/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** * Initialize Python thingies. */ /** \file gameengine/Ketsji/KX_PythonInit.cpp * \ingroup ketsji */ #include "glew-mx.h" #ifdef _MSC_VER # pragma warning (disable:4786) #endif #ifdef WITH_PYTHON # ifdef _POSIX_C_SOURCE # undef _POSIX_C_SOURCE # endif # ifdef _XOPEN_SOURCE # undef _XOPEN_SOURCE # endif # if defined(__sun) || defined(sun) # if defined(_XPG4) # undef _XPG4 # endif # endif # include extern "C" { # include "bpy_internal_import.h" /* from the blender python api, but we want to import text too! */ # include "py_capi_utils.h" # include "mathutils.h" // 'mathutils' module copied here so the blenderlayer can use. # include "bgl.h" # include "blf_py_api.h" # include "marshal.h" /* python header for loading/saving dicts */ } #include "AUD_PyInit.h" #endif /* WITH_PYTHON */ #include "KX_PythonInit.h" // directory header for py function getBlendFileList #ifndef WIN32 # include # include #else # include # include "BLI_winstuff.h" #endif //python physics binding #include "KX_PyConstraintBinding.h" #include "KX_KetsjiEngine.h" #include "KX_RadarSensor.h" #include "KX_RaySensor.h" #include "KX_ArmatureSensor.h" #include "KX_SceneActuator.h" #include "KX_GameActuator.h" #include "KX_ParentActuator.h" #include "KX_SCA_DynamicActuator.h" #include "KX_SteeringActuator.h" #include "KX_NavMeshObject.h" #include "KX_MouseActuator.h" #include "KX_TrackToActuator.h" #include "SCA_IInputDevice.h" #include "SCA_PropertySensor.h" #include "SCA_RandomActuator.h" #include "SCA_KeyboardSensor.h" /* IsPrintable, ToCharacter */ #include "SCA_JoystickManager.h" /* JOYINDEX_MAX */ #include "SCA_PythonJoystick.h" #include "SCA_PythonKeyboard.h" #include "SCA_PythonMouse.h" #include "KX_ConstraintActuator.h" #include "KX_IpoActuator.h" #include "KX_SoundActuator.h" #include "KX_StateActuator.h" #include "BL_ActionActuator.h" #include "BL_ArmatureObject.h" #include "RAS_IRasterizer.h" #include "RAS_ICanvas.h" #include "RAS_BucketManager.h" #include "RAS_2DFilterManager.h" #include "MT_Vector3.h" #include "MT_Point3.h" #include "ListValue.h" #include "InputParser.h" #include "KX_Scene.h" #include "NG_NetworkScene.h" //Needed for sendMessage() #include "BL_Shader.h" #include "BL_Action.h" #include "KX_PyMath.h" #include "PyObjectPlus.h" #include "KX_PythonInitTypes.h" /* we only need this to get a list of libraries from the main struct */ #include "DNA_ID.h" #include "DNA_scene_types.h" #include "PHY_IPhysicsEnvironment.h" #include "BKE_main.h" #include "BKE_global.h" #include "BKE_library.h" #include "BLI_blenlib.h" #include "GPU_material.h" #include "MEM_guardedalloc.h" /* for converting new scenes */ #include "KX_BlenderSceneConverter.h" #include "KX_LibLoadStatus.h" #include "KX_MeshProxy.h" /* for creating a new library of mesh objects */ extern "C" { #include "BKE_idcode.h" } // 'local' copy of canvas ptr, for window height/width python scripts #ifdef WITH_PYTHON static RAS_ICanvas* gp_Canvas = NULL; static char gp_GamePythonPath[FILE_MAX] = ""; static char gp_GamePythonPathOrig[FILE_MAX] = ""; // not super happy about this, but we need to remember the first loaded file for the global/dict load save static SCA_PythonKeyboard* gp_PythonKeyboard = NULL; static SCA_PythonMouse* gp_PythonMouse = NULL; static SCA_PythonJoystick* gp_PythonJoysticks[JOYINDEX_MAX] = {NULL}; #endif // WITH_PYTHON static KX_Scene* gp_KetsjiScene = NULL; static KX_KetsjiEngine* gp_KetsjiEngine = NULL; static RAS_IRasterizer* gp_Rasterizer = NULL; void KX_SetActiveScene(class KX_Scene* scene) { gp_KetsjiScene = scene; } class KX_Scene* KX_GetActiveScene() { return gp_KetsjiScene; } class KX_KetsjiEngine* KX_GetActiveEngine() { return gp_KetsjiEngine; } /* why is this in python? */ void KX_RasterizerDrawDebugLine(const MT_Vector3& from,const MT_Vector3& to,const MT_Vector3& color) { if (gp_Rasterizer) gp_Rasterizer->DrawDebugLine(from,to,color); } void KX_RasterizerDrawDebugCircle(const MT_Vector3& center, const MT_Scalar radius, const MT_Vector3& color, const MT_Vector3& normal, int nsector) { if (gp_Rasterizer) gp_Rasterizer->DrawDebugCircle(center, radius, color, normal, nsector); } #ifdef WITH_PYTHON static PyObject *gp_OrigPythonSysPath= NULL; static PyObject *gp_OrigPythonSysModules= NULL; /* Macro for building the keyboard translation */ //#define KX_MACRO_addToDict(dict, name) PyDict_SetItemString(dict, #name, PyLong_FromLong(SCA_IInputDevice::KX_##name)) //#define KX_MACRO_addToDict(dict, name) PyDict_SetItemString(dict, #name, item=PyLong_FromLong(name)); Py_DECREF(item) /* For the defines for types from logic bricks, we do stuff explicitly... */ #define KX_MACRO_addTypesToDict(dict, name, value) KX_MACRO_addTypesToDict_fn(dict, #name, value) static void KX_MACRO_addTypesToDict_fn(PyObject *dict, const char *name, long value) { PyObject *item; item = PyLong_FromLong(value); PyDict_SetItemString(dict, name, item); Py_DECREF(item); } // temporarily python stuff, will be put in another place later ! #include "KX_Python.h" #include "SCA_PythonController.h" // List of methods defined in the module static PyObject *ErrorObject; static const char *gPyGetRandomFloat_doc="getRandomFloat returns a random floating point value in the range [0..1]"; static PyObject *gPyGetRandomFloat(PyObject *) { return PyFloat_FromDouble(MT_random()); } static PyObject *gPySetGravity(PyObject *, PyObject *value) { MT_Vector3 vec; if (!PyVecTo(value, vec)) return NULL; if (gp_KetsjiScene) gp_KetsjiScene->SetGravity(vec); Py_RETURN_NONE; } static char gPyExpandPath_doc[] = "(path) - Converts a blender internal path into a proper file system path.\n\ path - the string path to convert.\n\n\ Use / as directory separator in path\n\ You can use '//' at the start of the string to define a relative path;\n\ Blender replaces that string by the directory of the current .blend or runtime\n\ file to make a full path name.\n\ The function also converts the directory separator to the local file system format."; static PyObject *gPyExpandPath(PyObject *, PyObject *args) { char expanded[FILE_MAX]; char* filename; if (!PyArg_ParseTuple(args,"s:ExpandPath",&filename)) return NULL; BLI_strncpy(expanded, filename, FILE_MAX); BLI_path_abs(expanded, gp_GamePythonPath); return PyC_UnicodeFromByte(expanded); } static char gPyStartGame_doc[] = "startGame(blend)\n\ Loads the blend file"; static PyObject *gPyStartGame(PyObject *, PyObject *args) { char* blendfile; if (!PyArg_ParseTuple(args, "s:startGame", &blendfile)) return NULL; gp_KetsjiEngine->RequestExit(KX_EXIT_REQUEST_START_OTHER_GAME); gp_KetsjiEngine->SetNameNextGame(blendfile); Py_RETURN_NONE; } static char gPyEndGame_doc[] = "endGame()\n\ Ends the current game"; static PyObject *gPyEndGame(PyObject *) { gp_KetsjiEngine->RequestExit(KX_EXIT_REQUEST_QUIT_GAME); //printf("%s\n", gp_GamePythonPath); Py_RETURN_NONE; } static char gPyRestartGame_doc[] = "restartGame()\n\ Restarts the current game by reloading the .blend file"; static PyObject *gPyRestartGame(PyObject *) { gp_KetsjiEngine->RequestExit(KX_EXIT_REQUEST_RESTART_GAME); gp_KetsjiEngine->SetNameNextGame(gp_GamePythonPath); Py_RETURN_NONE; } static char gPySaveGlobalDict_doc[] = "saveGlobalDict()\n" "Saves bge.logic.globalDict to a file"; static PyObject *gPySaveGlobalDict(PyObject *) { char marshal_path[512]; char *marshal_buffer = NULL; unsigned int marshal_length; FILE *fp = NULL; pathGamePythonConfig(marshal_path); marshal_length = saveGamePythonConfig(&marshal_buffer); if (marshal_length && marshal_buffer) { fp = fopen(marshal_path, "wb"); if (fp) { if (fwrite(marshal_buffer, 1, marshal_length, fp) != marshal_length) printf("Warning: could not write marshal data\n"); fclose(fp); } else { printf("Warning: could not open marshal file\n"); } } else { printf("Warning: could not create marshal buffer\n"); } if (marshal_buffer) delete [] marshal_buffer; Py_RETURN_NONE; } static char gPyLoadGlobalDict_doc[] = "LoadGlobalDict()\n" "Loads bge.logic.globalDict from a file"; static PyObject *gPyLoadGlobalDict(PyObject *) { char marshal_path[512]; char *marshal_buffer = NULL; size_t marshal_length; FILE *fp = NULL; int result; pathGamePythonConfig(marshal_path); fp = fopen(marshal_path, "rb"); if (fp) { // obtain file size: fseek (fp, 0, SEEK_END); marshal_length = (size_t)ftell(fp); rewind(fp); marshal_buffer = (char*)malloc (sizeof(char)*marshal_length); result = fread(marshal_buffer, 1, marshal_length, fp); if (result == marshal_length) { loadGamePythonConfig(marshal_buffer, marshal_length); } else { printf("Warning: could not read all of '%s'\n", marshal_path); } free(marshal_buffer); fclose(fp); } else { printf("Warning: could not open '%s'\n", marshal_path); } Py_RETURN_NONE; } static char gPyGetProfileInfo_doc[] = "getProfileInfo()\n" "returns a dictionary with profiling information"; static PyObject *gPyGetProfileInfo(PyObject *) { return gp_KetsjiEngine->GetPyProfileDict(); } static char gPySendMessage_doc[] = "sendMessage(subject, [body, to, from])\n\ sends a message in same manner as a message actuator\ subject = Subject of the message\ body = Message body\ to = Name of object to send the message to\ from = Name of object to send the string from"; static PyObject *gPySendMessage(PyObject *, PyObject *args) { char* subject; char* body = (char *)""; char* to = (char *)""; char* from = (char *)""; if (!PyArg_ParseTuple(args, "s|sss:sendMessage", &subject, &body, &to, &from)) return NULL; gp_KetsjiScene->GetNetworkScene()->SendMessage(to, from, subject, body); Py_RETURN_NONE; } // this gets a pointer to an array filled with floats