#include "export_File.h" #include using namespace std; static string command_path = ""; #ifdef WIN32 #include #ifndef FILE_MAXDIR #define FILE_MAXDIR 160 #endif #ifndef FILE_MAXFILE #define FILE_MAXFILE 80 #endif static string find_path() { HKEY hkey; DWORD dwType, dwSize; if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,"Software\\YafRay Team\\YafRay",0,KEY_READ,&hkey)==ERROR_SUCCESS) { dwType = REG_EXPAND_SZ; dwSize = MAX_PATH; DWORD dwStat; char *pInstallDir=new char[MAX_PATH]; dwStat=RegQueryValueEx(hkey, TEXT("InstallDir"), NULL, NULL,(LPBYTE)pInstallDir, &dwSize); if (dwStat == NO_ERROR) { string res=pInstallDir; delete [] pInstallDir; return res; } else cout << "Couldn't READ \'InstallDir\' value. Is yafray correctly installed?\n"; delete [] pInstallDir; RegCloseKey(hkey); } else cout << "Couldn't FIND registry key for yafray, is it installed?\n"; return string(""); } static int createDir(char* name) { if (BLI_exists(name)) return 2; //exists if (CreateDirectory((LPCTSTR)(name), NULL)) { cout << "Directory: " << name << " created\n"; return 1; // created } else { cout << "Could not create directory: " << name << endl; return 0; // fail } } extern "C" { extern char bprogname[]; } // add drive character if not in path string, using blender executable location as reference static void addDrive(string &path) { int sp = path.find_first_of(":"); if (sp==-1) { string blpath = bprogname; sp = blpath.find_first_of(":"); if (sp!=-1) path = blpath.substr(0, sp+1) + path; } } #else #include #include #include #include #include #include static string unixYafrayPath() { static char *alternative[]= { "/usr/local/bin/", "/usr/bin/", "/bin/", NULL }; for(int i=0;alternative[i]!=NULL;++i) { string fp=string(alternative[i])+"yafray"; struct stat st; if(stat(fp.c_str(),&st)<0) continue; if(st.st_mode&S_IXOTH) return alternative[i]; } return ""; } #endif bool yafrayFileRender_t::initExport() { xmlpath = ""; bool dir_failed = false; // try the user setting setting first, export dir must be set and exist if (strlen(U.yfexportdir)==0) { cout << "No export directory set in user defaults!\n"; dir_failed = true; } else { // check if it exists if (!BLI_exists(U.yfexportdir)) { cout << "YafRay temporary xml export directory:\n" << U.yfexportdir << "\ndoes not exist!\n"; #ifdef WIN32 // try to create it cout << "Trying to create...\n"; if (createDir(U.yfexportdir)==0) dir_failed=true; else dir_failed=false; #else dir_failed = true; #endif } xmlpath = U.yfexportdir; #ifdef WIN32 // have to add drive char here too, in case win user still wants to set path him/herself addDrive(xmlpath); #endif } #ifdef WIN32 // for windows try to get the path to the yafray binary from the registry, only done once if (command_path=="") { char path[FILE_MAXDIR+FILE_MAXFILE]; string yafray_path = find_path(); if (yafray_path=="") { // error already printed in find_path() clearAll(); return false; } GetShortPathName((LPCTSTR)(yafray_path.c_str()), path, FILE_MAXDIR+FILE_MAXFILE); command_path = string(path) + "\\"; cout << "Yafray found at : " << command_path << endl; } // if no export dir set, or could not create, try to create one in the yafray dir, unless it already exists if (dir_failed) { string ybdir = command_path + "YBtest"; if (createDir(const_cast(ybdir.c_str()))==0) dir_failed=true; else dir_failed=false; xmlpath = ybdir; } #else if (command_path=="") { command_path = unixYafrayPath(); if (command_path.size()) cout << "Yafray found at : " << command_path << endl; } #endif // for all if (dir_failed) return false; #ifdef WIN32 string DLM = "\\"; #else string DLM = "/"; #endif // remove trailing slash if needed if (xmlpath.find_last_of(DLM)!=(xmlpath.length()-1)) xmlpath += DLM; imgout = xmlpath + "YBtest.tga"; xmlpath += "YBtest.xml"; xmlfile.open(xmlpath.c_str()); if (xmlfile.fail()) { cout << "Could not open file\n"; return false; } ostr << setiosflags(ios::showpoint | ios::fixed); xmlfile << "\n\n"; return true; } bool yafrayFileRender_t::writeRender() { // finally export render block ostr.str(""); ostr << "1) && (!R.r.GIcache)) ostr << "\tAA_passes=\"5\" AA_minsamples=\"5\"\n"; else if ((R.r.mode & R_OSA) && (R.r.osa)) { int passes=(R.r.osa%4)==0 ? R.r.osa/4 : 1; int minsamples=(R.r.osa%4)==0 ? 4 : R.r.osa; ostr << "\tAA_passes=\"" << passes << "\" AA_minsamples=\"" << minsamples << "\"\n"; } else ostr << "\tAA_passes=\"0\" AA_minsamples=\"1\"\n"; ostr << "\tAA_pixelwidth=\"1.5\" AA_threshold=\"0.05\" bias=\"" << R.r.YF_raybias << "\"\n"; } if (hasworld) ostr << "\tbackground_name=\"world_background\"\n"; // alpha channel render when RGBA button enabled if (R.r.planes==R_PLANES32) ostr << "\n\tsave_alpha=\"on\""; ostr << " >\n"; ostr << "\t\n"; ostr << "\n\n"; xmlfile << ostr.str(); return true; } bool yafrayFileRender_t::finishExport() { xmlfile << "\n"; xmlfile.close(); // file exported, now render if (executeYafray(xmlpath)) displayImage(); else { cout << "Could not execute yafray. Is it in path?" << endl; return false; } return true; } // displays the image rendered with xml export // Now loads rendered image into blender renderbuf. void yafrayFileRender_t::displayImage() { // although it is possible to load the image using blender, // maybe it is best to just do a read here, for now the yafray output is always a raw tga anyway // rectot already freed