/** * $Id$ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include "KX_BlenderRenderTools.h" #ifdef HAVE_CONFIG_H #include #endif #ifdef WIN32 // OpenGL gl.h needs 'windows.h' on windows platforms #include #endif //WIN32 #ifdef __APPLE__ #include #else #include #endif #include "RAS_IRenderTools.h" #include "RAS_IRasterizer.h" #include "RAS_LightObject.h" #include "RAS_ICanvas.h" // next two includes/dependencies come from the shadow feature // it needs the gameobject and the sumo physics scene for a raycast #include "KX_GameObject.h" #include "KX_BlenderPolyMaterial.h" #include "Value.h" #include "KX_BlenderGL.h" // for text printing #include "STR_String.h" #include "RAS_BucketManager.h" // for polymaterial (needed for textprinting) KX_BlenderRenderTools::KX_BlenderRenderTools() { } /** ProcessLighting performs lighting on objects. the layer is a bitfield that contains layer information. There are 20 'official' layers in blender. A light is applied on an object only when they are in the same layer. OpenGL has a maximum of 8 lights (simultaneous), so 20 * 8 lights are possible in a scene. */ int KX_BlenderRenderTools::ProcessLighting(int layer) { int result = false; if (layer < 0) { DisableOpenGLLights(); result = false; } else { if (m_clientobject) { if (applyLights(layer)) { EnableOpenGLLights(); result = true; } else { DisableOpenGLLights(); result = false; } } } return result; } void KX_BlenderRenderTools::BeginFrame(RAS_IRasterizer* rasty) { m_clientobject = NULL; m_lastblenderobject = NULL; m_lastblenderlights = false; m_lastlayer = -1; m_lastlighting = false; m_modified = true; DisableOpenGLLights(); } void KX_BlenderRenderTools::applyTransform(RAS_IRasterizer* rasty,double* oglmatrix,int objectdrawmode ) { if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED || objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED) { // rotate the billboard/halo //page 360/361 3D Game Engine Design, David Eberly for a discussion // on screen aligned and axis aligned billboards // assumed is that the preprocessor transformed all billboard polygons // so that their normal points into the positive x direction (1.0 , 0.0 , 0.0) // when new parenting for objects is done, this rotation // will be moved into the object MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]); MT_Point3 campos = rasty->GetCameraPosition(); MT_Vector3 dir = (campos - objpos).safe_normalized(); MT_Vector3 up(0,0,1.0); KX_GameObject* gameobj = (KX_GameObject*) this->m_clientobject; // get scaling of halo object MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale(); bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned if (screenaligned) { up = (up - up.dot(dir) * dir).safe_normalized(); } else { dir = (dir - up.dot(dir)*up).safe_normalized(); } MT_Vector3 left = dir.normalized(); dir = (left.cross(up)).normalized(); // we have calculated the row vectors, now we keep // local scaling into account: left *= size[0]; dir *= size[1]; up *= size[2]; double maat[16]={ left[0], left[1],left[2], 0, dir[0], dir[1],dir[2],0, up[0],up[1],up[2],0, 0,0,0,1}; glTranslated(objpos[0],objpos[1],objpos[2]); glMultMatrixd(maat); } else { if (objectdrawmode & RAS_IPolyMaterial::SHADOW) { // shadow must be cast to the ground, physics system needed here! // KX_GameObject* gameobj = (KX_GameObject*) this->m_clientobject; MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]); MT_Vector3 direction = MT_Vector3(0,0,-1); direction.normalize(); direction *= 100000; // MT_Point3 topoint = frompoint + direction; MT_Point3 resultpoint; MT_Vector3 resultnormal; //todo: //use physics abstraction //SM_Scene* scene = (SM_Scene*) m_auxilaryClientInfo; //SM_Object* hitObj = scene->rayTest(gameobj->GetSumoObject(),frompoint,topoint, // resultpoint, resultnormal); if (0) //hitObj) { MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]); MT_Vector3 dir = -(left.cross(resultnormal)).normalized(); left = (dir.cross(resultnormal)).normalized(); // for the up vector, we take the 'resultnormal' returned by the physics double maat[16]={ left[0], left[1],left[2], 0, dir[0], dir[1],dir[2],0, resultnormal[0],resultnormal[1],resultnormal[2],0, 0,0,0,1}; glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]); glMultMatrixd(maat); // glMultMatrixd(oglmatrix); } else { glMultMatrixd(oglmatrix); } } else { // 'normal' object glMultMatrixd(oglmatrix); } } } /** Render Text renders text into a (series of) polygon, using a texture font, Each