static PyObject *gPyGetSpectrum(PyObject *) { PyObject *resultlist = PyList_New(512); for (int index = 0; index < 512; index++) { PyList_SET_ITEM(resultlist, index, PyFloat_FromDouble(0.0)); } return resultlist; } static PyObject *gPySetLogicTicRate(PyObject *, PyObject *args) { float ticrate; if (!PyArg_ParseTuple(args, "f:setLogicTicRate", &ticrate)) return NULL; KX_KetsjiEngine::SetTicRate(ticrate); Py_RETURN_NONE; } static PyObject *gPyGetLogicTicRate(PyObject *) { return PyFloat_FromDouble(KX_KetsjiEngine::GetTicRate()); } static PyObject *gPySetExitKey(PyObject *, PyObject *args) { short exitkey; if (!PyArg_ParseTuple(args, "h:setExitKey", &exitkey)) return NULL; KX_KetsjiEngine::SetExitKey(exitkey); Py_RETURN_NONE; } static PyObject *gPyGetExitKey(PyObject *) { return PyLong_FromLong(KX_KetsjiEngine::GetExitKey()); } static PyObject *gPySetMaxLogicFrame(PyObject *, PyObject *args) { int frame; if (!PyArg_ParseTuple(args, "i:setMaxLogicFrame", &frame)) return NULL; KX_KetsjiEngine::SetMaxLogicFrame(frame); Py_RETURN_NONE; } static PyObject *gPyGetMaxLogicFrame(PyObject *) { return PyLong_FromLong(KX_KetsjiEngine::GetMaxLogicFrame()); } static PyObject *gPySetMaxPhysicsFrame(PyObject *, PyObject *args) { int frame; if (!PyArg_ParseTuple(args, "i:setMaxPhysicsFrame", &frame)) return NULL; KX_KetsjiEngine::SetMaxPhysicsFrame(frame); Py_RETURN_NONE; } static PyObject *gPyGetMaxPhysicsFrame(PyObject *) { return PyLong_FromLong(KX_KetsjiEngine::GetMaxPhysicsFrame()); } static PyObject *gPySetPhysicsTicRate(PyObject *, PyObject *args) { float ticrate; if (!PyArg_ParseTuple(args, "f:setPhysicsTicRate", &ticrate)) return NULL; PHY_GetActiveEnvironment()->SetFixedTimeStep(true,ticrate); Py_RETURN_NONE; } #if 0 // unused static PyObject *gPySetPhysicsDebug(PyObject *, PyObject *args) { int debugMode; if (!PyArg_ParseTuple(args, "i:setPhysicsDebug", &debugMode)) return NULL; PHY_GetActiveEnvironment()->setDebugMode(debugMode); Py_RETURN_NONE; } #endif static PyObject *gPyGetPhysicsTicRate(PyObject *) { return PyFloat_FromDouble(PHY_GetActiveEnvironment()->GetFixedTimeStep()); } static PyObject *gPyGetAverageFrameRate(PyObject *) { return PyFloat_FromDouble(KX_KetsjiEngine::GetAverageFrameRate()); } static PyObject *gPyGetBlendFileList(PyObject *, PyObject *args) { char cpath[sizeof(gp_GamePythonPath)]; char *searchpath = NULL; PyObject *list, *value; DIR *dp; struct dirent *dirp; if (!PyArg_ParseTuple(args, "|s:getBlendFileList", &searchpath)) return NULL; list = PyList_New(0); if (searchpath) { BLI_strncpy(cpath, searchpath, FILE_MAX); BLI_path_abs(cpath, gp_GamePythonPath); } else { /* Get the dir only */ BLI_split_dir_part(gp_GamePythonPath, cpath, sizeof(cpath)); } if ((dp = opendir(cpath)) == NULL) { /* todo, show the errno, this shouldnt happen anyway if the blendfile is readable */ fprintf(stderr, "Could not read directory (%s) failed, code %d (%s)\n", cpath, errno, strerror(errno)); return list; } while ((dirp = readdir(dp)) != NULL) { if (BLI_testextensie(dirp->d_name, ".blend")) { value = PyC_UnicodeFromByte(dirp->d_name); PyList_Append(list, value); Py_DECREF(value); } } closedir(dp); return list; } static char gPyAddScene_doc[] = "addScene(name, [overlay])\n\ adds a scene to the game engine\n\ name = Name of the scene\n\ overlay = Overlay or underlay"; static PyObject *gPyAddScene(PyObject *, PyObject *args) { char* name; int overlay = 1; if (!PyArg_ParseTuple(args, "s|i:addScene", &name , &overlay)) return NULL; gp_KetsjiEngine->ConvertAndAddScene(name, (overlay != 0)); Py_RETURN_NONE; } static const char *gPyGetCurrentScene_doc = "getCurrentScene()\n" "Gets a reference to the current scene.\n"; static PyObject *gPyGetCurrentScene(PyObject *self) { return gp_KetsjiScene->GetProxy(); } static const char *gPyGetSceneList_doc = "getSceneList()\n" "Return a list of converted scenes.\n"; static PyObject *gPyGetSceneList(PyObject *self) { KX_KetsjiEngine* m_engine = KX_GetActiveEngine(); PyObject *list; KX_SceneList* scenes = m_engine->CurrentScenes(); int numScenes = scenes->size(); int i; list = PyList_New(numScenes); for (i=0;iat(i); PyList_SET_ITEM(list, i, scene->GetProxy()); } return list; } static PyObject *pyPrintStats(PyObject *,PyObject *,PyObject *) { gp_KetsjiScene->GetSceneConverter()->PrintStats(); Py_RETURN_NONE; } static PyObject *pyPrintExt(PyObject *,PyObject *,PyObject *) { #define pprint(x) std::cout << x << std::endl; bool count=0; bool support=0; pprint("Supported Extensions..."); pprint(" GL_ARB_shader_objects supported? "<< (GLEW_ARB_shader_objects?"yes.":"no.")); count = 1; support= GLEW_ARB_vertex_shader; pprint(" GL_ARB_vertex_shader supported? "<< (support?"yes.":"no.")); count = 1; if (support) { pprint(" ----------Details----------"); int