/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include #include #ifdef HAVE_CONFIG_H #include #endif #ifndef WIN32 #include #else #include #endif #include "MEM_guardedalloc.h" #include "DNA_action_types.h" #include "DNA_armature_types.h" #include "DNA_camera_types.h" #include "DNA_curve_types.h" #include "DNA_effect_types.h" #include "DNA_ika_types.h" #include "DNA_image_types.h" #include "DNA_ipo_types.h" #include "DNA_key_types.h" #include "DNA_lamp_types.h" #include "DNA_lattice_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_meta_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_screen_types.h" #include "DNA_texture_types.h" #include "DNA_view3d_types.h" #include "DNA_world_types.h" #include "DNA_userdef_types.h" #include "DNA_property_types.h" #include "DNA_vfont_types.h" #include "DNA_constraint_types.h" #include "BIF_screen.h" #include "BIF_space.h" #include "BIF_editview.h" #include "BIF_resources.h" #include "BIF_mywindow.h" #include "BIF_gl.h" #include "BIF_editlattice.h" #include "BIF_editarmature.h" #include "BIF_editmesh.h" #include "BKE_global.h" #include "BKE_object.h" #include "BKE_utildefines.h" #include "BKE_lattice.h" #include "BKE_armature.h" #include "BKE_curve.h" #include "BKE_displist.h" #include "BSE_view.h" #include "BSE_edit.h" #include "BLI_arithb.h" #include "BLI_editVert.h" #include "BDR_drawobject.h" #include "blendef.h" #include "mydevice.h" #include "transform.h" #include "transform_constraints.h" #include "transform_generics.h" extern ListBase editNurb; extern ListBase editelems; void recalcData(); /* ************************** CONSTRAINTS ************************* */ void getConstraintMatrix(TransInfo *t); void constraintNumInput(TransInfo *t, float vec[3]) { int mode = t->con.mode; float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f; if (getConstraintSpaceDimension(t) == 2) { if (mode & (CON_AXIS0|CON_AXIS1)) { vec[2] = nval; } else if (mode & (CON_AXIS1|CON_AXIS2)) { vec[2] = vec[1]; vec[1] = vec[0]; vec[0] = nval; } else if (mode & (CON_AXIS0|CON_AXIS2)) { vec[2] = vec[1]; vec[1] = nval; } } else if (getConstraintSpaceDimension(t) == 1) { if (mode & CON_AXIS0) { vec[1] = nval; vec[2] = nval; } else if (mode & CON_AXIS1) { vec[1] = vec[0]; vec[0] = nval; vec[2] = nval; } else if (mode & CON_AXIS2) { vec[2] = vec[0]; vec[0] = nval; vec[1] = nval; } } } static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3]) { int i = 0; Mat3MulVecfl(t->con.imtx, vec); snapGrid(t, vec); if (t->num.flag & T_NULL_ONE) { if (!(t->con.mode & CON_AXIS0)) vec[0] = 1.0f; if (!(t->con.mode & CON_AXIS1)) vec[1] = 1.0f; if (!(t->con.mode & CON_AXIS2)) vec[2] = 1.0f; } if (hasNumInput(&t->num)) { applyNumInput(&t->num, vec); constraintNumInput(t, vec); } if (t->con.mode & CON_AXIS0) { pvec[i++] = vec[0]; } if (t->con.mode & CON_AXIS1) { pvec[i++] = vec[1]; } if (t->con.mode & CON_AXIS2) { pvec[i++] = vec[2]; } Mat3MulVecfl(t->con.mtx, vec); } static void axisProjection(TransInfo *t, float axis[3], float in[3], float out[3]) { float norm[3], n[3], vec[3], factor; VecAddf(vec, in, t->con.center); getViewVector(vec, norm); Normalise(axis); VECCOPY(n, axis); Mat4MulVecfl(t->viewmat, n); n[2] = t->viewmat[3][2]; Mat4MulVecfl(t->viewinv, n); /* For when view is parallel to constraint... will cause NaNs otherwise So we take vertical