character consists of one polygon (one quad or two triangles) */ void KX_BlenderRenderTools::RenderText(int mode,RAS_IPolyMaterial* polymat,float v1[3],float v2[3],float v3[3],float v4[3]) { STR_String mytext = ((CValue*)m_clientobject)->GetPropertyText("Text"); KX_BlenderPolyMaterial* blenderpoly = (KX_BlenderPolyMaterial*)polymat; struct TFace* tface = blenderpoly->GetTFace(); BL_RenderText( mode,mytext,mytext.Length(),tface,v1,v2,v3,v4); } KX_BlenderRenderTools::~KX_BlenderRenderTools() { }; void KX_BlenderRenderTools::EndFrame(RAS_IRasterizer* rasty) { } void KX_BlenderRenderTools::DisableOpenGLLights() { glDisable(GL_LIGHTING); glDisable(GL_COLOR_MATERIAL); #ifndef SLOWPAINT glDisableClientState(GL_NORMAL_ARRAY); #endif //SLOWPAINT } void KX_BlenderRenderTools::EnableOpenGLLights() { glEnable(GL_LIGHTING); glColorMaterial(GL_FRONT_AND_BACK,GL_DIFFUSE); glEnable(GL_COLOR_MATERIAL); #ifndef SLOWPAINT glEnableClientState(GL_NORMAL_ARRAY); #endif //SLOWPAINT glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, false); } /** * Rendering text using 2D bitmap functionality. */ void KX_BlenderRenderTools::RenderText2D(RAS_TEXT_RENDER_MODE mode, const char* text, int xco, int yco, int width, int height) { switch (mode) { case RAS_IRenderTools::RAS_TEXT_PADDED: { STR_String tmpstr(text); BL_print_gamedebug_line_padded(tmpstr.Ptr(),xco,yco,width,height); break; } default: { STR_String tmpstr(text); BL_print_gamedebug_line(tmpstr.Ptr(),xco,yco,width,height); } } } void KX_BlenderRenderTools::PushMatrix() { glPushMatrix(); } void KX_BlenderRenderTools::PopMatrix() { glPopMatrix(); } int KX_BlenderRenderTools::applyLights(int objectlayer) { // taken from blender source, incompatibility between Blender Object / GameObject int count; float vec[4]; vec[3]= 1.0; for(count=0; count<8; count++) glDisable((GLenum)(GL_LIGHT0+count)); count= 0; //std::vector m_lights; std::vector::iterator lit = m_lights.begin(); for (lit = m_lights.begin(); !(lit==m_lights.end()); ++lit) { RAS_LightObject* lightdata = (*lit); if (lightdata->m_layer & objectlayer) { glPushMatrix(); glLoadMatrixf(m_viewmat); vec[0] = (*(lightdata->m_worldmatrix))(0,3); vec[1] = (*(lightdata->m_worldmatrix))(1,3); vec[2] = (*(lightdata->m_worldmatrix))(2,3); vec[3] = 1; if(lightdata->m_type==RAS_LightObject::LIGHT_SUN) { vec[0] = (*(lightdata->m_worldmatrix))(0,2); vec[1] = (*(lightdata->m_worldmatrix))(1,2); vec[2] = (*(lightdata->m_worldmatrix))(2,2); //vec[0]= base->object->obmat[2][0]; //vec[1]= base->object->obmat[2][1]; //vec[2]= base->object->obmat[2][2]; vec[3]= 0.0; glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec); } else { //vec[3]= 1.0; glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec); glLightf((GLenum)(GL_LIGHT0+count), GL_CONSTANT_ATTENUATION, 1.0); glLightf((GLenum)(GL_LIGHT0+count), GL_LINEAR_ATTENUATION, lightdata->m_att1/lightdata->m_distance); // without this next line it looks backward compatible. //attennuation still is acceptable // glLightf((GLenum)(GL_LIGHT0+count), GL_QUADRATIC_ATTENUATION, la->att2/(la->dist*la->dist)); if(lightdata->m_type==RAS_LightObject::LIGHT_SPOT) { vec[0] = -(*(lightdata->m_worldmatrix))(0,2); vec[1] = -(*(lightdata->m_worldmatrix))(1,2); vec[2] = -(*(lightdata->m_worldmatrix))(2,2); //vec[0]= -base->object->obmat[2][0]; //vec[1]= -base->object->obmat[2][1]; //vec[2]= -base->object->obmat[2][2]; glLightfv((GLenum)(GL_LIGHT0+count), GL_SPOT_DIRECTION, vec); glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, lightdata->m_spotsize/2.0); glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_EXPONENT, 128.0*lightdata->m_spotblend); } else glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, 180.0); } vec[0]= lightdata->m_energy*lightdata->m_red; vec[1]= lightdata->m_energy*lightdata->m_green; vec[2]= lightdata->m_energy*lightdata->m_blue; vec[3]= 1.0; glLightfv((GLenum)(GL_LIGHT0+count), GL_DIFFUSE, vec); glLightfv((GLenum)(GL_LIGHT0+count), GL_SPECULAR, vec); glEnable((GLenum)(GL_LIGHT0+count)); glPopMatrix(); count++; if(count>7) break; } } return count; } RAS_IPolyMaterial* KX_BlenderRenderTools::CreateBlenderPolyMaterial( const STR_String &texname, bool ba,const STR_String& matname,int tile,int tilexrep,int tileyrep,int mode,int transparant,int lightlayer ,bool bIsTriangle,void* clientobject,void* tface) { return new KX_BlenderPolyMaterial( texname, ba,matname,tile,tilexrep,tileyrep,mode,transparant,lightlayer ,bIsTriangle,clientobject,(struct TFace*)tface); }