cg.solve(b); * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. * One can control the start using the solveWithGuess() method. Here is a step by * step execution example starting with a random guess and printing the evolution * of the estimated error: * * \code * x = VectorXd::Random(n); * cg.setMaxIterations(1); * int i = 0; * do { * x = cg.solveWithGuess(b,x); * std::cout << i << " : " << cg.error() << std::endl; * ++i; * } while (cg.info()!=Success && i<100); * \endcode * Note that such a step by step execution is slightly slower. * * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ template class ConstrainedConjugateGradient : public IterativeSolverBase< ConstrainedConjugateGradient<_MatrixType, _UpLo, _FilterMatrixType, _Preconditioner>> { typedef IterativeSolverBase Base; using Base::m_error; using Base::m_info; using Base::m_isInitialized; using Base::m_iterations; using Base::mp_matrix; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; typedef typename MatrixType::RealScalar RealScalar; typedef _FilterMatrixType FilterMatrixType; typedef _Preconditioner Preconditioner; enum { UpLo = _UpLo }; public: /** Default constructor. */ ConstrainedConjugateGradient() : Base() { } /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ ConstrainedConjugateGradient(const MatrixType &A) : Base(A) { } ~ConstrainedConjugateGradient() { } FilterMatrixType &filter() { return m_filter; } const FilterMatrixType &filter() const { return m_filter; } /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A * \a x0 as an initial solution. * * \sa compute() */ template inline const internal::solve_retval_with_guess solveWithGuess(const MatrixBase &b, const Guess &x0) const { eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); eigen_assert( Base::rows() == b.rows() && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval_with_guess( *this, b.derived(), x0); } /** \internal */ template void _solveWithGuess(const Rhs &b, Dest &x) const { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; for (int j = 0; j < b.cols(); j++) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x, j); internal::constrained_conjugate_gradient(mp_matrix->template selfadjointView(), b.col(j), xj, m_filter, Base::m_preconditioner, m_iterations, m_error); } m_isInitialized = true; m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; } /** \internal */ template void _solve(const Rhs &b, Dest &x) const { x.setOnes(); _solveWithGuess(b, x); } protected: FilterMatrixType m_filter; }; namespace internal { template struct solve_retval, Rhs> : solve_retval_base, Rhs> { typedef ConstrainedConjugateGradient<_MatrixType, _UpLo, _Filter, _Preconditioner> Dec; EIGEN_MAKE_SOLVE_HELPERS(Dec, Rhs) template void evalTo(Dest &dst) const { dec()._solve(rhs(), dst); } }; } // end namespace internal } // end namespace Eigen