/** * $Id$ * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ #ifdef HAVE_CONFIG_H #include #endif /*------------------------------ * PyObjectPlus cpp * * C++ library routines for Crawl 3.2 * * Derived from work by * David Redish * graduate student * Computer Science Department * Carnegie Mellon University (CMU) * Center for the Neural Basis of Cognition (CNBC) * http://www.python.org/doc/PyCPP.html * ------------------------------*/ #include #include "stdlib.h" #include "PyObjectPlus.h" #include "STR_String.h" #include "MT_Vector3.h" #include "MEM_guardedalloc.h" PyObjectPlus::~PyObjectPlus() { #ifndef DISABLE_PYTHON if(m_proxy) { BGE_PROXY_REF(m_proxy)= NULL; Py_DECREF(m_proxy); /* Remove own reference, python may still have 1 */ } // assert(ob_refcnt==0); #endif } PyObjectPlus::PyObjectPlus() : SG_QList() // constructor { #ifndef DISABLE_PYTHON m_proxy= NULL; #endif }; void PyObjectPlus::ProcessReplica() { #ifndef DISABLE_PYTHON /* Clear the proxy, will be created again if needed with GetProxy() * otherwise the PyObject will point to the wrong reference */ m_proxy= NULL; #endif } /* Sometimes we might want to manually invalidate a BGE type even if * it hasnt been released by the BGE, say for example when an object * is removed from a scene, accessing it may cause problems. * * In this case the current proxy is made invalid, disowned, * and will raise an error on access. However if python can get access * to this class again it will make a new proxy and work as expected. */ void PyObjectPlus::InvalidateProxy() // check typename of each parent { #ifndef DISABLE_PYTHON if(m_proxy) { BGE_PROXY_REF(m_proxy)=NULL; Py_DECREF(m_proxy); m_proxy= NULL; } #endif } #ifndef DISABLE_PYTHON /*------------------------------ * PyObjectPlus Type -- Every class, even the abstract one should have a Type ------------------------------*/ PyTypeObject PyObjectPlus::Type = { PyVarObject_HEAD_INIT(NULL, 0) "PyObjectPlus", /*tp_name*/ sizeof(PyObjectPlus_Proxy), /*tp_basicsize*/ 0, /*tp_itemsize*/ /* methods */ py_base_dealloc, 0, 0, 0, 0, py_base_repr, 0,0,0,0,0,0,0,0,0, Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, 0,0,0,0,0,0,0, Methods, 0, 0, NULL // no subtype }; PyObject *PyObjectPlus::py_base_repr(PyObject *self) // This should be the entry in Type. { PyObjectPlus *self_plus= BGE_PROXY_REF(self); if(self_plus==NULL) { PyErr_SetString(PyExc_SystemError, BGE_PROXY_ERROR_MSG); return NULL; } return self_plus->py_repr(); } PyObject * PyObjectPlus::py_base_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyTypeObject *base_type; PyObjectPlus_Proxy *base = NULL; if (!PyArg_ParseTuple(args, "O:Base PyObjectPlus", &base)) return NULL; /* the 'base' PyObject may be subclassed (multiple times even) * we need to find the first C++ defined class to check 'type' * is a subclass of the base arguments type. * * This way we can share one tp_new function for every PyObjectPlus * * eg. * * # CustomOb is called 'type' in this C code * class CustomOb(GameTypes.KX_GameObject): * pass * * # this calls py_base_new(...), the type of 'CustomOb' is checked to be a subclass of the 'cont.owner' type * ob = CustomOb(cont.owner) * * */ base_type= Py_TYPE(base); while(base_type && !BGE_PROXY_CHECK_TYPE(base_type)) base_type= base_type->tp_base; if(base_type==NULL || !BGE_PROXY_CHECK_TYPE(base_type)) { PyErr_SetString(PyExc_TypeError, "can't subclass from a blender game type because the argument given is not a game class or subclass"); return NULL; } /* use base_type rather then Py_TYPE(base) because we could alredy be subtyped */ if(!PyType_IsSubtype(type, base_type)) { PyErr_Format(PyExc_TypeError, "can't subclass blender game type <%s> from <%s> because it is not a subclass", base_type->tp_name, type->tp_name); return