max=0; glGetIntegerv(GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB, (GLint*)&max); pprint(" Max uniform components." << max); glGetIntegerv(GL_MAX_VARYING_FLOATS_ARB, (GLint*)&max); pprint(" Max varying floats." << max); glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB, (GLint*)&max); pprint(" Max vertex texture units." << max); glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB, (GLint*)&max); pprint(" Max combined texture units." << max); pprint(""); } support=GLEW_ARB_fragment_shader; pprint(" GL_ARB_fragment_shader supported? "<< (support?"yes.":"no.")); count = 1; if (support) { pprint(" ----------Details----------"); int max=0; glGetIntegerv(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB, (GLint*)&max); pprint(" Max uniform components." << max); pprint(""); } support = GLEW_ARB_texture_cube_map; pprint(" GL_ARB_texture_cube_map supported? "<< (support?"yes.":"no.")); count = 1; if (support) { pprint(" ----------Details----------"); int size=0; glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB, (GLint*)&size); pprint(" Max cubemap size." << size); pprint(""); } support = GLEW_ARB_multitexture; count = 1; pprint(" GL_ARB_multitexture supported? "<< (support?"yes.":"no.")); if (support) { pprint(" ----------Details----------"); int units=0; glGetIntegerv(GL_MAX_TEXTURE_UNITS_ARB, (GLint*)&units); pprint(" Max texture units available. " << units); pprint(""); } pprint(" GL_ARB_texture_env_combine supported? "<< (GLEW_ARB_texture_env_combine?"yes.":"no.")); count = 1; if (!count) pprint("No extenstions are used in this build"); Py_RETURN_NONE; } static PyObject *gLibLoad(PyObject *, PyObject *args, PyObject *kwds) { KX_Scene *kx_scene= gp_KetsjiScene; char *path; char *group; Py_buffer py_buffer; py_buffer.buf = NULL; char *err_str= NULL; KX_LibLoadStatus *status = NULL; short options=0; int load_actions=0, verbose=0, load_scripts=1, async=0; static const char *kwlist[] = {"path", "group", "buffer", "load_actions", "verbose", "load_scripts", "async", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "ss|y*iiIi:LibLoad", const_cast(kwlist), &path, &group, &py_buffer, &load_actions, &verbose, &load_scripts, &async)) return NULL; /* setup options */ if (load_actions != 0) options |= KX_BlenderSceneConverter::LIB_LOAD_LOAD_ACTIONS; if (verbose != 0) options |= KX_BlenderSceneConverter::LIB_LOAD_VERBOSE; if (load_scripts != 0) options |= KX_BlenderSceneConverter::LIB_LOAD_LOAD_SCRIPTS; if (async != 0) options |= KX_BlenderSceneConverter::LIB_LOAD_ASYNC; if (!py_buffer.buf) { char abs_path[FILE_MAX]; // Make the path absolute BLI_strncpy(abs_path, path, sizeof(abs_path)); BLI_path_abs(abs_path, gp_GamePythonPath); if ((status=kx_scene->GetSceneConverter()->LinkBlendFilePath(abs_path, group, kx_scene, &err_str, options))) { return status->GetProxy(); } } else { if ((status=kx_scene->GetSceneConverter()->LinkBlendFileMemory(py_buffer.buf, py_buffer.len, path, group, kx_scene, &err_str, options))) { PyBuffer_Release(&py_buffer); return status->GetProxy(); } PyBuffer_Release(&py_buffer); } if (err_str) { PyErr_SetString(PyExc_ValueError, err_str); return NULL; } Py_RETURN_FALSE; } static PyObject *gLibNew(PyObject *, PyObject *args) { KX_Scene *kx_scene= gp_KetsjiScene; char *path; char *group; const char *name; PyObject *names; int idcode; if (!PyArg_ParseTuple(args,"ssO!:LibNew",&path, &group, &PyList_Type, &names)) return NULL; if (kx_scene->GetSceneConverter()->GetMainDynamicPath(path)) { PyErr_SetString(PyExc_KeyError, "the name of the path given exists"); return NULL; } idcode= BKE_idcode_from_name(group); if (idcode==0) { PyErr_Format(PyExc_ValueError, "invalid group given \"%s\"", group); return NULL; } Main *maggie=BKE_main_new(); kx_scene->GetSceneConverter()->GetMainDynamic().push_back(maggie); strncpy(maggie->name, path, sizeof(maggie->name)-1); /* Copy the object into main */ if (idcode==ID_ME) { PyObject *ret= PyList_New(0); PyObject *item; for (Py_ssize_t i= 0; i < PyList_GET_SIZE(names); i++) { name= _PyUnicode_AsString(PyList_GET_ITEM(names, i)); if (name) { RAS_MeshObject *meshobj= kx_scene->GetSceneConverter()->ConvertMeshSpecial(kx_scene, maggie, name); if (meshobj) { KX_MeshProxy* meshproxy = new KX_MeshProxy(meshobj); item= meshproxy->NewProxy(true); PyList_Append(ret, item); Py_DECREF(item); } } else { PyErr_Clear(); /* wasnt a string, ignore for now */ } } return ret; } else { PyErr_Format(PyExc_ValueError, "only \"Mesh\" group currently supported"); return NULL; } Py_RETURN_NONE; } static PyObject *gLibFree(PyObject *, PyObject *args) { KX_Scene *kx_scene= gp_KetsjiScene; char *path; if (!PyArg_ParseTuple(args,"s:LibFree",&path)) return NULL; if (kx_scene->GetSceneConverter()->FreeBlendFile(path)) { Py_RETURN_TRUE; } else { Py_RETURN_FALSE; } } static PyObject *gLibList(PyObject *, PyObject *args) { vector &dynMaggie = gp_KetsjiScene->GetSceneConverter()->GetMainDynamic(); int i= 0; PyObject *list= PyList_New(dynMaggie.size()); for (vector::iterator it=dynMaggie.begin(); !