motion in 3D space and apply it to the constraint axis. Nice for camera grab + MMB */ if(n[0]*n[0] + n[1]*n[1] + n[2]*n[2] < 0.000001f) { Projf(vec, in, t->viewinv[1]); factor = Inpf(t->viewinv[1], vec) * 2.0f; /* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */ if(factor<0.0f) factor*= -factor; else factor*= factor; VECCOPY(out, axis); Normalise(out); VecMulf(out, -factor); /* -factor makes move down going backwards */ } else { // prevent division by zero, happens on constrainting without initial delta transform */ if(in[0]!=0.0f || in[1]!=0.0f || in[2]!=0.0) { Projf(vec, in, n); factor = Normalise(vec); // prevent NaN for 0.0/0.0 if(factor!=0.0f) factor /= Inpf(axis, vec); VecMulf(axis, factor); VECCOPY(out, axis); } } } static void planeProjection(TransInfo *t, float in[3], float out[3]) { float vec[3], factor, angle, norm[3]; VecAddf(vec, in, t->con.center); getViewVector(vec, norm); VecSubf(vec, out, in); factor = Normalise(vec); angle = Inpf(vec, norm); if (angle * angle >= 0.000001f) { factor /= angle; VECCOPY(vec, norm); VecMulf(vec, factor); VecAddf(out, in, vec); } } /* * Generic callback for constant spacial constraints applied to linear motion * * The IN vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen) * */ static void applyAxisConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3]) { VECCOPY(out, in); if (!td && t->con.mode & CON_APPLY) { Mat3MulVecfl(t->con.pmtx, out); if (getConstraintSpaceDimension(t) == 2) { if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) { planeProjection(t, in, out); } } else if (getConstraintSpaceDimension(t) == 1) { float c[3]; if (t->con.mode & CON_AXIS0) { VECCOPY(c, t->con.mtx[0]); } else if (t->con.mode & CON_AXIS1) { VECCOPY(c, t->con.mtx[1]); } else if (t->con.mode & CON_AXIS2) { VECCOPY(c, t->con.mtx[2]); } axisProjection(t, c, in, out); } postConstraintChecks(t, out, pvec); } } /* * Generic callback for object based spacial constraints applied to linear motion * * At first, the following is applied to the first data in the array * The IN vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen) * * Further down, that vector is mapped to each data's space. */ static void applyObjectConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3]) { VECCOPY(out, in); if (t->con.mode & CON_APPLY) { if (!td) { Mat3MulVecfl(t->con.pmtx, out); if (getConstraintSpaceDimension(t) == 2) { if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) { planeProjection(t, in, out); } } else if (getConstraintSpaceDimension(t) == 1) { float c[3]; if (t->con.mode & CON_AXIS0) { VECCOPY(c, t->con.mtx[0]); } else if (t->con.mode & CON_AXIS1) { VECCOPY(c, t->con.mtx[1]); } else if (t->con.mode & CON_AXIS2) { VECCOPY(c, t->con.mtx[2]); } axisProjection(t, c, in, out); } postConstraintChecks(t, out, pvec); VECCOPY(out, pvec); } else { Mat3MulVecfl(td->axismtx, out); } } } /* * Generic callback for constant spacial constraints applied to resize motion * * */ static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3]) { if (!td && t->con.mode & CON_APPLY) { float tmat[3][3]; if (!(t->con.mode & CON_AXIS0)) { smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { smat[2][2] = 1.0f; } Mat3MulMat3(tmat, smat, t->con.imtx); Mat3MulMat3(smat, t->con.mtx, tmat); } } /* * Callback for object based spacial constraints applied to resize motion * * */ static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3]) { if (td && t->con.mode & CON_APPLY) { float tmat[3][3]; float imat[3][3]; Mat3Inv(imat, td->axismtx); if (!