/** * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ #include #ifdef WIN32 #pragma warning (disable : 4786) #include #endif #ifdef __APPLE__ #define GL_GLEXT_LEGACY 1 #include #else #include #endif #include #include "GPC_RenderTools.h" #include "RAS_IRenderTools.h" #include "RAS_IRasterizer.h" #include "RAS_LightObject.h" #include "RAS_ICanvas.h" #include "RAS_GLExtensionManager.h" // next two includes/dependencies come from the shadow feature // it needs the gameobject and the sumo physics scene for a raycast #include "KX_GameObject.h" #include "GPC_PolygonMaterial.h" #include "KX_PolygonMaterial.h" #include "Value.h" //#include "KX_BlenderGL.h" // for text printing //#include "KX_BlenderClientObject.h" #include "STR_String.h" #include "RAS_BucketManager.h" // for polymaterial (needed for textprinting) // Blender includes /* This list includes only data type definitions */ #include "DNA_object_types.h" #include "DNA_material_types.h" #include "DNA_image_types.h" #include "DNA_lamp_types.h" #include "DNA_group_types.h" #include "DNA_scene_types.h" #include "DNA_camera_types.h" #include "DNA_property_types.h" #include "DNA_text_types.h" #include "DNA_sensor_types.h" #include "DNA_controller_types.h" #include "DNA_actuator_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_view3d_types.h" #include "DNA_world_types.h" #include "BKE_global.h" #include "BKE_image.h" #include "BKE_bmfont.h" #include "BKE_bmfont_types.h" #include "BKE_main.h" #include "IMB_imbuf_types.h" // End of Blender includes #include "KX_Scene.h" #include "KX_RayCast.h" #include "KX_IPhysicsController.h" #include "PHY_IPhysicsEnvironment.h" #include "KX_BlenderMaterial.h" GPC_RenderTools::GPC_RenderTools() { m_font = BMF_GetFont(BMF_kHelvetica10); glGetIntegerv(GL_MAX_LIGHTS, (GLint*) &m_numgllights); if (m_numgllights < 8) m_numgllights = 8; } GPC_RenderTools::~GPC_RenderTools() { } void GPC_RenderTools::EndFrame(RAS_IRasterizer* rasty) { } void GPC_RenderTools::BeginFrame(RAS_IRasterizer* rasty) { m_clientobject=NULL; m_modified=true; DisableOpenGLLights(); } int GPC_RenderTools::ProcessLighting(int layer) { int result = false; if (layer < 0) { DisableOpenGLLights(); result = false; } else { if (m_clientobject) { if (layer == RAS_LIGHT_OBJECT_LAYER) { layer = static_cast(m_clientobject)->GetLayer(); } if (applyLights(layer)) { EnableOpenGLLights(); result = true; } else { DisableOpenGLLights(); result = false; } } } return result; } void GPC_RenderTools::EnableOpenGLLights() { glEnable(GL_LIGHTING); glEnable(GL_COLOR_MATERIAL); glColorMaterial(GL_FRONT_AND_BACK,GL_DIFFUSE); if (bgl::QueryExtension(bgl::_GL_EXT_separate_specular_color) || bgl::QueryVersion(1, 2)) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR); } void GPC_RenderTools::RenderText2D(RAS_TEXT_RENDER_MODE mode, const char* text, int xco, int yco, int width, int height) { STR_String tmpstr(text); int lines; char* s = tmpstr.Ptr(); char* p; // Save and change OpenGL settings int texture2D; glGetIntegerv(GL_TEXTURE_2D, (GLint*)&texture2D); glDisable(GL_TEXTURE_2D); int fog; glGetIntegerv(GL_FOG, (GLint*)&fog); glDisable(GL_FOG); int light; glGetIntegerv(GL_LIGHTING, (GLint*)&light); glDisable(GL_LIGHTING); // Set up viewing settings glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); glOrtho(0, width, 0, height, -1, 1); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); // Actual drawing unsigned char colors[2][3] = { {0x00, 0x00, 0x00}, {0xFF, 0xFF, 0xFF} }; int numTimes = mode == RAS_TEXT_PADDED ? 