(it==dynMaggie.end()); it++) { PyList_SET_ITEM(list, i++, PyUnicode_FromString( (*it)->name) ); } return list; } struct PyNextFrameState pynextframestate; static PyObject *gPyNextFrame(PyObject *) { if (pynextframestate.func == NULL) Py_RETURN_NONE; if (pynextframestate.state == NULL) Py_RETURN_NONE; //should never happen; raise exception instead? if (pynextframestate.func(pynextframestate.state)) //nonzero = stop { Py_RETURN_TRUE; } else // 0 = go on { Py_RETURN_FALSE; } } static struct PyMethodDef game_methods[] = { {"expandPath", (PyCFunction)gPyExpandPath, METH_VARARGS, (const char *)gPyExpandPath_doc}, {"startGame", (PyCFunction)gPyStartGame, METH_VARARGS, (const char *)gPyStartGame_doc}, {"endGame", (PyCFunction)gPyEndGame, METH_NOARGS, (const char *)gPyEndGame_doc}, {"restartGame", (PyCFunction)gPyRestartGame, METH_NOARGS, (const char *)gPyRestartGame_doc}, {"saveGlobalDict", (PyCFunction)gPySaveGlobalDict, METH_NOARGS, (const char *)gPySaveGlobalDict_doc}, {"loadGlobalDict", (PyCFunction)gPyLoadGlobalDict, METH_NOARGS, (const char *)gPyLoadGlobalDict_doc}, {"sendMessage", (PyCFunction)gPySendMessage, METH_VARARGS, (const char *)gPySendMessage_doc}, {"getCurrentController", (PyCFunction) SCA_PythonController::sPyGetCurrentController, METH_NOARGS, SCA_PythonController::sPyGetCurrentController__doc__}, {"getCurrentScene", (PyCFunction) gPyGetCurrentScene, METH_NOARGS, gPyGetCurrentScene_doc}, {"getSceneList", (PyCFunction) gPyGetSceneList, METH_NOARGS, (const char *)gPyGetSceneList_doc}, {"addScene", (PyCFunction)gPyAddScene, METH_VARARGS, (const char *)gPyAddScene_doc}, {"getRandomFloat",(PyCFunction) gPyGetRandomFloat, METH_NOARGS, (const char *)gPyGetRandomFloat_doc}, {"setGravity",(PyCFunction) gPySetGravity, METH_O, (const char *)"set Gravitation"}, {"getSpectrum",(PyCFunction) gPyGetSpectrum, METH_NOARGS, (const char *)"get audio spectrum"}, {"getMaxLogicFrame", (PyCFunction) gPyGetMaxLogicFrame, METH_NOARGS, (const char *)"Gets the max number of logic frame per render frame"}, {"setMaxLogicFrame", (PyCFunction) gPySetMaxLogicFrame, METH_VARARGS, (const char *)"Sets the max number of logic frame per render frame"}, {"getMaxPhysicsFrame", (PyCFunction) gPyGetMaxPhysicsFrame, METH_NOARGS, (const char *)"Gets the max number of physics frame per render frame"}, {"setMaxPhysicsFrame", (PyCFunction) gPySetMaxPhysicsFrame, METH_VARARGS, (const char *)"Sets the max number of physics farme per render frame"}, {"getLogicTicRate", (PyCFunction) gPyGetLogicTicRate, METH_NOARGS, (const char *)"Gets the logic tic rate"}, {"setLogicTicRate", (PyCFunction) gPySetLogicTicRate, METH_VARARGS, (const char *)"Sets the logic tic rate"}, {"getPhysicsTicRate", (PyCFunction) gPyGetPhysicsTicRate, METH_NOARGS, (const char *)"Gets the physics tic rate"}, {"setPhysicsTicRate", (PyCFunction) gPySetPhysicsTicRate, METH_VARARGS, (const char *)"Sets the physics tic rate"}, {"getExitKey", (PyCFunction) gPyGetExitKey, METH_NOARGS, (const char *)"Gets the key used to exit the game engine"}, {"setExitKey", (PyCFunction) gPySetExitKey, METH_VARARGS, (const char *)"Sets the key used to exit the game engine"}, {"getAverageFrameRate", (PyCFunction) gPyGetAverageFrameRate, METH_NOARGS, (const char *)"Gets the estimated average frame rate"}, {"getBlendFileList", (PyCFunction)gPyGetBlendFileList, METH_VARARGS, (const char *)"Gets a list of blend files in the same directory as the current blend file"}, {"PrintGLInfo", (PyCFunction)pyPrintExt, METH_NOARGS, (const char *)"Prints GL Extension Info"}, {"PrintMemInfo", (PyCFunction)pyPrintStats, METH_NOARGS, (const char *)"Print engine statistics"}, {"NextFrame", (PyCFunction)gPyNextFrame, METH_NOARGS, (const char *)"Render next frame (if Python has control)"}, {"getProfileInfo", (PyCFunction)gPyGetProfileInfo, METH_NOARGS, gPyGetProfileInfo_doc}, /* library functions */ {"LibLoad", (PyCFunction)gLibLoad, METH_VARARGS|METH_KEYWORDS, (const char *)""}, {"LibNew", (PyCFunction)gLibNew, METH_VARARGS, (const char *)""}, {"LibFree", (PyCFunction)gLibFree, METH_VARARGS, (const char *)""}, {"LibList", (PyCFunction)gLibList, METH_VARARGS, (const char *)""}, {NULL, (PyCFunction) NULL, 0, NULL } }; static PyObject *gPyGetWindowHeight(PyObject *, PyObject *args) { return PyLong_FromLong((gp_Canvas ? gp_Canvas->GetHeight() : 0)); } static PyObject *gPyGetWindowWidth(PyObject *, PyObject *args) { return PyLong_FromLong((gp_Canvas ? gp_Canvas->GetWidth() : 0)); } // temporarility visibility thing, will be moved to rasterizer/renderer later bool gUseVisibilityTemp = false; static PyObject *gPyEnableVisibility(PyObject *, PyObject *args) { int visible; if (!PyArg_ParseTuple(args,"i:enableVisibility",&visible)) return NULL; gUseVisibilityTemp = (visible != 0); Py_RETURN_NONE; } static PyObject *gPyShowMouse(PyObject *, PyObject *args) { int visible; if (!PyArg_ParseTuple(args,"i:showMouse",&visible)) return NULL; if (visible) { if (gp_Canvas) gp_Canvas->SetMouseState(RAS_ICanvas::MOUSE_NORMAL); } else { if (gp_Canvas) gp_Canvas->SetMouseState(RAS_ICanvas::MOUSE_INVISIBLE); } Py_RETURN_NONE; } static PyObject *gPySetMousePosition(PyObject *, PyObject *args) { int x,y; if (!PyArg_ParseTuple(args,"ii:setMousePosition",&x,&y)) return NULL; if (gp_Canvas) gp_Canvas->SetMousePosition(x,y); Py_RETURN_NONE; } static PyObject *gPySetEyeSeparation(PyObject *, PyObject *args) { float sep; if (!PyArg_ParseTuple(args, "f:setEyeSeparation", &sep)) return NULL; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setEyeSeparation(float), Rasterizer not available"); return NULL; } gp_Rasterizer->SetEyeSeparation(sep); Py_RETURN_NONE; } static PyObject *gPyGetEyeSeparation(PyObject *) { if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.getEyeSeparation(), Rasterizer not available"); return NULL; } return PyFloat_FromDouble(gp_Rasterizer->GetEyeSeparation()); } static PyObject *gPySetFocalLength(PyObject *, PyObject *args) { float focus; if (!PyArg_ParseTuple(args, "f:setFocalLength", &focus)) return NULL; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setFocalLength(float), Rasterizer not available"); return NULL; } gp_Rasterizer->SetFocalLength(focus); Py_RETURN_NONE; } static PyObject *gPyGetFocalLength(PyObject *, PyObject *, PyObject *) { if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.getFocalLength(), Rasterizer not available"); return NULL; } return PyFloat_FromDouble(gp_Rasterizer->GetFocalLength()); Py_RETURN_NONE; } static PyObject *gPySetBackgroundColor(PyObject *, PyObject *value) { MT_Vector4 vec; if (!PyVecTo(value, vec)) return NULL; if (gp_Canvas) { gp_Rasterizer->SetBackColor((float)vec[0], (float)vec[1], (float)vec[2], (float)vec[3]); } KX_WorldInfo *wi = gp_KetsjiScene->GetWorldInfo(); if (wi->hasWorld()) wi->setBackColor((float)vec[0], (float)vec[1], (float)vec[2]); Py_RETURN_NONE; } static PyObject *gPySetMistColor(PyObject *, PyObject *value) { MT_Vector3 vec; if (!PyVecTo(value, vec)) return NULL; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistColor(color), Rasterizer not available"); return NULL; } gp_Rasterizer->SetFogColor((float)vec[0], (float)vec[1], (float)vec[2]); Py_RETURN_NONE; } static PyObject *gPyDisableMist(PyObject *) { if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistColor(color), Rasterizer not available"); return NULL; } gp_Rasterizer->DisableFog(); Py_RETURN_NONE; } static PyObject *gPySetMistStart(PyObject *, PyObject *args) { float miststart; if (!PyArg_ParseTuple(args,"f:setMistStart",&miststart)) return NULL; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistStart(float), Rasterizer not available"); return NULL; } gp_Rasterizer->SetFogStart(miststart); Py_RETURN_NONE; } static PyObject *gPySetMistEnd(PyObject *, PyObject *args) { float mistend; if (!PyArg_ParseTuple(args,"f:setMistEnd",&mistend)) return NULL; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistEnd(float), Rasterizer not available"); return NULL; } gp_Rasterizer->SetFogEnd(mistend); Py_RETURN_NONE; } static PyObject *gPySetAmbientColor(PyObject *, PyObject *value) { MT_Vector3 vec; if (!PyVecTo(value, vec)) return NULL; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setAmbientColor(color), Rasterizer not available"); return NULL; } gp_Rasterizer->SetAmbientColor((float)vec[0], (float)vec[1], (float)vec[2]); Py_RETURN_NONE; } static PyObject *gPyMakeScreenshot(PyObject *, PyObject *args) { char* filename; if (!PyArg_ParseTuple(args,"s:makeScreenshot",&filename)) return NULL; if (gp_Canvas) { gp_Canvas->MakeScreenShot(filename); } Py_RETURN_NONE; } static PyObject *gPyEnableMotionBlur(PyObject *, PyObject *args) { float motionblurvalue; if (!PyArg_ParseTuple(args,"f:enableMotionBlur",&motionblurvalue)) return NULL; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.enableMotionBlur(float), Rasterizer not available"); return NULL; } gp_Rasterizer->EnableMotionBlur(motionblurvalue); Py_RETURN_NONE; } static PyObject *gPyDisableMotionBlur(PyObject *) { if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.disableMotionBlur(), Rasterizer not available"); return NULL; } gp_Rasterizer->DisableMotionBlur(); Py_RETURN_NONE; } static int getGLSLSettingFlag(const char *setting) { if (strcmp(setting, "lights") == 0) return GAME_GLSL_NO_LIGHTS; else if (strcmp(setting, "shaders") == 0) return GAME_GLSL_NO_SHADERS; else if (strcmp(setting, "shadows") == 0) return GAME_GLSL_NO_SHADOWS; else if (strcmp(setting, "ramps") == 0) return GAME_GLSL_NO_RAMPS; else if (strcmp(setting, "nodes") == 0) return GAME_GLSL_NO_NODES; else if (strcmp(setting, "extra_textures") == 0) return GAME_GLSL_NO_EXTRA_TEX; else return -1; } static PyObject *gPySetGLSLMaterialSetting(PyObject *, PyObject *args, PyObject *) { GlobalSettings *gs= gp_KetsjiEngine->GetGlobalSettings(); char *setting; int enable, flag, sceneflag; if (!PyArg_ParseTuple(args,"si:setGLSLMaterialSetting",&setting,&enable)) return NULL; flag = getGLSLSettingFlag(setting); if (flag == -1) { PyErr_SetString(PyExc_ValueError, "Rasterizer.setGLSLMaterialSetting(string): glsl setting is not known"); return NULL; } sceneflag= gs->glslflag; if (enable) gs->glslflag &= ~flag; else gs->glslflag |= flag; /* temporarily store the glsl settings in the scene for the GLSL materials */ GameData *gm= &(gp_KetsjiScene->GetBlenderScene()->gm); gm->flag = gs->glslflag; /* display lists and GLSL materials need to be remade */ if (sceneflag != gs->glslflag) { GPU_materials_free(); if (gp_KetsjiEngine) { KX_SceneList *scenes = gp_KetsjiEngine->CurrentScenes(); KX_SceneList::iterator it; for (it=scenes->begin(); it!=scenes->end(); it++) if ((*it)->GetBucketManager()) { (*it)->GetBucketManager()->ReleaseDisplayLists(); (*it)->GetBucketManager()->ReleaseMaterials(); } } } Py_RETURN_NONE; } static PyObject *gPyGetGLSLMaterialSetting(PyObject *, PyObject *args, PyObject *) { GlobalSettings *gs= gp_KetsjiEngine->GetGlobalSettings(); char *setting; int enabled = 0, flag; if (!PyArg_ParseTuple(args,"s:getGLSLMaterialSetting",&setting)) return NULL; flag = getGLSLSettingFlag(setting); if (flag == -1) { PyErr_SetString(PyExc_ValueError, "Rasterizer.getGLSLMaterialSetting(string): glsl setting is not known"); return NULL; } enabled = ((gs->glslflag & flag) != 0); return PyLong_FromLong(enabled); } #define KX_BLENDER_MULTITEX_MATERIAL 1 #define KX_BLENDER_GLSL_MATERIAL 2 static PyObject *gPySetMaterialType(PyObject *, PyObject *args, PyObject *) { GlobalSettings *gs= gp_KetsjiEngine->GetGlobalSettings(); int type; if (!PyArg_ParseTuple(args,"i:setMaterialType",&type)) return NULL; if (type == KX_BLENDER_GLSL_MATERIAL) gs->matmode= GAME_MAT_GLSL; else if (type == KX_BLENDER_MULTITEX_MATERIAL) gs->matmode= GAME_MAT_MULTITEX; else { PyErr_SetString(PyExc_ValueError, "Rasterizer.setMaterialType(int): material type is not known"); return NULL; } Py_RETURN_NONE; } static PyObject *gPyGetMaterialType(PyObject *) { GlobalSettings *gs= gp_KetsjiEngine->GetGlobalSettings(); int flag; if (gs->matmode == GAME_MAT_GLSL) flag = KX_BLENDER_GLSL_MATERIAL; else flag = KX_BLENDER_MULTITEX_MATERIAL; return PyLong_FromLong(flag); } static PyObject *gPySetAnisotropicFiltering(PyObject *, PyObject *args) { short level; if (!PyArg_ParseTuple(args, "h:setAnisotropicFiltering", &level)) return NULL; if (level != 1 && level != 2 && level != 4 && level != 8 && level != 16) { PyErr_SetString(PyExc_ValueError, "Rasterizer.setAnisotropicFiltering(level): Expected value of 1, 2, 4, 8, or 16 for value"); return NULL; } gp_Rasterizer->SetAnisotropicFiltering(level); Py_RETURN_NONE; } static PyObject *gPyGetAnisotropicFiltering(PyObject *, PyObject *args) { return PyLong_FromLong(gp_Rasterizer->GetAnisotropicFiltering()); } static PyObject *gPyDrawLine(PyObject *, PyObject *args) { PyObject *ob_from; PyObject *ob_to; PyObject *ob_color; if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.drawLine(obFrom, obTo, color): Rasterizer not available"); return NULL; } if (!PyArg_ParseTuple(args,"OOO:drawLine",&ob_from,&ob_to,&ob_color)) return NULL; MT_Vector3 from; MT_Vector3 to; MT_Vector3 color; if (!PyVecTo(ob_from, from)) return NULL; if (!PyVecTo(ob_to, to)) return NULL; if (!PyVecTo(ob_color, color)) return NULL; gp_Rasterizer->DrawDebugLine(from,to,color); Py_RETURN_NONE; } static PyObject *gPySetWindowSize(PyObject *, PyObject *args) { int width, height; if (!PyArg_ParseTuple(args, "ii:resize", &width, &height)) return NULL; gp_Canvas->ResizeWindow(width, height); Py_RETURN_NONE; } static PyObject *gPySetFullScreen(PyObject *, PyObject *value) { gp_Canvas->SetFullScreen(PyObject_IsTrue(value)); Py_RETURN_NONE; } static PyObject *gPyGetFullScreen(PyObject *) { return PyBool_FromLong(gp_Canvas->GetFullScreen()); } static PyObject *gPySetMipmapping(PyObject *, PyObject *args) { int val = 0; if (!PyArg_ParseTuple(args, "i:setMipmapping", &val)) return NULL; if (val < 0 || val > RAS_IRasterizer::RAS_MIPMAP_MAX) { PyErr_SetString(PyExc_ValueError, "Rasterizer.setMipmapping(val): invalid mipmaping option"); return NULL; } if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMipmapping(val): Rasterizer not available"); return NULL; } gp_Rasterizer->SetMipmapping((RAS_IRasterizer::MipmapOption)val); Py_RETURN_NONE; } static PyObject *gPyGetMipmapping(PyObject *) { if (!gp_Rasterizer) { PyErr_SetString(PyExc_RuntimeError, "Rasterizer.getMipmapping(): Rasterizer not available"); return NULL; } return PyLong_FromLong(gp_Rasterizer->GetMipmapping()); } static PyObject *gPySetVsync(PyObject *, PyObject *args) { int interval; if (!PyArg_ParseTuple(args, "i:setVsync", &interval)) return NULL; if (interval < 0 || interval > VSYNC_ADAPTIVE) { PyErr_SetString(PyExc_ValueError, "Rasterizer.setVsync(value): value must be VSYNC_OFF, VSYNC_ON, or VSYNC_ADAPTIVE"); return NULL; } if (interval == VSYNC_ADAPTIVE) interval = -1; gp_Canvas->SetSwapInterval((interval == VSYNC_ON) ? 