(t->con.mode & CON_AXIS0)) { smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { smat[2][2] = 1.0f; } Mat3MulMat3(tmat, smat, imat); Mat3MulMat3(smat, td->axismtx, tmat); } } /* * Generic callback for constant spacial constraints applied to rotations * * The rotation axis is copied into VEC. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3]) { if (!td && t->con.mode & CON_APPLY) { int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2); switch(mode) { case CON_AXIS0: case (CON_AXIS1|CON_AXIS2): VECCOPY(vec, t->con.mtx[0]); break; case CON_AXIS1: case (CON_AXIS0|CON_AXIS2): VECCOPY(vec, t->con.mtx[1]); break; case CON_AXIS2: case (CON_AXIS0|CON_AXIS1): VECCOPY(vec, t->con.mtx[2]); break; } if (!(mode & CON_NOFLIP)) { if (Inpf(vec, G.vd->viewinv[2]) > 0.0f) { VecMulf(vec, -1.0f); } } } } /* * Callback for object based spacial constraints applied to rotations * * The rotation axis is copied into VEC. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyObjectConstraintRot(TransInfo *t, TransData *td, float vec[3]) { if (td && t->con.mode & CON_APPLY) { int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2); switch(mode) { case CON_AXIS0: case (CON_AXIS1|CON_AXIS2): VECCOPY(vec, td->axismtx[0]); break; case CON_AXIS1: case (CON_AXIS0|CON_AXIS2): VECCOPY(vec, td->axismtx[1]); break; case CON_AXIS2: case (CON_AXIS0|CON_AXIS1): VECCOPY(vec, td->axismtx[2]); break; } if (!(mode & CON_NOFLIP)) { if (Inpf(vec, G.vd->viewinv[2]) > 0.0f) { VecMulf(vec, -1.0f); } } } } static void drawObjectConstraint(TransInfo *t) { int i; TransData * td = t->data; if (t->con.mode & CON_AXIS0) { drawLine(td->ob->obmat[3], td->axismtx[0], 'x', DRAWLIGHT); } if (t->con.mode & CON_AXIS1) { drawLine(td->ob->obmat[3], td->axismtx[1], 'y', DRAWLIGHT); } if (t->con.mode & CON_AXIS2) { drawLine(td->ob->obmat[3], td->axismtx[2], 'z', DRAWLIGHT); } td++; for(i=1;itotal;i++,td++) { if (t->con.mode & CON_AXIS0) { drawLine(td->ob->obmat[3], td->axismtx[0], 'x', 0); } if (t->con.mode & CON_AXIS1) { drawLine(td->ob->obmat[3], td->axismtx[1], 'y', 0); } if (t->con.mode & CON_AXIS2) { drawLine(td->ob->obmat[3], td->axismtx[2], 'z', 0); } } } /* * Returns the dimension of the constraint space. * * For that reason, the flags always needs to be set to properly evaluate here, * even if they aren't actually used in the callback function. (Which could happen * for weird constraints not yet designed. Along a path for example.) */ int getConstraintSpaceDimension(TransInfo *t) { int n = 0; if (t->con.mode & CON_AXIS0) n++; if (t->con.mode & CON_AXIS1) n++; if (t->con.mode & CON_AXIS2) n++; return n; /* Someone willing to do it criptically could do the following instead: return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2); Based on the assumptions that the axis flags are one after the other and start at 1 */ } void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[]) { strncpy(t->con.text + 1, text, 48); Mat3CpyMat3(t->con.mtx, space); t->con.mode = mode; getConstraintMatrix(t); startConstraint(t); t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; t->redraw = 1; } void