2 : 1; for (int i = 0; i < numTimes; i++) { glColor3ub(colors[i][0], colors[i][1], colors[i][2]); glRasterPos2i(xco, yco); for (p = s, lines = 0; *p; p++) { if (*p == '\n') { lines++; glRasterPos2i(xco, yco-(lines*18)); } BMF_DrawCharacter(m_font, *p); } xco += 1; yco += 1; } // Restore view settings glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); // Restore OpenGL Settings if (fog) glEnable(GL_FOG); else glDisable(GL_FOG); if (texture2D) glEnable(GL_TEXTURE_2D); else glDisable(GL_TEXTURE_2D); if (light) glEnable(GL_LIGHTING); else glDisable(GL_LIGHTING); } /** * Copied from KX_BlenderRenderTools.cpp in KX_blenderhook * Renders text into a (series of) polygon(s), using a texture font, * Each character consists of one polygon (one quad or two triangles) */ void GPC_RenderTools::RenderText( int mode, RAS_IPolyMaterial* polymat, float v1[3], float v2[3], float v3[3], float v4[3]) { STR_String mytext = ((CValue*)m_clientobject)->GetPropertyText("Text"); const unsigned int flag = polymat->GetFlag(); struct MTFace* tface = 0; unsigned int* col = 0; if(flag & RAS_BLENDERMAT) { KX_BlenderMaterial *bl_mat = static_cast(polymat); tface = bl_mat->GetMTFace(); col = bl_mat->GetMCol(); } else { KX_PolygonMaterial* blenderpoly = static_cast(polymat); tface = blenderpoly->GetMTFace(); col = blenderpoly->GetMCol(); } BL_RenderText(mode, mytext, mytext.Length(), tface, col, v1, v2, v3, v4); } /** * Copied from KX_BlenderGL.cpp in KX_blenderhook */ void GPC_RenderTools::BL_RenderText( int mode, const char* textstr, int textlen, struct MTFace* tface, unsigned int* col, float v1[3],float v2[3],float v3[3],float v4[3]) { struct Image* ima; if (mode & TF_BMFONT) { //char string[MAX_PROPSTRING]; // float tmat[4][4]; int characters, index, character; float centerx, centery, sizex, sizey, transx, transy, movex, movey, advance; // bProperty *prop; // string = "Frank van Beek"; characters = textlen; ima = (struct Image*) tface->tpage; if (ima == NULL) { characters = 0; } if(!col) glColor3f(1.0f, 1.0f, 1.0f); glPushMatrix(); for (index = 0; index < characters; index++) { // lets calculate offset stuff character = textstr[index]; // space starts at offset 1 // character = character - ' ' + 1; matrixGlyph((ImBuf *)ima->ibufs.first, character, & centerx, ¢ery, &sizex, &sizey, &transx, &transy, &movex, &movey, &advance); glBegin(GL_POLYGON); // printf(" %c %f %f %f %f\n", character, tface->uv[0][0], tface->uv[0][1], ); // glTexCoord2f((tface->uv[0][0] - centerx) * sizex + transx, (tface->uv[0][1] - centery) * sizey + transy); glTexCoord2f((tface->uv[0][0] - centerx) * sizex + transx, (tface->uv[0][1] - centery) * sizey + transy); if(col) BL_spack(col[0]); // glVertex3fv(v1); glVertex3f(sizex * v1[0] + movex, sizey * v1[1] + movey, v1[2]); glTexCoord2f((tface->uv[1][0] - centerx) * sizex + transx, (tface->uv[1][1] - centery) * sizey + transy); if(col) BL_spack(col[1]); // glVertex3fv(v2); glVertex3f(sizex * v2[0] + movex, sizey * v2[1] + movey, v2[2]); glTexCoord2f((tface->uv[2][0] - centerx) * sizex + transx, (tface->uv[2][1] - centery) * sizey + transy); if(col) BL_spack(col[2]); // glVertex3fv(v3); glVertex3f(sizex * v3[0] + movex, sizey * v3[1] + movey, v3[2]); if(v4) { // glTexCoord2f((tface->uv[3][0] - centerx) * sizex + transx, 1.0 - (1.0 - tface->uv[3][1]) * sizey - transy); glTexCoord2f((tface->uv[3][0] - centerx) * sizex + transx, (tface->uv[3][1] - centery) * sizey + transy); if(col) BL_spack(col[3]); // glVertex3fv(v4); glVertex3f(sizex * v4[0] + movex, sizey * v4[1] + movey, v4[2]); } glEnd(); glTranslatef(advance, 0.0, 0.0); } glPopMatrix(); } } RAS_IPolyMaterial* GPC_RenderTools::CreateBlenderPolyMaterial( const STR_String &texname, bool ba,const STR_String& matname,int tile,int tilexrep,int tileyrep,int mode,bool transparant, bool zsort, int lightlayer,bool bIsTriangle,void* clientobject,void* tface) { assert(!"Deprecated"); /* return new GPC_PolygonMaterial(texname, ba,matname,tile,tilexrep,tileyrep, mode,transparant,zsort,lightlayer,bIsTriangle,clientobject,tface); */ return NULL; } int GPC_RenderTools::applyLights(int objectlayer) { // taken from blender source, incompatibility between Blender Object / GameObject int count; float vec[4]; vec[3]= 1.0; for(count=0; count m_lights; std::vector::iterator lit = m_lights.begin(); for (lit = m_lights.begin(), count = 0; !