NULL; } /* invalidate the existing base and return a new subclassed one, * this is a bit dodgy in that it also attaches its self to the existing object * which is not really 'correct' python OO but for our use its OK. */ PyObjectPlus_Proxy *ret = (PyObjectPlus_Proxy *) type->tp_alloc(type, 0); /* starts with 1 ref, used for the return ref' */ ret->ref= base->ref; ret->ptr= base->ptr; ret->py_owns= base->py_owns; ret->py_ref = base->py_ref; if (ret->py_ref) { base->ref= NULL; /* invalidate! disallow further access */ base->ptr = NULL; if (ret->ref) ret->ref->m_proxy= NULL; /* 'base' may be free'd after this func finished but not necessarily * there is no reference to the BGE data now so it will throw an error on access */ Py_DECREF(base); if (ret->ref) { ret->ref->m_proxy= (PyObject *)ret; /* no need to add a ref because one is added when creating. */ Py_INCREF(ret); /* we return a new ref but m_proxy holds a ref so we need to add one */ } } else { // generic structures don't hold a reference to this proxy, so don't increment ref count if (ret->py_owns) // but if the proxy owns the structure, there can be only one owner base->ptr= NULL; } return (PyObject *)ret; } void PyObjectPlus::py_base_dealloc(PyObject *self) // python wrapper { if (BGE_PROXY_PYREF(self)) { PyObjectPlus *self_plus= BGE_PROXY_REF(self); if(self_plus) { if(BGE_PROXY_PYOWNS(self)) { /* Does python own this?, then delete it */ self_plus->m_proxy = NULL; /* Need this to stop ~PyObjectPlus from decrefing m_proxy otherwise its decref'd twice and py-debug crashes */ delete self_plus; } BGE_PROXY_REF(self)= NULL; // not really needed } // the generic pointer is not deleted directly, only through self_plus BGE_PROXY_PTR(self)= NULL; // not really needed } else { void *ptr= BGE_PROXY_PTR(self); if(ptr) { if(BGE_PROXY_PYOWNS(self)) { /* Does python own this?, then delete it */ // generic structure owned by python MUST be created though MEM_alloc MEM_freeN(ptr); } BGE_PROXY_PTR(self)= NULL; // not really needed } } #if 0 /* is ok normally but not for subtyping, use tp_free instead. */ PyObject_DEL( self ); #else Py_TYPE(self)->tp_free(self); #endif }; /*------------------------------ * PyObjectPlus Methods -- Every class, even the abstract one should have a Methods ------------------------------*/ PyMethodDef PyObjectPlus::Methods[] = { {NULL, NULL} /* Sentinel */ }; #define attr_invalid (&(PyObjectPlus::Attributes[0])) PyAttributeDef PyObjectPlus::Attributes[] = { KX_PYATTRIBUTE_RO_FUNCTION("invalid", PyObjectPlus, pyattr_get_invalid), {NULL} //Sentinel }; PyObject* PyObjectPlus::pyattr_get_invalid(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { return PyBool_FromLong(self_v ? 1:0); } /* note, this is called as a python 'getset, where the PyAttributeDef is the closure */ PyObject *PyObjectPlus::py_get_attrdef(PyObject *self_py, const PyAttributeDef *attrdef) { PyObjectPlus *ref= (BGE_PROXY_REF(self_py)); char* ptr = (attrdef->m_usePtr) ? (char*)BGE_PROXY_PTR(self_py) : (char*)ref; if(ptr == NULL || (BGE_PROXY_PYREF(self_py) && (ref==NULL || !ref->py_is_valid()))) { if(attrdef == attr_invalid) Py_RETURN_TRUE; // dont bother running the function PyErr_SetString(PyExc_SystemError, BGE_PROXY_ERROR_MSG); return NULL; } if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_DUMMY) { // fake attribute, ignore return NULL; } if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_FUNCTION) { // the attribute has no field correspondance, handover processing to function. if (attrdef->m_getFunction == NULL) return NULL; return (*attrdef->m_getFunction)(ref, attrdef); } ptr += attrdef->m_offset; if (attrdef->m_length > 1) { PyObject* resultlist = PyList_New(attrdef->m_length); for (unsigned