in initrender R.rectot = (unsigned int *)MEM_callocN(sizeof(int)*R.rectx*R.recty, "rectot"); FILE* fp = fopen(imgout.c_str(), "rb"); if (fp==NULL) { cout << "YAF_displayImage(): Could not open image file\n"; return; } unsigned char header[18]; fread(&header, 1, 18, fp); unsigned short width = (unsigned short)(header[12] + (header[13]<<8)); unsigned short height = (unsigned short)(header[14] + (header[15]<<8)); unsigned char byte_per_pix = (unsigned char)(header[16]>>3); // read past any id (none in this case though) unsigned int idlen = (unsigned int)header[0]; if (idlen) fseek(fp, idlen, SEEK_CUR); // read data directly into buffer, picture is upside down for (unsigned short y=0;y #endif static void adjustPath(string &path) { // if relative, expand to full path char cpath[MAXPATHLEN]; strcpy(cpath, path.c_str()); BLI_convertstringcode(cpath, G.sce, 0); path = cpath; #ifdef WIN32 // add drive char if not there addDrive(path); #endif } static string noise2string(short nbtype) { switch (nbtype) { case TEX_BLENDER: return "blender"; case TEX_STDPERLIN: return "stdperlin"; case TEX_VORONOI_F1: return "voronoi_f1"; case TEX_VORONOI_F2: return "voronoi_f2"; case TEX_VORONOI_F3: return "voronoi_f3"; case TEX_VORONOI_F4: return "voronoi_f4"; case TEX_VORONOI_F2F1: return "voronoi_f2f1"; case TEX_VORONOI_CRACKLE: return "voronoi_crackle"; case TEX_CELLNOISE: return "cellnoise"; default: case TEX_NEWPERLIN: return "newperlin"; } } void yafrayFileRender_t::writeTextures() { // used to keep track of images already written // (to avoid duplicates if also in imagetex for material TexFace texture) set dupimg; for (map::const_iterator blendtex=used_textures.begin(); blendtex!=used_textures.end();++blendtex) { MTex* mtex = blendtex->second; Tex* tex = mtex->tex; float nsz = tex->noisesize; if (nsz!=0.f) nsz=1.f/nsz; // noisebasis type string ntype = noise2string(tex->noisebasis); string ts, hardnoise=(tex->noisetype==TEX_NOISESOFT) ? "off" : "on"; switch (tex->type) { case TEX_STUCCI: // stucci is clouds as bump, only difference is an extra parameter to handle wall in/out // turbulence value is not used, so for large values will not match well case TEX_CLOUDS: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\n"; ostr << "\t\t\n"; ostr << "\t\t\n"; if (tex->type==TEX_STUCCI) { if (tex->stype==1) ts = "positive"; else if (tex->stype==2) ts = "negative"; else ts = "none"; ostr << "\t\t\n"; ostr << "\t\t\n"; // for stucci always 0 } else ostr << "\t\tnoisedepth << "\" />\n"; ostr << "\t\tstype << "\" />\n"; ostr << "\t\t\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_WOOD: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\t\n"; // blender does not use depth value for wood, always 0 ostr << "\t\t\n"; float turb = (tex->stype<2) ? 0.0 : tex->turbul; ostr << "\t\t\n"; ostr << "\t\t\n"; ostr << "\t\t\n"; ts = (tex->stype & 1) ? "rings" : "bands"; //stype 1&3 ringtype ostr << "\t\t\n"; ostr << "\t\t\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_MARBLE: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\n"; ostr << "\t\tnoisedepth << "\" />\n"; ostr << "\t\tturbul << "\" />\n"; ostr << "\t\t\n"; ostr << "\t\t\n"; ostr << "\t\tstype) << "\" />\n"; ostr << "\t\t\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_VORONOI: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\n"; ts = "int"; if (tex->vn_coltype==1) ts = "col1"; else if (tex->vn_coltype==2) ts = "col2"; else if (tex->vn_coltype==3) ts = "col3"; ostr << "\t\t\n"; ostr << "\t\tvn_w1 << "\" />\n"; ostr << "\t\tvn_w2 << "\" />\n"; ostr << "\t\tvn_w3 << "\" />\n"; ostr << "\t\tvn_w4 << "\" />\n"; ostr << "\t\tvn_mexp << "\" />\n"; ostr << "\t\tns_outscale << "\" />\n"; ostr << "\t\t\n"; ts = "actual"; if (tex->vn_distm==TEX_DISTANCE_SQUARED) ts = "squared"; else if (tex->vn_distm==TEX_MANHATTAN) ts = "manhattan"; else if (tex->vn_distm==TEX_CHEBYCHEV) ts = "chebychev"; else if (tex->vn_distm==TEX_MINKOVSKY_HALF) ts = "minkovsky_half"; else if (tex->vn_distm==TEX_MINKOVSKY_FOUR) ts = "minkovsky_four"; else if (tex->vn_distm==TEX_MINKOVSKY) ts = "minkovsky"; ostr << "\t\t\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_MUSGRAVE: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\n"; switch (tex->stype) { case TEX_MFRACTAL: ts = "multifractal"; break; case TEX_RIDGEDMF: ts = "ridgedmf"; break; case TEX_HYBRIDMF: ts = "hybridmf"; break; case TEX_HTERRAIN: ts = "heteroterrain"; break; default: case TEX_FBM: ts = "fBm"; } ostr << "\t\t\n"; ostr << "\t\t\n"; ostr << "\t\tmg_H << "\" />\n"; ostr << "\t\tmg_lacunarity << "\" />\n"; ostr << "\t\tmg_octaves << "\" />\n"; if ((tex->stype==TEX_HTERRAIN) || (tex->stype==TEX_RIDGEDMF) || (tex->stype==TEX_HYBRIDMF)) { ostr << "\t\tmg_offset << "\" />\n"; if ((tex->stype==TEX_RIDGEDMF) || (tex->stype==TEX_HYBRIDMF)) ostr << "\t\tmg_gain << "\" />\n"; } ostr << "\t\t\n"; ostr << "\t\tns_outscale << "\" />\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_DISTNOISE: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\n"; ostr << "\t\tdist_amount << "\" />\n"; ostr << "\t\t\n"; ostr << "\t\t\n"; ostr << "\t\tnoisebasis2) << "\" />\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_BLEND: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\n"; switch (tex->stype) { case 1: ts="quadratic"; break; case 2: ts="cubic"; break; case 