setLocalConstraint(TransInfo *t, int mode, const char text[]) { if (t->flag & T_EDIT) { float obmat[3][3]; Mat3CpyMat4(obmat, G.obedit->obmat); setConstraint(t, obmat, mode, text); } else { if (t->total == 1) { setConstraint(t, t->data->axismtx, mode, text); } else { strncpy(t->con.text + 1, text, 48); Mat3CpyMat3(t->con.mtx, t->data->axismtx); t->con.mode = mode; getConstraintMatrix(t); startConstraint(t); t->con.drawExtra = drawObjectConstraint; t->con.applyVec = applyObjectConstraintVec; t->con.applySize = applyObjectConstraintSize; t->con.applyRot = applyObjectConstraintRot; t->redraw = 1; } } } /* text is optional, for header print */ void BIF_setSingleAxisConstraint(float vec[3], char *text) { TransInfo *t = BIF_GetTransInfo(); float space[3][3], v[3]; VECCOPY(space[0], vec); v[0] = vec[2]; v[1] = vec[0]; v[2] = vec[1]; Crossf(space[1], vec, v); Crossf(space[2], vec, space[1]); Mat3Ortho(space); Mat3Ortho(space); Mat3CpyMat3(t->con.mtx, space); t->con.mode = (CON_AXIS0|CON_APPLY); getConstraintMatrix(t); /* start copying with an offset of 1, to reserve a spot for the SPACE char */ if(text) strncpy(t->con.text+1, text, 48); // 50 in struct t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; t->redraw = 1; } void BIF_setDualAxisConstraint(float vec1[3], float vec2[3]) { TransInfo *t = BIF_GetTransInfo(); float space[3][3]; VECCOPY(space[0], vec1); VECCOPY(space[1], vec2); Crossf(space[2], space[0], space[1]); Mat3Ortho(space); Mat3CpyMat3(t->con.mtx, space); t->con.mode = (CON_AXIS0|CON_AXIS1|CON_APPLY); getConstraintMatrix(t); t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; t->redraw = 1; } void BIF_drawConstraint(void) { TransInfo *t = BIF_GetTransInfo(); TransCon *tc = &(t->con); if (!(tc->mode & CON_APPLY)) return; if (t->flag & T_USES_MANIPULATOR) return; /* nasty exception for Z constraint in camera view */ if( (t->flag & T_OBJECT) && G.vd->camera==OBACT && G.vd->persp>1) return; if (tc->drawExtra) { tc->drawExtra(t); } else { if (tc->mode & CON_SELECT) { float vec[3]; short mval[2]; char col2[3] = {255,255,255}; getmouseco_areawin(mval); window_to_3d(vec, (short)(mval[0] - t->con.imval[0]), (short)(mval[1] - t->con.imval[1])); VecAddf(vec, vec, tc->center); // drawLine(tc->center, tc->mtx[0], 'x', 0); // drawLine(tc->center, tc->mtx[1], 'y', 0); // drawLine(tc->center, tc->mtx[2], 'z', 0); draw_manipulator_ext(curarea, t->mode, 'c', 2, tc->center, tc->mtx); glColor3ubv(col2); glDisable(GL_DEPTH_TEST); setlinestyle(1); glBegin(GL_LINE_STRIP); glVertex3fv(tc->center); glVertex3fv(vec); glEnd(); setlinestyle(0); if(G.zbuf) glEnable(GL_DEPTH_TEST); // warning for global! } if (tc->mode & CON_AXIS0) { draw_manipulator_ext(curarea, t->mode, 'x', 0, tc->center, tc->mtx); draw_manipulator_ext(curarea, t->mode, 'x', 2, tc->center, tc->mtx); // drawLine(tc->center, tc->mtx[0], 'x', DRAWLIGHT); } if (tc->mode & CON_AXIS1) { draw_manipulator_ext(curarea, t->mode, 'y', 0, tc->center, tc->mtx); draw_manipulator_ext(curarea, t->mode, 'y', 2, tc->center, tc->mtx); // drawLine(tc->center, tc->mtx[1], 'y', DRAWLIGHT); } if (tc->mode & CON_AXIS2) { draw_manipulator_ext(curarea, t->mode, 'z', 0, tc->center, tc->mtx); draw_manipulator_ext(curarea, t->mode, 'z', 2, tc->center, tc->mtx); // drawLine(tc->center, tc->mtx[2], 'z', DRAWLIGHT); } } } /* called from drawview.c, as