(lit==m_lights.end()) && count < m_numgllights; ++lit) { RAS_LightObject* lightdata = (*lit); if (lightdata->m_layer & objectlayer) { glPushMatrix(); glLoadMatrixf(m_viewmat); vec[0] = (*(lightdata->m_worldmatrix))(0,3); vec[1] = (*(lightdata->m_worldmatrix))(1,3); vec[2] = (*(lightdata->m_worldmatrix))(2,3); vec[3] = 1; if(lightdata->m_type==RAS_LightObject::LIGHT_SUN) { vec[0] = (*(lightdata->m_worldmatrix))(0,2); vec[1] = (*(lightdata->m_worldmatrix))(1,2); vec[2] = (*(lightdata->m_worldmatrix))(2,2); //vec[0]= base->object->obmat[2][0]; //vec[1]= base->object->obmat[2][1]; //vec[2]= base->object->obmat[2][2]; vec[3]= 0.0; glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec); } else { //vec[3]= 1.0; glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec); glLightf((GLenum)(GL_LIGHT0+count), GL_CONSTANT_ATTENUATION, 1.0); glLightf((GLenum)(GL_LIGHT0+count), GL_LINEAR_ATTENUATION, lightdata->m_att1/lightdata->m_distance); // without this next line it looks backward compatible. //attennuation still is acceptable glLightf((GLenum)(GL_LIGHT0+count), GL_QUADRATIC_ATTENUATION, lightdata->m_att2/(lightdata->m_distance*lightdata->m_distance)); if(lightdata->m_type==RAS_LightObject::LIGHT_SPOT) { vec[0] = -(*(lightdata->m_worldmatrix))(0,2); vec[1] = -(*(lightdata->m_worldmatrix))(1,2); vec[2] = -(*(lightdata->m_worldmatrix))(2,2); //vec[0]= -base->object->obmat[2][0]; //vec[1]= -base->object->obmat[2][1]; //vec[2]= -base->object->obmat[2][2]; glLightfv((GLenum)(GL_LIGHT0+count), GL_SPOT_DIRECTION, vec); glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, lightdata->m_spotsize/2.0); glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_EXPONENT, 128.0*lightdata->m_spotblend); } else glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, 180.0); } if (lightdata->m_nodiffuse) { vec[0] = vec[1] = vec[2] = vec[3] = 0.0; } else { vec[0]= lightdata->m_energy*lightdata->m_red; vec[1]= lightdata->m_energy*lightdata->m_green; vec[2]= lightdata->m_energy*lightdata->m_blue; vec[3]= 1.0; } glLightfv((GLenum)(GL_LIGHT0+count), GL_DIFFUSE, vec); if (lightdata->m_nospecular) { vec[0] = vec[1] = vec[2] = vec[3] = 0.0; } else if (lightdata->m_nodiffuse) { vec[0]= lightdata->m_energy*lightdata->m_red; vec[1]= lightdata->m_energy*lightdata->m_green; vec[2]= lightdata->m_energy*lightdata->m_blue; vec[3]= 1.0; } glLightfv((GLenum)(GL_LIGHT0+count), GL_SPECULAR, vec); glEnable((GLenum)(GL_LIGHT0+count)); count++; glPopMatrix(); } } return count; } void GPC_RenderTools::SetClientObject(void* obj) { if (m_clientobject != obj) { if (obj == NULL || !((KX_GameObject*)obj)->IsNegativeScaling()) { glFrontFace(GL_CCW); } else { glFrontFace(GL_CW); } m_clientobject = obj; m_modified = true; } } bool GPC_RenderTools::RayHit(KX_ClientObjectInfo* client, MT_Point3& hit_point, MT_Vector3& hit_normal, void * const data) { double* const oglmatrix = (double* const) data; MT_Point3 resultpoint(hit_point); MT_Vector3 resultnormal(hit_normal); MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]); MT_Vector3 dir = -(left.cross(resultnormal)).safe_normalized(); left = (dir.cross(resultnormal)).safe_normalized(); // for the up vector, we take the 'resultnormal' returned by the physics double