3: ts="diagonal"; break; case 4: ts="sphere"; break; case 5: ts="halo"; break; default: case 0: ts="linear"; break; } ostr << "\t\t\n"; if (tex->flag & TEX_FLIPBLEND) ts="on"; else ts="off"; ostr << "\t\t\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_NOISE: { ostr.str(""); ostr << "first << "\" >\n"; ostr << "\t\n"; ostr << "\t\tnoisedepth << "\" />\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); break; } case TEX_IMAGE: { Image* ima = tex->ima; if (ima) { // remember image to avoid duplicates later if also in imagetex // (formerly done by removing from imagetex, but need image/material link) dupimg.insert(ima); ostr.str(""); // use image name instead of texname here ostr << "id.name << "\" >\n"; ostr << "\t\n"; string texpath(ima->name); adjustPath(texpath); ostr << "\t\t\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); } break; } default: cout << "Unsupported texture type\n"; } // colorbands if (tex->flag & TEX_COLORBAND) { ColorBand* cb = tex->coba; if (cb) { ostr.str(""); ostr << "first + "_coba" << "\" >\n"; ostr << "\t\n"; ostr << "\t\tfirst << "\" />\n"; ostr << "\t\n"; for (int i=0;itot;i++) { ostr << "\tdata[i].pos << "\" >\n"; ostr << "\t\tdata[i].r << "\"" << " g=\"" << cb->data[i].g << "\"" << " b=\"" << cb->data[i].b << "\"" << " a=\"" << cb->data[i].a << "\" />\n"; ostr << "\t\n"; } ostr << "\n\n"; xmlfile << ostr.str(); } } } // If used, textures for the material 'TexFace' case if (!imagetex.empty()) { for (map >::const_iterator imgtex=imagetex.begin(); imgtex!=imagetex.end();++imgtex) { // skip if already written above Image* ima = imgtex->first; if (dupimg.find(ima)==dupimg.end()) { ostr.str(""); ostr << "id.name << "\" >\n"; ostr << "\t\n"; string texpath(ima->name); adjustPath(texpath); ostr << "\t\t\n"; ostr << "\t\n\n\n"; xmlfile << ostr.str(); } } } } void yafrayFileRender_t::writeShader(const string &shader_name, Material* matr, const string &facetexname) { ostr.str(""); ostr << "\n"; ostr << "\t\n"; float diff = matr->alpha; ostr << "\t\tr*diff << "\" g=\"" << matr->g*diff << "\" b=\"" << matr->b*diff << "\" />\n"; ostr << "\t\tspecr << "\" g=\"" << matr->specg << "\" b=\"" << matr->specb << "\" />\n"; ostr << "\t\tmirr << "\" g=\"" << matr->mirg << "\" b=\"" << matr->mirb << "\" />\n"; ostr << "\t\tref << "\" />\n"; ostr << "\t\tspec << "\" />\n"; ostr << "\t\thar << "\" />\n"; ostr << "\t\talpha << "\" />\n"; // if no GI used, the GIpower parameter is not always initialized, so in that case ignore it float bg_mult = (R.r.GImethod==0) ? 1 : R.r.GIpower; ostr << "\t\temit * bg_mult) << "\" />\n"; // reflection/refraction if ( (matr->mode & MA_RAYMIRROR) || (matr->mode & MA_RAYTRANSP) ) ostr << "\t\tang << "\" />\n"; if (matr->mode & MA_RAYMIRROR) { float rf = matr->ray_mirror; // blender uses mir color for reflection as well ostr << "\t\tmirr << "\" g=\"" << matr->mirg << "\" b=\"" << matr->mirb << "\" />\n"; ostr << "\t\t\n"; if (matr->ray_depth>maxraydepth) maxraydepth = matr->ray_depth; } if (matr->mode & MA_RAYTRANSP) { float tr=1.0-matr->alpha; ostr << "\t\tr * tr << "\" g=\"" << matr->g * tr << "\" b=\"" << matr->b * tr << "\" />\n"; // tir on by default ostr << "\t\t\n"; if (matr->ray_depth_tra>maxraydepth) maxraydepth = matr->ray_depth_tra; } string Mmode = ""; if (matr->mode & MA_TRACEBLE) Mmode += "traceable"; if (matr->mode & MA_SHADOW) Mmode += " shadow"; if (matr->mode & MA_SHLESS) Mmode += " shadeless"; if (matr->mode & MA_VERTEXCOL) Mmode += " vcol_light"; if (matr->mode & MA_VERTEXCOLP) Mmode += " vcol_paint"; if (matr->mode & MA_ZTRA) Mmode += " ztransp"; if (matr->mode & MA_ONLYSHADOW) Mmode += " onlyshadow"; if (Mmode!="") ostr << "\t\t\n"; ostr << "\t\n"; xmlfile << ostr.str(); // modulators // first modulator is the texture of the face, if used (TexFace mode) if (facetexname.length()!=0) { ostr.str(""); ostr << "\t\n"; ostr << "\t\t\n"; ostr << "\t\t\n"; ostr << "\t\n"; xmlfile << ostr.str(); } for (int m2=0;m2septex & (1<mtex[m2]; if (mtex==NULL) continue; // ignore null tex Tex* tex = mtex->tex; if (tex==NULL) continue; map::const_iterator mtexL = used_textures.find(string(tex->id.name)); if (mtexL!=used_textures.end()) { ostr.str(""); ostr << "\t\n"; // when no facetex used, shader_name is created from original material name if (facetexname.length()!=0) ostr << "\t\tid.name << "_map" << m2 << "\" />\n"; else ostr << "\t\t\n"; // blendtype string ts = "mix"; if (mtex->blendtype==MTEX_MUL) ts="mul"; else if (mtex->blendtype==MTEX_ADD) ts="add"; else if (mtex->blendtype==MTEX_SUB) ts="sub"; ostr << "\t\t\n"; // texture color (for use with MUL and/or no_rgb etc..) ostr << "\t\tr << "\" g=\"" << mtex->g << "\" b=\"" << mtex->b << "\" />\n"; // texture contrast, brightness & color adjustment ostr << "\t\trfac << "\" g=\"" << tex->gfac << "\" b=\"" << tex->bfac << "\" />\n"; ostr << "\t\tcontrast << "\" />\n"; ostr << "\t\tbright << "\" />\n"; // all texture flags now are switches, having the value 1 or -1 (negative option) // the negative option only used for the intensity modulation options. // material (diffuse) color, amount controlled by colfac (see below) if (mtex->mapto & MAP_COL) ostr << "\t\t\n"; // bumpmapping if ((mtex->mapto & MAP_NORM) || (mtex->maptoneg & MAP_NORM)) { // for yafray, bump factor is negated (unless tex is stucci, not affected by 'Neg') // scaled down quite a bit float nf = mtex->norfac; if (tex->type!