int i=0; im_length; i++) { switch (attrdef->m_type) { case KX_PYATTRIBUTE_TYPE_BOOL: { bool *val = reinterpret_cast(ptr); ptr += sizeof(bool); PyList_SET_ITEM(resultlist,i,PyLong_FromSsize_t(*val)); break; } case KX_PYATTRIBUTE_TYPE_SHORT: { short int *val = reinterpret_cast(ptr); ptr += sizeof(short int); PyList_SET_ITEM(resultlist,i,PyLong_FromSsize_t(*val)); break; } case KX_PYATTRIBUTE_TYPE_ENUM: // enum are like int, just make sure the field size is the same if (sizeof(int) != attrdef->m_size) { Py_DECREF(resultlist); return NULL; } // walkthrough case KX_PYATTRIBUTE_TYPE_INT: { int *val = reinterpret_cast(ptr); ptr += sizeof(int); PyList_SET_ITEM(resultlist,i,PyLong_FromSsize_t(*val)); break; } case KX_PYATTRIBUTE_TYPE_FLOAT: { float *val = reinterpret_cast(ptr); ptr += sizeof(float); PyList_SET_ITEM(resultlist,i,PyFloat_FromDouble(*val)); break; } default: // no support for array of complex data Py_DECREF(resultlist); return NULL; } } return resultlist; } else { switch (attrdef->m_type) { case KX_PYATTRIBUTE_TYPE_FLAG: { bool bval; switch (attrdef->m_size) { case 1: { unsigned char *val = reinterpret_cast(ptr); bval = (*val & attrdef->m_imin); break; } case 2: { unsigned short *val = reinterpret_cast(ptr); bval = (*val & attrdef->m_imin); break; } case 4: { unsigned int *val = reinterpret_cast(ptr); bval = (*val & attrdef->m_imin); break; } default: return NULL; } if (attrdef->m_imax) bval = !bval; return PyLong_FromSsize_t(bval); } case KX_PYATTRIBUTE_TYPE_BOOL: { bool *val = reinterpret_cast(ptr); return PyLong_FromSsize_t(*val); } case KX_PYATTRIBUTE_TYPE_SHORT: { short int *val = reinterpret_cast(ptr); return PyLong_FromSsize_t(*val); } case KX_PYATTRIBUTE_TYPE_ENUM: // enum are like int, just make sure the field size is the same if (sizeof(int) != attrdef->m_size) { return NULL; } // walkthrough case KX_PYATTRIBUTE_TYPE_INT: { int *val = reinterpret_cast(ptr); return PyLong_FromSsize_t(*val); } case KX_PYATTRIBUTE_TYPE_FLOAT: { float *val = reinterpret_cast(ptr); if (attrdef->m_imin == 0) { if (attrdef->m_imax == 0) { return PyFloat_FromDouble(*val); } else { // vector, verify size if (attrdef->m_size != attrdef->m_imax*sizeof(float)) { return NULL; } #ifdef USE_MATHUTILS return newVectorObject(val, attrdef->m_imax, Py_NEW, NULL); #else PyObject* resultlist = PyList_New(attrdef->m_imax); for (unsigned int i=0; im_imax; i++) { PyList_SET_ITEM(resultlist,i,PyFloat_FromDouble(val[i])); } return resultlist; #endif } } else { // matrix case if (attrdef->m_size != attrdef->m_imax*attrdef->m_imin*sizeof(float)) { return NULL; } #ifdef USE_MATHUTILS return newMatrixObject(val, attrdef->m_imin, attrdef->m_imax, Py_WRAP, NULL); #else PyObject* rowlist = PyList_New(attrdef->m_imin); for (unsigned int i=0; im_imin; i++) { PyObject* collist = PyList_New(attrdef->m_imax); for (unsigned int j=0; jm_imax; j++) { PyList_SET_ITEM(collist,j,PyFloat_FromDouble(val[j])); } PyList_SET_ITEM(rowlist,i,collist); val += attrdef->m_imax; } return rowlist; #endif } } case KX_PYATTRIBUTE_TYPE_VECTOR: { MT_Vector3 *val = reinterpret_cast(ptr); #ifdef USE_MATHUTILS float fval[3]= {(*val)[0], (*val)[1], (*val)[2]}; return newVectorObject(fval, 3, Py_NEW, NULL); #else PyObject* resultlist = PyList_New(3); for (unsigned int i=0; i<3; i++) { PyList_SET_ITEM(resultlist,i,PyFloat_FromDouble((*val)[i])); } return resultlist; #endif } case KX_PYATTRIBUTE_TYPE_STRING: { STR_String *val = reinterpret_cast(ptr); return PyUnicode_FromString(*val); } case KX_PYATTRIBUTE_TYPE_CHAR: { return PyUnicode_FromString(ptr); } default: return NULL; } } } static bool py_check_attr_float(float *var, PyObject *value, const PyAttributeDef *attrdef) { double val = PyFloat_AsDouble(value); if (val == -1.0 && PyErr_Occurred()) { PyErr_Format(PyExc_TypeError, "expected float value for attribute \"%s\"", attrdef->m_name); return false; } if (attrdef->m_clamp) { if (val < attrdef->m_fmin) val = attrdef->m_fmin; else if (val > attrdef->m_fmax) val = attrdef->m_fmax; } else if (val < attrdef->m_fmin || val > attrdef->m_fmax) { PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name); return false; } *var = (float)val; return true; } /* note, this is called as a python getset */ int PyObjectPlus::py_set_attrdef(PyObject *self_py, PyObject *value, const PyAttributeDef *attrdef) { PyObjectPlus *ref= (BGE_PROXY_REF(self_py)); char* ptr = (attrdef->m_usePtr) ? (char*)BGE_PROXY_PTR(self_py) : (char*)ref; if(ref==NULL || !ref->py_is_valid() || ptr==NULL) { PyErr_SetString(PyExc_SystemError, BGE_PROXY_ERROR_MSG); return PY_SET_ATTR_FAIL; } void *undoBuffer = NULL; void *sourceBuffer = NULL; size_t bufferSize = 0; PyObject *item = NULL; // to store object that must be dereferenced in case of error PyObject *list = NULL; // to store object that must be dereferenced in case of error ptr += attrdef->m_offset; if (attrdef->m_length > 1) { if (!PySequence_Check(value)) { PyErr_Format(PyExc_TypeError, "expected a sequence for attribute \"%s\"", attrdef->m_name); return PY_SET_ATTR_FAIL; } if (PySequence_Size(value) != attrdef->m_length) { PyErr_Format(PyExc_TypeError, "incorrect number of elements in sequence for attribute \"%s\"", attrdef->m_name); return PY_SET_ATTR_FAIL; } switch (attrdef->m_type) { case KX_PYATTRIBUTE_TYPE_FUNCTION: if (attrdef->m_setFunction == NULL) { PyErr_Format(PyExc_AttributeError, "function attribute without function for attribute \"%s\", report to blender.org", attrdef->m_name); return PY_SET_ATTR_FAIL; } return (*attrdef->m_setFunction)(ref, attrdef, value); case KX_PYATTRIBUTE_TYPE_BOOL: bufferSize = sizeof(bool); break; case KX_PYATTRIBUTE_TYPE_SHORT: bufferSize = sizeof(short int); break; case KX_PYATTRIBUTE_TYPE_ENUM: case KX_PYATTRIBUTE_TYPE_INT: bufferSize = sizeof(int); break; case KX_PYATTRIBUTE_TYPE_FLOAT: bufferSize = sizeof(float); break; default: // should not happen PyErr_Format(PyExc_AttributeError, "Unsupported attribute type for attribute \"%s\", report to blender.org", attrdef->m_name); return PY_SET_ATTR_FAIL; } // let's implement a smart undo method bufferSize *= attrdef->m_length; undoBuffer = malloc(bufferSize); sourceBuffer = ptr; if (undoBuffer) { memcpy(undoBuffer, sourceBuffer, bufferSize); } for (int i=0; im_length; i++) { item = PySequence_GetItem(value, i); /* new ref */ switch (attrdef->m_type) { case KX_PYATTRIBUTE_TYPE_BOOL: { bool *var = reinterpret_cast(ptr); ptr += sizeof(bool); if (PyLong_Check(item)) { *var = (PyLong_AsSsize_t(item) != 0); } else if (PyBool_Check(item)) { *var = (item == Py_True); } else { PyErr_Format(PyExc_TypeError, "expected an integer or a bool for attribute \"%s\"", attrdef->m_name); goto UNDO_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_SHORT: { short int *var = reinterpret_cast(ptr); ptr += sizeof(short int); if (PyLong_Check(item)) { long val = PyLong_AsSsize_t(item); if (attrdef->m_clamp) { if (val < attrdef->m_imin) val = attrdef->m_imin; else if (val > attrdef->m_imax) val = attrdef->m_imax; } else if (val < attrdef->m_imin || val > attrdef->m_imax) { PyErr_Format(PyExc_ValueError, "item value out of range for attribute \"%s\"", attrdef->m_name); goto UNDO_AND_ERROR; } *var = (short int)val; } else { PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name); goto UNDO_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_ENUM: // enum are equivalent to int, just make sure that the field size matches: if (sizeof(int) != attrdef->m_size) { PyErr_Format(PyExc_AttributeError, "Size check error