an extra per-window draw option */ void BIF_drawPropCircle() { TransInfo *t = BIF_GetTransInfo(); if (G.f & G_PROPORTIONAL) { float tmat[4][4], imat[4][4]; BIF_ThemeColor(TH_GRID); /* if editmode we need to go into object space */ if(G.obedit) mymultmatrix(G.obedit->obmat); mygetmatrix(tmat); Mat4Invert(imat, tmat); drawcircball(t->center, t->propsize, imat); /* if editmode we restore */ if(G.obedit) myloadmatrix(G.vd->viewmat); } } void initConstraint(TransInfo *t) { if (t->con.mode & CON_APPLY) { startConstraint(t); } } void startConstraint(TransInfo *t) { t->con.mode |= CON_APPLY; *t->con.text = ' '; t->num.idx_max = MIN2(getConstraintSpaceDimension(t) - 1, t->idx_max); } void stopConstraint(TransInfo *t) { t->con.mode &= ~CON_APPLY; *t->con.text = '\0'; t->num.idx_max = t->idx_max; } void getConstraintMatrix(TransInfo *t) { float mat[3][3]; Mat3Inv(t->con.imtx, t->con.mtx); Mat3One(t->con.pmtx); if (!(t->con.mode & CON_AXIS0)) { t->con.pmtx[0][0] = t->con.pmtx[0][1] = t->con.pmtx[0][2] = 0.0f; } if (!(t->con.mode & CON_AXIS1)) { t->con.pmtx[1][0] = t->con.pmtx[1][1] = t->con.pmtx[1][2] = 0.0f; } if (!(t->con.mode & CON_AXIS2)) { t->con.pmtx[2][0] = t->con.pmtx[2][1] = t->con.pmtx[2][2] = 0.0f; } Mat3MulMat3(mat, t->con.pmtx, t->con.imtx); Mat3MulMat3(t->con.pmtx, t->con.mtx, mat); } void initSelectConstraint(TransInfo *t) { Mat3One(t->con.mtx); Mat3One(t->con.pmtx); t->con.mode |= CON_APPLY; t->con.mode |= CON_SELECT; setNearestAxis(t); t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; } void selectConstraint(TransInfo *t) { if (t->con.mode & CON_SELECT) { setNearestAxis(t); startConstraint(t); } } void postSelectConstraint(TransInfo *t) { if (!(t->con.mode & CON_SELECT)) return; t->con.mode &= ~CON_AXIS0; t->con.mode &= ~CON_AXIS1; t->con.mode &= ~CON_AXIS2; t->con.mode &= ~CON_SELECT; setNearestAxis(t); startConstraint(t); t->redraw = 1; } void setNearestAxis(TransInfo *t) { short coord[2]; float mvec[3], axis[3], proj[3]; float len[3]; int i; t->con.mode &= ~CON_AXIS0; t->con.mode &= ~CON_AXIS1; t->con.mode &= ~CON_AXIS2; getmouseco_areawin(coord); mvec[0] = (float)(coord[0] - t->con.imval[0]); mvec[1] = (float)(coord[1] - t->con.imval[1]); mvec[2] = 0.0f; for (i = 0; i<3; i++) { VECCOPY(axis, t->con.mtx[i]); VecAddf(axis, axis, t->con.center); project_short_noclip(axis, coord); axis[0] = (float)(coord[0] - t->center2d[0]); axis[1] = (float)(coord[1] - t->center2d[1]); axis[2] = 0.0f; if (Normalise(axis) != 0.0f) { Projf(proj, mvec, axis); VecSubf(axis, mvec, proj); len[i] = Normalise(axis); } else { len[i] = 10000000000.0f; } } if (len[0] <= len[1] && len[0] <= len[2]) { if (G.qual & LR_SHIFTKEY) { t->con.mode |= (CON_AXIS1|CON_AXIS2); strcpy(t->con.text, " locking global X"); } else { t->con.mode |= CON_AXIS0; strcpy(t->con.text, " along global X"); } } else if (len[1] <= len[0] && len[1] <= len[2]) { if (G.qual & LR_SHIFTKEY) { t->con.mode |= (CON_AXIS0|CON_AXIS2); strcpy(t->con.text, " locking global Y"); } else { t->con.mode |= CON_AXIS1; strcpy(t->con.text, " along global Y"); } } else if (len[2] <= len[1] && len[2] <= len[0]) { if (G.qual & LR_SHIFTKEY) { t->con.mode |= (CON_AXIS0|CON_AXIS1); strcpy(t->con.text, " locking global Z"); } else { t->con.mode |= CON_AXIS2; strcpy(t->con.text, " along global Z"); } } getConstraintMatrix(t); }