=TEX_STUCCI) nf *= -1.f; if (mtex->maptoneg & MAP_NORM) nf *= -1.f; ostr << "\t\t\n"; } // all blender texture modulation as switches, either 1 or -1 (negative state of button) // Csp, specular color modulation if (mtex->mapto & MAP_COLSPEC) ostr << "\t\t\n"; // CMir, mirror color modulation if (mtex->mapto & MAP_COLMIR) ostr << "\t\t\n"; // Ref, diffuse reflection amount modulation if ((mtex->mapto & MAP_REF) || (mtex->maptoneg & MAP_REF)) { int t = 1; if (mtex->maptoneg & MAP_REF) t = -1; ostr << "\t\t\n"; } // Spec, specular amount mod if ((mtex->mapto & MAP_SPEC) || (mtex->maptoneg & MAP_SPEC)) { int t = 1; if (mtex->maptoneg & MAP_SPEC) t = -1; ostr << "\t\t\n"; } // hardness modulation if ((mtex->mapto & MAP_HAR) || (mtex->maptoneg & MAP_HAR)) { int t = 1; if (mtex->maptoneg & MAP_HAR) t = -1; ostr << "\t\t\n"; } // alpha modulation if ((mtex->mapto & MAP_ALPHA) || (mtex->maptoneg & MAP_ALPHA)) { int t = 1; if (mtex->maptoneg & MAP_ALPHA) t = -1; ostr << "\t\t\n"; } // emit modulation if ((mtex->mapto & MAP_EMIT) || (mtex->maptoneg & MAP_EMIT)) { int t = 1; if (mtex->maptoneg & MAP_EMIT) t = -1; ostr << "\t\t\n"; } // texture flag, combination of strings if (mtex->texflag & (MTEX_RGBTOINT | MTEX_STENCIL | MTEX_NEGATIVE)) { ts = ""; if (mtex->texflag & MTEX_RGBTOINT) ts += "no_rgb "; if (mtex->texflag & MTEX_STENCIL) ts += "stencil "; if (mtex->texflag & MTEX_NEGATIVE) ts += "negative"; ostr << "\t\t\n"; } // colfac, controls amount of color modulation ostr << "\t\tcolfac << "\" />\n"; // def_var ostr << "\t\tdef_var << "\" />\n"; //varfac ostr << "\t\tvarfac << "\" />\n"; if ((tex->imaflag & (TEX_CALCALPHA | TEX_USEALPHA)) || (tex->flag & TEX_NEGALPHA)) { ts = ""; if (tex->imaflag & TEX_CALCALPHA) ts += "calc_alpha "; if (tex->imaflag & TEX_USEALPHA) ts += "use_alpha "; if (tex->flag & TEX_NEGALPHA) ts += "neg_alpha"; ostr << "\t\t\n"; } // image as normalmap flag if (tex->imaflag & TEX_NORMALMAP) ostr << "\t\t\n"; ostr << "\t\n"; xmlfile << ostr.str(); } } xmlfile << "\n\n"; } // write all materials & modulators void yafrayFileRender_t::writeMaterialsAndModulators() { // shaders/mappers for regular texture (or non-texture) mode // In case material has texface mode, and all faces have an image texture, // this shader will not be used, but still be written for (map::const_iterator blendmat=used_materials.begin(); blendmat!=used_materials.end();++blendmat) { Material* matr = blendmat->second; // mapper(s) for (int m=0;mseptex & (1<mtex[m]; if (mtex==NULL) continue; // ignore null tex Tex* tex = mtex->tex; if (tex==NULL) continue; map::const_iterator mtexL = used_textures.find(string(tex->id.name)); if (mtexL!=used_textures.end()) { ostr.str(""); ostr << "first + "_map" << m <<"\""; if ((mtex->texco & TEXCO_OBJECT) || (mtex->texco & TEXCO_REFL)) { // For object & reflection mapping, add the object matrix to the modulator, // as in LF script, use camera matrix if no object specified. // In this case this means the inverse of that matrix float texmat[4][4], itexmat[4][4]; if ((mtex->texco & TEXCO_OBJECT) && (mtex->object)) MTC_Mat4CpyMat4(texmat, mtex->object->obmat); else // also for refl. map MTC_Mat4CpyMat4(texmat, maincam_obj->obmat); MTC_Mat4Invert(itexmat, texmat); ostr << "\n\t\tm00=\"" << itexmat[0][0] << "\" m01=\"" << itexmat[1][0] << "\" m02=\"" << itexmat[2][0] << "\" m03=\"" << itexmat[3][0] << "\"\n"; ostr << "\t\tm10=\"" << itexmat[0][1] << "\" m11=\"" << itexmat[1][1] << "\" m12=\"" << itexmat[2][1] << "\" m13=\"" << itexmat[3][1] << "\"\n"; ostr << "\t\tm20=\"" << itexmat[0][2] << "\" m21=\"" << itexmat[1][2] << "\" m22=\"" << itexmat[2][2] << "\" m23=\"" << itexmat[3][2] << "\"\n"; ostr << "\t\tm30=\"" << itexmat[0][3] << "\" m31=\"" << itexmat[1][3] << "\" m32=\"" << itexmat[2][3] << "\" m33=\"" << itexmat[3][3] << "\">\n"; } else ostr << ">\n"; ostr << "\t\n"; // use image name instead of texname when texture is image if ((tex->type==TEX_IMAGE) && tex->ima) ostr << "\t\tima->id.name << "\" />\n"; else if ((tex->flag & TEX_COLORBAND) & (tex->coba!=NULL)) ostr << "\t\tfirst + "_coba" << "\" />\n"; else ostr << "\t\tfirst << "\" />\n"; // texture size ostr << "\t\tsize[0] << "\" />\n"; ostr << "\t\tsize[1] << "\" />\n"; ostr << "\t\tsize[2] << "\" />\n"; // texture offset ostr << "\t\tofs[0] << "\" />\n"; ostr << "\t\tofs[1] << "\" />\n"; ostr << "\t\tofs[2] << "\" />\n"; // texture coordinates, have to disable 'sticky' in Blender if (mtex->texco & TEXCO_UV) ostr << "\t\t\n"; else if ((mtex->texco & TEXCO_GLOB) || (mtex->texco & TEXCO_OBJECT)) // object mode is also set as global, but the object matrix was specified above with ostr << "\t\t\n"; else if (mtex->texco & TEXCO_ORCO) ostr << "\t\t\n"; else if (mtex->texco & TEXCO_WINDOW) ostr << "\t\t\n"; else if (mtex->texco & TEXCO_NORM) ostr << "\t\t\n"; else if (mtex->texco & TEXCO_REFL) ostr << "\t\t\n"; // texture projection axes, both image & procedural string proj = "nxyz"; // 'n' for 'none' ostr << "\t\tprojx] << "\" />\n"; ostr << "\t\tprojy] << "\" />\n"; ostr << "\t\tprojz] << "\" />\n"; // texture mapping parameters only relevant to image type if (tex->type==TEX_IMAGE) { if (mtex->mapping==MTEX_FLAT) ostr << "\t\t\n"; else if (mtex->mapping==MTEX_CUBE) ostr << "\t\t\n"; else if (mtex->mapping==MTEX_TUBE) ostr << "\t\t\n"; else if (mtex->mapping==MTEX_SPHERE) ostr << "\t\t\n"; // repeat ostr << "\t\txrepeat << "\" />\n"; ostr << "\t\tyrepeat << "\" />\n"; // clipping if (tex->extend==TEX_EXTEND) ostr << "\t\t\n"; else if (tex->extend==TEX_CLIP) ostr << "\t\t\n"; else if (tex->extend==TEX_CLIPCUBE) ostr << "\t\t\n"; else ostr << "\t\t\n"; // crop min/max ostr << "\t\tcropxmin << "\" />\n"; ostr << "\t\tcropymin << "\" />\n"; ostr << "\t\tcropxmax << "\" />\n"; ostr << "\t\tcropymax << "\" />\n"; // rot90 flag string ts = "off"; if (tex->imaflag & TEX_IMAROT) ts = "on"; ostr << "\t\t\n"; } ostr << "\t\n"; ostr << "\n\n"; xmlfile << ostr.str(); } } // shader + modulators writeShader(blendmat->first, matr); } // write the mappers & shaders for the TexFace case if (!imagetex.empty()) { // Yafray doesn't have per-face-textures, only per-face-shaders, // so create as many mappers/shaders as the images used by the object int snum = 0; for (map >::const_iterator imgtex=imagetex.begin(); imgtex!=imagetex.end();++imgtex) { for (set::const_iterator imgmat=imgtex->second.begin(); imgmat!=imgtex->second.end();++imgmat) { Material* matr = *imgmat; // mapper ostr.str(""); ostr << "id.name) + "_ftmap" << snum << "\" >\n"; ostr << "\t\n"; ostr << "\t\tfirst->id.name << "\" />\n"; // all yafray default settings, except for texco, so no need to set others ostr << "\t\t\n"; ostr << "\t\n"; ostr << "\n\n"; xmlfile << ostr.str(); // shader, remember name, used later when writing per-face-shaders ostr.str(""); ostr << matr->id.name << "_ftsha" << snum; string shader_name = ostr.str(); imgtex_shader[string(matr->id.name) + string(imgtex->first->id.name)] = shader_name; ostr.str(""); ostr << matr->id.name << "_ftmap" << snum++; writeShader(shader_name, matr, ostr.str()); } } } } void yafrayFileRender_t::writeObject(Object* obj, const vector &VLR_list, const float obmat[4][4]) { ostr.str(""); // transform first (not necessarily actual obj->obmat, can be duplivert see below) ostr << "\n"; xmlfile << ostr.str(); ostr.str(""); ostr << "id.name << "\""; // Yafray still needs default shader name in object def., // since we write a shader with every face, simply use the material of the first face. // If this is an empty string, assume default material. VlakRen* face0 = VLR_list[0]; Material* face0mat = face0->mat; string matname(face0mat->id.name); // use name in imgtex_shader list if 'TexFace' enabled for this material if (face0mat->mode & MA_FACETEXTURE) { TFace* tface = face0->tface; if (tface) { Image* fimg = (Image*)tface->tpage; if (fimg) matname = imgtex_shader[string(face0mat->id.name) + string(fimg->id.name)]; } } bool shadow = face0mat->mode & MA_TRACEBLE; ostr <<" shadow=\""<< (shadow ? "on" : "off" ) << "\" "; bool caus = (((face0mat->mode & MA_RAYTRANSP) | (face0->mat->mode & MA_RAYMIRROR))!=0); if (caus) ostr << "caus_IOR=\"" << face0mat->ang << "\""; if (matname.length()==0) matname = "blender_default"; ostr << " shader_name=\"" << matname << "\" >\n"; ostr << "\t\n"; if (caus) { float tr = 1.0-face0mat->alpha; ostr << "\t\tr*tr << "\" g=\"" << face0mat->g*tr << "\" b=\"" << face0mat->b*tr << "\" />\n"; tr = face0mat->ray_mirror; ostr << "\t\tmirr*tr << "\" g=\"" << face0mat->mirg*tr << "\" b=\"" << face0mat->mirb*tr << "\" />\n"; } ostr << "\t\n"; xmlfile << ostr.str(); // Export orco coords test. // Previously was done by checking orco pointer, however this can be non-null but still not initialized. // Test the rendermaterial texco flag instead. bool EXPORT_ORCO = ((face0mat->texco & TEXCO_ORCO)!=0); string has_orco = "off"; if (EXPORT_ORCO) has_orco = "on"; // smooth shading if enabled bool no_auto = true; //in case non-mesh, or mesh has no autosmooth if (obj->type==OB_MESH) { Mesh* mesh = (Mesh*)obj->data; if (mesh->flag & ME_AUTOSMOOTH) { no_auto = false; ostr.str(""); ostr << "\tsmoothresh << "\" has_orco=\"" << has_orco << "\" >\n"; xmlfile << ostr.str(); } } // this for non-mesh as well if (no_auto) { // If AutoSmooth not used, since yafray currently cannot specify if a face is smooth // or flat shaded, the smooth flag of the first face is used to determine // the shading for the whole mesh if (face0->flag & ME_SMOOTH) xmlfile << "\t\n"; else xmlfile << "\t\n"; //0 shows artefacts } // now all vertices map vert_idx; // for removing duplicate verts and creating an index list int vidx = 0; // vertex index counter // vertices, transformed back to world xmlfile << "\t\t\n"; for (vector::const_iterator fci=VLR_list.begin(); fci!=VLR_list.end();++fci) { VlakRen* vlr = *fci; VertRen* ver; float* orco; float tvec[3]; ostr.str(""); if (vert_idx.find(vlr->v1)==vert_idx.end()) { vert_idx[vlr->v1] = vidx++; ver = vlr->v1; MTC_cp3Float(ver->co, tvec); MTC_Mat4MulVecfl(obj->imat, tvec); ostr << "\t\t\t

\n"; if (EXPORT_ORCO) { orco = ver->orco; ostr << "\t\t\t

\n"; } } if (vert_idx.find(vlr->v2)==vert_idx.end()) { vert_idx[vlr->v2] = vidx++; ver = vlr->v2; MTC_cp3Float(ver->co, tvec); MTC_Mat4MulVecfl(obj->imat, tvec); ostr << "\t\t\t

\n"; if (EXPORT_ORCO) { orco = ver->orco; ostr << "\t\t\t

\n"; } } if (vert_idx.find(vlr->v3)==vert_idx.end()) { vert_idx[vlr->v3] = vidx++; ver = vlr->v3; MTC_cp3Float(ver->co, tvec); MTC_Mat4MulVecfl(obj->imat, tvec); ostr << "\t\t\t

\n"; if (EXPORT_ORCO) { orco = ver->orco; ostr << "\t\t\t