for attribute, \"%s\", report to blender.org", attrdef->m_name); goto UNDO_AND_ERROR; } // walkthrough case KX_PYATTRIBUTE_TYPE_INT: { int *var = reinterpret_cast(ptr); ptr += sizeof(int); if (PyLong_Check(item)) { long val = PyLong_AsSsize_t(item); if (attrdef->m_clamp) { if (val < attrdef->m_imin) val = attrdef->m_imin; else if (val > attrdef->m_imax) val = attrdef->m_imax; } else if (val < attrdef->m_imin || val > attrdef->m_imax) { PyErr_Format(PyExc_ValueError, "item value out of range for attribute \"%s\"", attrdef->m_name); goto UNDO_AND_ERROR; } *var = (int)val; } else { PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name); goto UNDO_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_FLOAT: { float *var = reinterpret_cast(ptr); ptr += sizeof(float); double val = PyFloat_AsDouble(item); if (val == -1.0 && PyErr_Occurred()) { PyErr_Format(PyExc_TypeError, "expected a float for attribute \"%s\"", attrdef->m_name); goto UNDO_AND_ERROR; } else if (attrdef->m_clamp) { if (val < attrdef->m_fmin) val = attrdef->m_fmin; else if (val > attrdef->m_fmax) val = attrdef->m_fmax; } else if (val < attrdef->m_fmin || val > attrdef->m_fmax) { PyErr_Format(PyExc_ValueError, "item value out of range for attribute \"%s\"", attrdef->m_name); goto UNDO_AND_ERROR; } *var = (float)val; break; } default: // should not happen PyErr_Format(PyExc_AttributeError, "type check error for attribute \"%s\", report to blender.org", attrdef->m_name); goto UNDO_AND_ERROR; } // finished using item, release Py_DECREF(item); item = NULL; } // no error, call check function if any if (attrdef->m_checkFunction != NULL) { if ((*attrdef->m_checkFunction)(ref, attrdef) != 0) { // if the checing function didnt set an error then set a generic one here so we dont set an error with no exception if (PyErr_Occurred()==0) PyErr_Format(PyExc_AttributeError, "type check error for attribute \"%s\", reasion unknown", attrdef->m_name); // post check returned an error, restore values UNDO_AND_ERROR: if (undoBuffer) { memcpy(sourceBuffer, undoBuffer, bufferSize); free(undoBuffer); } if (item) Py_DECREF(item); return PY_SET_ATTR_FAIL; } } if (undoBuffer) free(undoBuffer); return PY_SET_ATTR_SUCCESS; } else // simple attribute value { if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_FUNCTION) { if (attrdef->m_setFunction == NULL) { PyErr_Format(PyExc_AttributeError, "function attribute without function \"%s\", report to blender.org", attrdef->m_name); return PY_SET_ATTR_FAIL; } return (*attrdef->m_setFunction)(ref, attrdef, value); } if (attrdef->m_checkFunction != NULL || attrdef->m_type == KX_PYATTRIBUTE_TYPE_VECTOR) { // post check function is provided, prepare undo buffer sourceBuffer = ptr; switch (attrdef->m_type) { case KX_PYATTRIBUTE_TYPE_BOOL: bufferSize = sizeof(bool); break; case KX_PYATTRIBUTE_TYPE_SHORT: bufferSize = sizeof(short); break; case KX_PYATTRIBUTE_TYPE_ENUM: case KX_PYATTRIBUTE_TYPE_FLAG: case KX_PYATTRIBUTE_TYPE_CHAR: bufferSize = attrdef->m_size; break; case KX_PYATTRIBUTE_TYPE_INT: bufferSize = sizeof(int); break; case KX_PYATTRIBUTE_TYPE_FLOAT: bufferSize = sizeof(float); if (attrdef->m_imax) bufferSize *= attrdef->m_imax; if (attrdef->m_imin) bufferSize *= attrdef->m_imin; break; case KX_PYATTRIBUTE_TYPE_STRING: sourceBuffer = reinterpret_cast(ptr)->Ptr(); if (sourceBuffer) bufferSize = strlen(reinterpret_cast(sourceBuffer))+1; break; case KX_PYATTRIBUTE_TYPE_VECTOR: bufferSize = sizeof(MT_Vector3); break; default: PyErr_Format(PyExc_AttributeError, "unknown type for attribute \"%s\", report to blender.org", attrdef->m_name); return PY_SET_ATTR_FAIL; } if (bufferSize) { undoBuffer = malloc(bufferSize); if (undoBuffer) { memcpy(undoBuffer, sourceBuffer, bufferSize); } } } switch (attrdef->m_type) { case KX_PYATTRIBUTE_TYPE_BOOL: { bool *var = reinterpret_cast(ptr); if (PyLong_Check(value)) { *var = (PyLong_AsSsize_t(value) != 0); } else if (PyBool_Check(value)) { *var = (value == Py_True); } else { PyErr_Format(PyExc_TypeError, "expected an integer or a bool for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_FLAG: { bool bval; if (PyLong_Check(value)) { bval = (PyLong_AsSsize_t(value) != 0); } else if (PyBool_Check(value)) { bval = (value == Py_True); } else { PyErr_Format(PyExc_TypeError, "expected an integer or a bool for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } if (attrdef->m_imax) bval = !bval; switch (attrdef->m_size) { case 1: { unsigned char *val = reinterpret_cast(ptr); *val = (*val & ~attrdef->m_imin) | ((bval)?attrdef->m_imin:0); break; } case 2: { unsigned short *val = reinterpret_cast(ptr); *val = (*val & ~attrdef->m_imin) | ((bval)?attrdef->m_imin:0); break; } case 4: { unsigned int *val = reinterpret_cast(ptr); *val = (*val & ~attrdef->m_imin) | ((bval)?attrdef->m_imin:0); break; } default: PyErr_Format(PyExc_TypeError, "internal error: unsupported flag field \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_SHORT: { short int *var = reinterpret_cast(ptr); if (PyLong_Check(value)) { long val = PyLong_AsSsize_t(value); if (attrdef->m_clamp) { if (val < attrdef->m_imin) val = attrdef->m_imin; else if (val > attrdef->m_imax) val = attrdef->m_imax; } else if (val < attrdef->m_imin || val > attrdef->m_imax) { PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } *var = (short int)val; } else { PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_ENUM: // enum are equivalent to int, just make sure that the field size matches: if (sizeof(int) != attrdef->m_size) { PyErr_Format(PyExc_AttributeError, "attribute size check error for attribute \"%s\", report to blender.org", attrdef->m_name); goto FREE_AND_ERROR; } // walkthrough case KX_PYATTRIBUTE_TYPE_INT: { int *var = reinterpret_cast(ptr); if (PyLong_Check(value)) { long val = PyLong_AsSsize_t(value); if (attrdef->m_clamp) { if (val < attrdef->m_imin) val = attrdef->m_imin; else if (val > attrdef->m_imax) val = attrdef->m_imax; } else if (val < attrdef->m_imin || val > attrdef->m_imax) { PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } *var = (int)val; } else { PyErr_Format(PyExc_TypeError, "expected an integer for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_FLOAT: { float *var = reinterpret_cast(ptr); if (attrdef->m_imin != 0) { if (attrdef->m_size != attrdef->m_imin*attrdef->m_imax*sizeof(float)) { PyErr_Format(PyExc_TypeError, "internal error: incorrect field size for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } if (!PySequence_Check(value) || PySequence_Size(value) != attrdef->m_imin) { PyErr_Format(PyExc_TypeError, "expected a sequence of [%d][%d] floats for attribute \"%s\"", attrdef->m_imin, attrdef->m_imax, attrdef->m_name); goto FREE_AND_ERROR; } for (int i=0; im_imin; i++) { PyObject *list = PySequence_GetItem(value, i); /* new ref */ if (!PySequence_Check(list) || PySequence_Size(list) != attrdef->m_imax) { PyErr_Format(PyExc_TypeError, "expected a sequence of [%d][%d] floats for attribute \"%s\"", attrdef->m_imin, attrdef->m_imax, attrdef->m_name); goto RESTORE_AND_ERROR; } for (int j=0; jm_imax; j++) { item = PySequence_GetItem(list, j); /* new ref */ if (!py_check_attr_float(var, item, attrdef)) { PyErr_Format(PyExc_TypeError, "expected a sequence of [%d][%d] floats for attribute \"%s\"", attrdef->m_imin, attrdef->m_imax, attrdef->m_name); goto RESTORE_AND_ERROR; } Py_DECREF(item); item = NULL; ++var; } Py_DECREF(list); list = NULL; } } else if (attrdef->m_imax != 0) { if (attrdef->m_size != attrdef->m_imax*sizeof(float)) { PyErr_Format(PyExc_TypeError, "internal error: incorrect field size for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } if (!PySequence_Check(value) || PySequence_Size(value) != attrdef->m_imax) { PyErr_Format(PyExc_TypeError, "expected a sequence of [%d] floats for attribute \"%s\"", attrdef->m_imax, attrdef->m_name); goto FREE_AND_ERROR; } for (int i=0; im_imax; i++) { item = PySequence_GetItem(value, i); /* new ref */ if (!py_check_attr_float(var, item, attrdef)) { goto RESTORE_AND_ERROR; } Py_DECREF(item); item = NULL; ++var; } } else { if (!py_check_attr_float(var, value, attrdef)) goto FREE_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_VECTOR: { if (!PySequence_Check(value) || PySequence_Size(value) != 3) { PyErr_Format(PyExc_TypeError, "expected a sequence of 3 floats for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } MT_Vector3 *var = reinterpret_cast(ptr); for (int i=0; i<3; i++) { item = PySequence_GetItem(value, i); /* new ref */ double val = PyFloat_AsDouble(item); Py_DECREF(item); item = NULL; if (val == -1.0 && PyErr_Occurred()) { PyErr_Format(PyExc_TypeError, "expected a sequence of 3 floats for attribute \"%s\"", attrdef->m_name); goto RESTORE_AND_ERROR; } else if (attrdef->m_clamp) { if (val < attrdef->m_fmin) val = attrdef->m_fmin; else if (val > attrdef->m_fmax) val = attrdef->m_fmax; } else if (val < attrdef->m_fmin || val > attrdef->m_fmax) { PyErr_Format(PyExc_ValueError, "value out of range for attribute \"%s\"", attrdef->m_name); goto RESTORE_AND_ERROR; } (*var)[i] = (MT_Scalar)val; } break; } case KX_PYATTRIBUTE_TYPE_CHAR: { if (PyUnicode_Check(value)) { Py_ssize_t val_len; char *val = _PyUnicode_AsStringAndSize(value, &val_len); strncpy(ptr, val, attrdef->m_size); ptr[attrdef->m_size-1] = 0; } else { PyErr_Format(PyExc_TypeError, "expected a string for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } break; } case KX_PYATTRIBUTE_TYPE_STRING: { STR_String *var = reinterpret_cast(ptr); if (PyUnicode_Check(value)) { Py_ssize_t val_len; char *val = _PyUnicode_AsStringAndSize(value, &val_len); if (attrdef->m_clamp) { if (val_len < attrdef->m_imin) { // can't increase the length of the string PyErr_Format(PyExc_ValueError, "string length too short for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } else if (val_len > attrdef->m_imax) { // trim the string char c = val[attrdef->m_imax]; val[attrdef->m_imax] = 0; *var = val; val[attrdef->m_imax] = c; break; } } else if (val_len < attrdef->m_imin || val_len > attrdef->m_imax) { PyErr_Format(PyExc_ValueError, "string length out of range for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } *var = val; } else { PyErr_Format(PyExc_TypeError, "expected a string for attribute \"%s\"", attrdef->m_name); goto FREE_AND_ERROR; } break; } default: // should not happen PyErr_Format(PyExc_AttributeError, "unknown type for attribute \"%s\", report to blender.org", attrdef->m_name); goto FREE_AND_ERROR; } } // check if post processing is needed if (attrdef->m_checkFunction != NULL) { if ((*attrdef->m_checkFunction)(ref, attrdef) != 0) { // restore value RESTORE_AND_ERROR: if (undoBuffer) { if (attrdef->m_type == KX_PYATTRIBUTE_TYPE_STRING) { // special case for STR_String: restore the string STR_String *var = reinterpret_cast(ptr); *var = reinterpret_cast(undoBuffer); } else { // other field type have direct values memcpy(ptr, undoBuffer, bufferSize); } } FREE_AND_ERROR: if (undoBuffer) free(undoBuffer); if (list) Py_DECREF(list); if (item) Py_DECREF(item); return 1; } } if (undoBuffer) free(undoBuffer); return 0; } /*------------------------------ * PyObjectPlus repr -- representations ------------------------------*/ PyObject *PyObjectPlus::py_repr(void) { PyErr_SetString(PyExc_SystemError, "Representation