maat[16]={ left[0], left[1], left[2], 0, dir[0], dir[1], dir[2], 0, resultnormal[0],resultnormal[1],resultnormal[2], 0, 0, 0, 0, 1}; glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]); //glMultMatrixd(oglmatrix); glMultMatrixd(maat); return true; } void GPC_RenderTools::applyTransform(RAS_IRasterizer* rasty,double* oglmatrix,int objectdrawmode ) { if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED || objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED) { // rotate the billboard/halo //page 360/361 3D Game Engine Design, David Eberly for a discussion // on screen aligned and axis aligned billboards // assumed is that the preprocessor transformed all billboard polygons // so that their normal points into the positive x direction (1.0 , 0.0 , 0.0) // when new parenting for objects is done, this rotation // will be moved into the object MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]); MT_Point3 campos = rasty->GetCameraPosition(); MT_Vector3 dir = (campos - objpos).safe_normalized(); MT_Vector3 up(0,0,1.0); KX_GameObject* gameobj = (KX_GameObject*) this->m_clientobject; // get scaling of halo object MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale(); bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned if (screenaligned) { up = (up - up.dot(dir) * dir).safe_normalized(); } else { dir = (dir - up.dot(dir)*up).safe_normalized(); } MT_Vector3 left = dir.normalized(); dir = (left.cross(up)).normalized(); // we have calculated the row vectors, now we keep // local scaling into account: left *= size[0]; dir *= size[1]; up *= size[2]; double maat[16]={ left[0], left[1],left[2], 0, dir[0], dir[1],dir[2],0, up[0],up[1],up[2],0, 0,0,0,1}; glTranslated(objpos[0],objpos[1],objpos[2]); glMultMatrixd(maat); } else { if (objectdrawmode & RAS_IPolyMaterial::SHADOW) { // shadow must be cast to the ground, physics system needed here! MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]); KX_GameObject *gameobj = (KX_GameObject*) this->m_clientobject; MT_Vector3 direction = MT_Vector3(0,0,-1); direction.normalize(); direction *= 100000; MT_Point3 topoint = frompoint + direction; KX_Scene* kxscene = (KX_Scene*) m_auxilaryClientInfo; PHY_IPhysicsEnvironment* physics_environment = kxscene->GetPhysicsEnvironment(); KX_IPhysicsController* physics_controller = gameobj->GetPhysicsController(); KX_GameObject *parent = gameobj->GetParent(); if (!physics_controller && parent) physics_controller = parent->GetPhysicsController(); if (parent) parent->Release(); MT_Point3 resultpoint; MT_Vector3 resultnormal; if (!KX_RayCast::RayTest(physics_controller, physics_environment, frompoint, topoint, resultpoint, resultnormal, KX_RayCast::Callback(this, oglmatrix))) { // couldn't find something to cast the shadow on... glMultMatrixd(oglmatrix); } } else { // 'normal' object glMultMatrixd(oglmatrix); } } } void GPC_RenderTools::MotionBlur(RAS_IRasterizer* rasterizer) { int state = rasterizer->GetMotionBlurState(); float motionblurvalue; if(state) { motionblurvalue = rasterizer->GetMotionBlurValue(); if(state==1) { //bugfix:load color buffer into accum buffer for the first time(state=1) glAccum(GL_LOAD, 1.0); rasterizer->SetMotionBlurState(2); } else if(motionblurvalue>=0.0 && motionblurvalue<=1.0) { glAccum(GL_MULT, motionblurvalue); glAccum(GL_ACCUM, 1-motionblurvalue); glAccum(GL_RETURN, 1.0); glFlush(); } } } void GPC_RenderTools::Update2DFilter(RAS_2DFilterManager::RAS_2DFILTER_MODE filtermode, int pass, STR_String& text) { m_filtermanager.EnableFilter(filtermode, pass, text); } void GPC_RenderTools::Render2DFilters(RAS_ICanvas* canvas) { m_filtermanager.RenderFilters( canvas); } unsigned int GPC_RenderTools::m_numgllights;