\n"; } } if ((vlr->v4) && (vert_idx.find(vlr->v4)==vert_idx.end())) { vert_idx[vlr->v4] = vidx++; ver = vlr->v4; MTC_cp3Float(ver->co, tvec); MTC_Mat4MulVecfl(obj->imat, tvec); ostr << "\t\t\t

\n"; if (EXPORT_ORCO) { orco = ver->orco; ostr << "\t\t\t

\n"; } } xmlfile << ostr.str(); } xmlfile << "\t\t\n"; // all faces using the index list created above xmlfile << "\t\t\n"; for (vector::const_iterator fci2=VLR_list.begin(); fci2!=VLR_list.end();++fci2) { VlakRen* vlr = *fci2; Material* fmat = vlr->mat; bool EXPORT_VCOL = ((fmat->mode & (MA_VERTEXCOL|MA_VERTEXCOLP))!=0); string fmatname(fmat->id.name); // use name in imgtex_shader list if 'TexFace' enabled for this face material if (fmat->mode & MA_FACETEXTURE) { TFace* tface = vlr->tface; if (tface) { Image* fimg = (Image*)tface->tpage; if (fimg) fmatname = imgtex_shader[fmatname + string(fimg->id.name)]; } } else if (fmatname.length()==0) fmatname = "blender_default"; int idx1 = vert_idx.find(vlr->v1)->second; int idx2 = vert_idx.find(vlr->v2)->second; int idx3 = vert_idx.find(vlr->v3)->second; // make sure the indices point to the vertices when orco coords exported if (EXPORT_ORCO) { idx1*=2; idx2*=2; idx3*=2; } ostr.str(""); ostr << "\t\t\tflag & R_DIVIDE_24) { ui3++; if (vlr->flag & R_FACE_SPLIT) { ui1++; ui2++; } } else if (vlr->flag & R_FACE_SPLIT) { ui2++; ui3++; } TFace* uvc = vlr->tface; // possible uvcoords (v upside down) if (uvc) { ostr << " u_a=\"" << uvc->uv[ui1][0] << "\" v_a=\"" << 1-uvc->uv[ui1][1] << "\"" << " u_b=\"" << uvc->uv[ui2][0] << "\" v_b=\"" << 1-uvc->uv[ui2][1] << "\"" << " u_c=\"" << uvc->uv[ui3][0] << "\" v_c=\"" << 1-uvc->uv[ui3][1] << "\""; } // since Blender seems to need vcols when uvs are used, for yafray only export when the material actually uses vcols if ((EXPORT_VCOL) && (vlr->vcol)) { // vertex colors float vr, vg, vb; vr = ((vlr->vcol[ui1] >> 24) & 255)/255.0; vg = ((vlr->vcol[ui1] >> 16) & 255)/255.0; vb = ((vlr->vcol[ui1] >> 8) & 255)/255.0; ostr << " vcol_a_r=\"" << vr << "\" vcol_a_g=\"" << vg << "\" vcol_a_b=\"" << vb << "\""; vr = ((vlr->vcol[ui2] >> 24) & 255)/255.0; vg = ((vlr->vcol[ui2] >> 16) & 255)/255.0; vb = ((vlr->vcol[ui2] >> 8) & 255)/255.0; ostr << " vcol_b_r=\"" << vr << "\" vcol_b_g=\"" << vg << "\" vcol_b_b=\"" << vb << "\""; vr = ((vlr->vcol[ui3] >> 24) & 255)/255.0; vg = ((vlr->vcol[ui3] >> 16) & 255)/255.0; vb = ((vlr->vcol[ui3] >> 8) & 255)/255.0; ostr << " vcol_c_r=\"" << vr << "\" vcol_c_g=\"" << vg << "\" vcol_c_b=\"" << vb << "\""; } ostr << " shader_name=\"" << fmatname << "\" />\n"; if (vlr->v4) { idx1 = vert_idx.find(vlr->v3)->second; idx2 = vert_idx.find(vlr->v4)->second; idx3 = vert_idx.find(vlr->v1)->second; // make sure the indices point to the vertices when orco coords exported if (EXPORT_ORCO) { idx1*=2; idx2*=2; idx3*=2; } ostr << "\t\t\tuv[ui1][0] << "\" v_a=\"" << 1-uvc->uv[ui1][1] << "\"" << " u_b=\"" << uvc->uv[ui2][0] << "\" v_b=\"" << 1-uvc->uv[ui2][1] << "\"" << " u_c=\"" << uvc->uv[ui3][0] << "\" v_c=\"" << 1-uvc->uv[ui3][1] << "\""; } if ((EXPORT_VCOL) && (vlr->vcol)) { // vertex colors float vr, vg, vb; vr = ((vlr->vcol[ui1] >> 24) & 255)/255.0; vg = ((vlr->vcol[ui1] >> 16) & 255)/255.0; vb = ((vlr->vcol[ui1] >> 8) & 255)/255.0; ostr << " vcol_a_r=\"" << vr << "\" vcol_a_g=\"" << vg << "\" vcol_a_b=\"" << vb << "\""; vr = ((vlr->vcol[ui2] >> 24) & 255)/255.0; vg = ((vlr->vcol[ui2] >> 16) & 255)/255.0; vb = ((vlr->vcol[ui2] >> 8) & 255)/255.0; ostr << " vcol_b_r=\"" << vr << "\" vcol_b_g=\"" << vg << "\" vcol_b_b=\"" << vb << "\""; vr = ((vlr->vcol[ui3] >> 24) & 255)/255.0; vg = ((vlr->vcol[ui3] >> 16) & 255)/255.0; vb = ((vlr->vcol[ui3] >> 8) & 255)/255.0; ostr << " vcol_c_r=\"" << vr << "\" vcol_c_g=\"" << vg << "\" vcol_c_b=\"" << vb << "\""; } ostr << " shader_name=\"" << fmatname << "\" />\n"; } xmlfile << ostr.str(); } xmlfile << "\t\t\n\t\n

\n
\n\n"; } // write all objects void yafrayFileRender_t::writeAllObjects() { // first all objects except dupliverts (and main instance object for dups) for (map >::const_iterator obi=all_objects.begin(); obi!=all_objects.end(); ++obi) { // skip main duplivert object if in dupliMtx_list, written later Object* obj = obi->first; if (dupliMtx_list.find(string(obj->id.name))!=dupliMtx_list.end()) continue; writeObject(obj, obi->second, obj->obmat); } // Now all duplivert objects (if any) as instances of main object // The original object has been included in the VlakRen renderlist above (see convertBlenderScene.c) // but is written here which all other duplis are instances of. float obmat[4][4], cmat[4][4], imat[4][4], nmat[4][4]; for (map >::const_iterator dupMtx=dupliMtx_list.begin(); dupMtx!=dupliMtx_list.end();++dupMtx) { // original inverse matrix, not actual matrix of object, but first duplivert. for (int i=0;i<4;i++) for (int j=0;j<4;j++) obmat[i][j] = dupMtx->second[(i<<2)+j]; MTC_Mat4Invert(imat, obmat); // first object written as normal (but with transform of first duplivert) Object* obj = dup_srcob[dupMtx->first]; writeObject(obj, all_objects[obj], obmat); // all others instances of first for (unsigned int curmtx=16;curmtxsecond.size();curmtx+=16) { // number of 4x4 matrices // new mtx for (int i=0;i<4;i++) for (int j=0;j<4;j++) nmat[i][j] = dupMtx->second[curmtx+(i<<2)+j]; MTC_Mat4MulMat4(cmat, imat, nmat); // transform with respect to original = inverse_original * new ostr.str(""); // yafray matrix = transpose of Blender ostr << "\n"; xmlfile << ostr.str(); // new name from original ostr.str(""); ostr << "id.name << "_dup" << (curmtx>>4) << "\" original=\"" << obj->id.name << "\" >\n"; xmlfile << ostr.str(); xmlfile << "\t\n\t\n\t\n\n\n\n"; } } } void yafrayFileRender_t::writeAreaLamp(LampRen* lamp, int num, float iview[4][4]) { if (lamp->area_shape!