not overridden by object."); return NULL; } PyObject *PyObjectPlus::GetProxyPlus_Ext(PyObjectPlus *self, PyTypeObject *tp, void *ptr) { if (self->m_proxy==NULL) { self->m_proxy = reinterpret_castPyObject_NEW( PyObjectPlus_Proxy, tp); BGE_PROXY_PYOWNS(self->m_proxy) = false; BGE_PROXY_PYREF(self->m_proxy) = true; } //PyObject_Print(self->m_proxy, stdout, 0); //printf("ref %d\n", self->m_proxy->ob_refcnt); BGE_PROXY_REF(self->m_proxy) = self; /* Its possible this was set to NULL, so set it back here */ BGE_PROXY_PTR(self->m_proxy) = ptr; Py_INCREF(self->m_proxy); /* we own one, thos ones fore the return */ return self->m_proxy; } PyObject *PyObjectPlus::NewProxyPlus_Ext(PyObjectPlus *self, PyTypeObject *tp, void *ptr, bool py_owns) { if (!self) { // in case of proxy without reference to game object PyObject* proxy = reinterpret_castPyObject_NEW( PyObjectPlus_Proxy, tp); BGE_PROXY_PYREF(proxy) = false; BGE_PROXY_PYOWNS(proxy) = py_owns; BGE_PROXY_REF(proxy) = NULL; BGE_PROXY_PTR(proxy) = ptr; return proxy; } if (self->m_proxy) { if(py_owns) { /* Free */ BGE_PROXY_REF(self->m_proxy) = NULL; Py_DECREF(self->m_proxy); self->m_proxy= NULL; } else { Py_INCREF(self->m_proxy); return self->m_proxy; } } GetProxyPlus_Ext(self, tp, ptr); if(py_owns) { BGE_PROXY_PYOWNS(self->m_proxy) = py_owns; Py_DECREF(self->m_proxy); /* could avoid thrashing here but for now its ok */ } return self->m_proxy; } /////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////// /* deprecation warning management */ bool PyObjectPlus::m_ignore_deprecation_warnings(false); void PyObjectPlus::SetDeprecationWarnings(bool ignoreDeprecationWarnings) { m_ignore_deprecation_warnings = ignoreDeprecationWarnings; } void PyDebugLine() { // import sys; print '\t%s:%d' % (sys._getframe(0).f_code.co_filename, sys._getframe(0).f_lineno) PyObject *getframe, *frame; PyObject *f_lineno, *f_code, *co_filename; getframe = PySys_GetObject((char *)"_getframe"); // borrowed if (getframe) { frame = PyObject_CallObject(getframe, NULL); if (frame) { f_lineno= PyObject_GetAttrString(frame, "f_lineno"); f_code= PyObject_GetAttrString(frame, "f_code"); if (f_lineno && f_code) { co_filename= PyObject_GetAttrString(f_code, "co_filename"); if (co_filename) { printf("\t%s:%d\n", _PyUnicode_AsString(co_filename), (int)PyLong_AsSsize_t(f_lineno)); Py_DECREF(f_lineno); Py_DECREF(f_code); Py_DECREF(co_filename); Py_DECREF(frame); return; } } Py_XDECREF(f_lineno); Py_XDECREF(f_code); Py_DECREF(frame); } } PyErr_Clear(); printf("\tERROR - Could not access sys._getframe(0).f_lineno or sys._getframe().f_code.co_filename\n"); } void PyObjectPlus::ShowDeprecationWarning_func(const char* old_way,const char* new_way) { printf("Method %s is deprecated, please use %s instead.\n", old_way, new_way); PyDebugLine(); } void PyObjectPlus::ClearDeprecationWarning() { WarnLink *wlink_next; WarnLink *wlink = GetDeprecationWarningLinkFirst(); while(wlink) { wlink->warn_done= false; /* no need to NULL the link, its cleared before adding to the list next time round */ wlink_next= reinterpret_cast(wlink->link); wlink->link= NULL; wlink= wlink_next; } NullDeprecationWarning(); } WarnLink* m_base_wlink_first= NULL; WarnLink* m_base_wlink_last= NULL; WarnLink* PyObjectPlus::GetDeprecationWarningLinkFirst(void) {return m_base_wlink_first;} WarnLink* PyObjectPlus::GetDeprecationWarningLinkLast(void) {return m_base_wlink_last;} void PyObjectPlus::SetDeprecationWarningFirst(WarnLink* wlink) {m_base_wlink_first= wlink;} void PyObjectPlus::SetDeprecationWarningLinkLast(WarnLink* wlink) {m_base_wlink_last= wlink;} void PyObjectPlus::NullDeprecationWarning() {m_base_wlink_first= m_base_wlink_last= NULL;} #endif // DISABLE_PYTHON