=LA_AREA_SQUARE) return; float *a=lamp->area[0], *b=lamp->area[1], *c=lamp->area[2], *d=lamp->area[3]; float power=lamp->energy; ostr.str(""); string md = "off"; // if no GI used, the GIphotons flag can still be set, so only use when 'full' selected if ((R.r.GImethod==2) && (R.r.GIphotons)) { md="on"; power*=R.r.GIpower; } ostr << "ray_totsamp; if (sm>=25) psm = sm/5; ostr << "samples=\"" << sm << "\" psamples=\"" << psm << "\" "; ostr << ">\n"; // transform area lamp coords back to world float lpco[4][3]; MTC_cp3Float(a, lpco[0]); MTC_Mat4MulVecfl(iview, lpco[0]); MTC_cp3Float(b, lpco[1]); MTC_Mat4MulVecfl(iview, lpco[1]); MTC_cp3Float(c, lpco[2]); MTC_Mat4MulVecfl(iview, lpco[2]); MTC_cp3Float(d, lpco[3]); MTC_Mat4MulVecfl(iview, lpco[3]); ostr << "\t\n"; ostr << "\t\n"; ostr << "\t\n"; ostr << "\t\n"; ostr << "\tr << "\" g=\"" << lamp->g << "\" b=\"" << lamp->b << "\" />\n"; ostr << "\n\n"; xmlfile << ostr.str(); } void yafrayFileRender_t::writeLamps() { // inverse viewmatrix needed for back2world transform float iview[4][4]; // R.viewinv != inv.R.viewmat because of possible ortho mode (see convertBlenderScene.c) // have to invert it here MTC_Mat4Invert(iview, R.viewmat); // all lamps for (int i=0;itype==LA_AREA) { writeAreaLamp(lamp, i, iview); continue; } // TODO: add decay setting in yafray ostr << "type==LA_LOCAL) { if (lamp->mode & LA_YF_SOFT) { // shadowmapped omnidirectional light ostr << "softlight"; is_softL = true; } else if ((lamp->mode & LA_SHAD_RAY) && (lamp->YF_ltradius>0.0)) { // area sphere, only when ray shadows enabled and radius>0.0 ostr << "spherelight"; is_sphereL = true; } else ostr << "pointlight"; } else if (lamp->type==LA_SPOT) ostr << "spotlight"; else if ((lamp->type==LA_SUN) || (lamp->type==LA_HEMI)) // hemi exported as sun ostr << "sunlight"; else if (lamp->type==LA_YF_PHOTON) ostr << "photonlight"; else { // possibly unknown type, ignore cout << "Unknown Blender lamp type: " << lamp->type << endl; continue; } //no name available here, create one ostr << "\" name=\"LAMP" << i+1; // color already premultiplied by energy, so only need distance here float pwr = 1; // default for sun/hemi, distance irrelevant if ((lamp->type!=LA_SUN) && (lamp->type!=LA_HEMI)) { if (lamp->mode & LA_SPHERE) { // best approx. as used in LFexport script (LF d.f.m. 4pi?) pwr = lamp->dist*(lamp->dist+1)*(0.25/M_PI); //decay = 2; } else { pwr = lamp->dist; //decay = 1; } } if (is_sphereL) { // 'dummy' mode for spherelight when used with gpm string md = "off"; // if no GI used, the GIphotons flag can still be set, so only use when 'full' selected if ((R.r.GImethod==2) && (R.r.GIphotons)) { md="on"; pwr*=R.r.GIpower; } ostr << "\" power=\"" << pwr << "\" dummy=\"" << md << "\""; } else ostr << "\" power=\"" << pwr << "\""; // cast_shadows flag not used with softlight, spherelight or photonlight if ((!is_softL) && (!is_sphereL) && (lamp->type!=LA_YF_PHOTON)) { string lpmode="off"; // Shadows only when Blender has shadow button enabled, only spots use LA_SHAD flag. // Also blender hemilights exported as sunlights which might have shadow flag set // should have cast_shadows set to off (reported by varuag) if (lamp->type!=LA_HEMI) { if (R.r.mode & R_SHADOW) if (((lamp->type==LA_SPOT) && (lamp->mode & LA_SHAD)) || (lamp->mode & LA_SHAD_RAY)) lpmode="on"; } ostr << " cast_shadows=\"" << lpmode << "\""; } // spot specific stuff bool has_halo = ((lamp->type==LA_SPOT) && (lamp->mode & LA_HALO) && (lamp->haint>0.0)); if (lamp->type==LA_SPOT) { // conversion already changed spotsize to cosine of half angle float ld = 1-lamp->spotsi; //convert back to blender slider setting if (ld!=0) ld = 1.f/ld; ostr << " size=\"" << acos(lamp->spotsi)*180.0/M_PI << "\"" << " blend=\"" << lamp->spotbl*ld << "\"" << " beam_falloff=\"2\""; // no Blender equivalent (yet) // halo params if (has_halo) { ostr << "\n\thalo=\"on\" " << "res=\"" << lamp->YF_bufsize << "\"\n"; int hsmp = ((12-lamp->shadhalostep)*16)/12; hsmp = (hsmp+1)*16; // makes range (16, 272) for halostep(12, 0), good enough? ostr << "\tsamples=\"" << hsmp << "\" shadow_samples=\"" << (lamp->samp*lamp->samp) << "\"\n"; ostr << "\thalo_blur=\"0\" shadow_blur=\"" << (lamp->soft*0.01f) << "\"\n"; ostr << "\tfog_density=\"" << (lamp->haint*0.2f) << "\""; } } else if (is_softL) { // softlight ostr << " res=\"" << lamp->YF_bufsize << "\"" << " radius=\"" << lamp->soft << "\"" << " bias=\"" << lamp->bias << "\""; } else if (is_sphereL) { // spherelight int psm=0, sm = lamp->ray_samp*lamp->ray_samp; if (sm>=25) psm = sm/5; ostr << " radius=\"" << lamp->YF_ltradius << "\"" << " samples=\"" << sm << "\"" << " psamples=\"" << psm << "\"" << " qmc_method=\"1\""; } else if (lamp->type==LA_YF_PHOTON) { string qmc="off"; if (lamp->YF_useqmc) qmc="on"; ostr << "\n\tphotons=\"" << lamp->YF_numphotons << "\"" << " search=\"" << lamp->YF_numsearch << "\"" << " depth=\"" << lamp->YF_phdepth << "\"" << " use_QMC=\"" << qmc << "\"" << " angle=\"" << acos(lamp->spotsi)*180.0/M_PI << "\""; float cl = lamp->YF_causticblur/sqrt((float)lamp->YF_numsearch); ostr << "\n\tfixedradius=\"" << lamp->YF_causticblur << "\" cluster=\"" << cl << "\""; } ostr << " >\n"; // transform lamp co & vec back to world float lpco[3], lpvec[3]; MTC_cp3Float(lamp->co, lpco); MTC_Mat4MulVecfl(iview, lpco); MTC_cp3Float(lamp->vec, lpvec); MTC_Mat4Mul3Vecfl(iview, lpvec); // position, (==-blendir for sun/hemi) if ((lamp->type==LA_SUN) || (lamp->type==LA_HEMI)) ostr << "\t\n"; else ostr << "\t\n"; // 'to' for spot/photonlight, already calculated by Blender if ((lamp->type==LA_SPOT) || (lamp->type==LA_YF_PHOTON)) { ostr << "\t\n"; if (has_halo) ostr << "\t\n"; } // color // rgb in LampRen is premultiplied by energy, power is compensated for that above ostr << "\tr << "\" g=\"" << lamp->g << "\" b=\"" << lamp->b << "\" />\n"; ostr << "\n\n"; xmlfile << ostr.str(); } } // write main camera void yafrayFileRender_t::writeCamera() { // here Global used again ostr.str(""); ostr << "type==OB_CAMERA) { Camera* cam = (Camera*)maincam_obj->data; ostr << "\n\tdof_distance=\"" << cam->YF_dofdist << "\""; ostr << " aperture=\"" << cam->YF_aperture << "\""; string st = "on"; if (cam->flag & CAM_YF_NO_QMC) st = "off"; ostr << " use_qmc=\"" << st << "\""; // bokeh params st = "disk1"; if (cam->YF_bkhtype==1) st = "disk2"; else if (cam->YF_bkhtype==2) st = "triangle"; else if (cam->YF_bkhtype==3) st = "square"; else if (cam->YF_bkhtype==4) st = "pentagon"; else if (cam->YF_bkhtype==5) st = "hexagon"; else if (cam->YF_bkhtype==6) st = "ring"; ostr << "\n\tbokeh_type=\"" << st << "\""; st = "uniform"; if (cam->YF_bkhbias==1) st = "center"; else if (cam->YF_bkhbias==2) st = "edge"; ostr << " bokeh_bias=\"" << st << "\""; ostr << " bokeh_rotation=\"" << cam->YF_bkhrot << "\""; } ostr << " >\n"; xmlfile << ostr.str(); ostr.str(""); ostr << "\tobmat[3][0] << "\"" << " y=\"" << maincam_obj->obmat[3][1] << "\"" << " z=\"" << maincam_obj->obmat[3][2] << "\" />\n"; float fdist = fabs(R.viewmat[3][2]); if (R.r.mode & R_ORTHO) fdist *= 0.01f; ostr << "\tobmat[3][0] - fdist * R.viewmat[0][2] << "\" y=\"" << maincam_obj->obmat[3][1] - fdist * R.viewmat[1][2] << "\" z=\"" << maincam_obj->obmat[3][2] - fdist * R.viewmat[2][2] << "\" />\n"; ostr << "\tobmat[3][0] + R.viewmat[0][1] << "\" y=\"" << maincam_obj->obmat[3][1] + R.viewmat[1][1] << "\" z=\"" << maincam_obj->obmat[3][2] + R.viewmat[2][1] << "\" />\n"; xmlfile << ostr.str(); xmlfile << "\n\n"; } void yafrayFileRender_t::writeHemilight() { ostr.str(""); ostr << "\n"; break; case 3 : ostr << " samples=\"36\" >\n"; break; case 4 : ostr << " samples=\"64\" >\n"; break; case 5 : ostr << " samples=\"128\" >\n"; break; default: ostr << " samples=\"25\" >\n"; } ostr << "\n\n"; xmlfile << ostr.str(); } void yafrayFileRender_t::writePathlight() { ostr.str(""); if (R.r.GIphotons) { ostr << "2) ? (R.r.GIdepth-1) : 1) << "\" caus_depth=\""<"<"<\n"; } else { switch (R.r.GIquality) { case 1 : ostr << " samples=\"16\" >\n"; break; case 2 : ostr << " samples=\"36\" >\n"; break; case 3 : ostr << " samples=\"64\" >\n"; break; case 4 : ostr << " samples=\"128\" >\n"; break; case 5 : ostr << " samples=\"256\" >\n"; break; default: ostr << " samples=\"25\" >\n"; } } ostr << "\n\n"; xmlfile << ostr.str(); } bool yafrayFileRender_t::writeWorld() { World *world = G.scene->world; if (R.r.GIquality!=0) { if (R.r.GImethod==1) { if (world==NULL) cout << "WARNING: need world background for skydome!\n"; writeHemilight(); } else if (R.r.GImethod==2) writePathlight(); } if (world==NULL) return false; for (int i=0;imtex[i]; if (!wtex) continue; Image* wimg = wtex->tex->ima; if ((wtex->tex->type==TEX_IMAGE) && (wimg!=NULL)) { string wt_path = wimg->name; adjustPath(wt_path); if (BLI_testextensie(wimg->name, ".hdr")) { ostr.str(""); ostr << "mtex[i]->tex->bright-1) << "\" mapping=\"probe\" >\n"; ostr << "\t\n"; ostr << "\n\n"; xmlfile << ostr.str(); return true; } else if (BLI_testextensie(wimg->name, ".jpg") || BLI_testextensie(wimg->name, ".jpeg") || BLI_testextensie(wimg->name, ".tga")) { ostr.str(""); ostr << "\n"; /* // not yet in yafray, always assumes spheremap for now, not the same as in Blender, // which for some reason is scaled by 2 in Blender??? if (wtex->texco & TEXCO_ANGMAP) ostr << " mapping=\"probe\" >\n"; else ostr << " mapping=\"sphere\" >\n"; */ ostr << "\t\n"; ostr << "\n\n"; xmlfile << ostr.str(); return true; } } } ostr.str(""); ostr << "\n"; // if no GI used, the GIpower parameter is not always initialized, so in that case ignore it // (have to change method to init yafray vars in Blender) float bg_mult = (R.r.GImethod==0) ? 1 : R.r.GIpower; ostr << "\thorr * bg_mult) << "\" g=\"" << (world->horg * bg_mult) << "\" b=\"" << (world->horb * bg_mult) << "\" />\n"; ostr << "\n\n"; xmlfile << ostr.str(); return true; } bool yafrayFileRender_t::executeYafray(const string &xmlpath) { char yfr[8]; sprintf(yfr, "%d ", R.r.YF_numprocs); string command = command_path + "yafray -c " + yfr + "\"" + xmlpath + "\""; #ifndef WIN32 sigset_t yaf,old; sigemptyset(&yaf); sigaddset(&yaf, SIGVTALRM); sigprocmask(SIG_BLOCK, &yaf, &old); int ret=system(command.c_str()); sigprocmask(SIG_SETMASK, &old, NULL); if (WIFEXITED(ret)) { if (WEXITSTATUS(ret)) cout<<"Executed -"<