1 : 0); Py_RETURN_NONE; } static PyObject *gPyGetVsync(PyObject *) { int interval = 0; gp_Canvas->GetSwapInterval(interval); return PyLong_FromLong(interval); } static PyObject *gPyShowFramerate(PyObject *, PyObject *args) { int visible; if (!PyArg_ParseTuple(args,"i:showFramerate",&visible)) return NULL; if (visible && gp_KetsjiEngine) gp_KetsjiEngine->SetShowFramerate(true); else gp_KetsjiEngine->SetShowFramerate(false); Py_RETURN_NONE; } static PyObject *gPyShowProfile(PyObject *, PyObject *args) { int visible; if (!PyArg_ParseTuple(args,"i:showProfile",&visible)) return NULL; if (visible && gp_KetsjiEngine) gp_KetsjiEngine->SetShowProfile(true); else gp_KetsjiEngine->SetShowProfile(false); Py_RETURN_NONE; } static PyObject *gPyShowProperties(PyObject *, PyObject *args) { int visible; if (!PyArg_ParseTuple(args,"i:showProperties",&visible)) return NULL; if (visible && gp_KetsjiEngine) gp_KetsjiEngine->SetShowProperties(true); else gp_KetsjiEngine->SetShowProperties(false); Py_RETURN_NONE; } static PyObject *gPyAutoDebugList(PyObject *, PyObject *args) { int add; if (!PyArg_ParseTuple(args,"i:autoAddProperties",&add)) return NULL; if (add && gp_KetsjiEngine) gp_KetsjiEngine->SetAutoAddDebugProperties(true); else gp_KetsjiEngine->SetAutoAddDebugProperties(false); Py_RETURN_NONE; } static PyObject *gPyClearDebugList(PyObject *) { if (gp_KetsjiScene) gp_KetsjiScene->RemoveAllDebugProperties(); Py_RETURN_NONE; } static struct PyMethodDef rasterizer_methods[] = { {"getWindowWidth",(PyCFunction) gPyGetWindowWidth, METH_VARARGS, "getWindowWidth doc"}, {"getWindowHeight",(PyCFunction) gPyGetWindowHeight, METH_VARARGS, "getWindowHeight doc"}, {"makeScreenshot",(PyCFunction)gPyMakeScreenshot, METH_VARARGS, "make Screenshot doc"}, {"enableVisibility",(PyCFunction) gPyEnableVisibility, METH_VARARGS, "enableVisibility doc"}, {"showMouse",(PyCFunction) gPyShowMouse, METH_VARARGS, "showMouse(bool visible)"}, {"setMousePosition",(PyCFunction) gPySetMousePosition, METH_VARARGS, "setMousePosition(int x,int y)"}, {"setBackgroundColor",(PyCFunction)gPySetBackgroundColor,METH_O,"set Background Color (rgb)"}, {"setAmbientColor",(PyCFunction)gPySetAmbientColor,METH_O,"set Ambient Color (rgb)"}, {"disableMist",(PyCFunction)gPyDisableMist,METH_NOARGS,"turn off mist"}, {"setMistColor",(PyCFunction)gPySetMistColor,METH_O,"set Mist Color (rgb)"}, {"setMistStart",(PyCFunction)gPySetMistStart,METH_VARARGS,"set Mist Start(rgb)"}, {"setMistEnd",(PyCFunction)gPySetMistEnd,METH_VARARGS,"set Mist End(rgb)"}, {"enableMotionBlur",(PyCFunction)gPyEnableMotionBlur,METH_VARARGS,"enable motion blur"}, {"disableMotionBlur",(PyCFunction)gPyDisableMotionBlur,METH_NOARGS,"disable motion blur"}, {"setEyeSeparation", (PyCFunction) gPySetEyeSeparation, METH_VARARGS, "set the eye separation for stereo mode"}, {"getEyeSeparation", (PyCFunction) gPyGetEyeSeparation, METH_NOARGS, "get the eye separation for stereo mode"}, {"setFocalLength", (PyCFunction) gPySetFocalLength, METH_VARARGS, "set the focal length for stereo mode"}, {"getFocalLength", (PyCFunction) gPyGetFocalLength, METH_VARARGS, "get the focal length for stereo mode"}, {"setMaterialMode",(PyCFunction) gPySetMaterialType, METH_VARARGS, "set the material mode to use for OpenGL rendering"}, {"getMaterialMode",(PyCFunction) gPyGetMaterialType, METH_NOARGS, "get the material mode being used for OpenGL rendering"}, {"setGLSLMaterialSetting",(PyCFunction) gPySetGLSLMaterialSetting, METH_VARARGS, "set the state of a GLSL material setting"}, {"getGLSLMaterialSetting",(PyCFunction) gPyGetGLSLMaterialSetting, METH_VARARGS, "get the state of a GLSL material setting"}, {"setAnisotropicFiltering", (PyCFunction) gPySetAnisotropicFiltering, METH_VARARGS, "set the anisotropic filtering level (must be one of 1, 2, 4, 8, 16)"}, {"getAnisotropicFiltering", (PyCFunction) gPyGetAnisotropicFiltering, METH_VARARGS, "get the anisotropic filtering level"}, {"drawLine", (PyCFunction) gPyDrawLine, METH_VARARGS, "draw a line on the screen"}, {"setWindowSize", (PyCFunction) gPySetWindowSize, METH_VARARGS, ""}, {"setFullScreen", (PyCFunction) gPySetFullScreen, METH_O, ""}, {"getFullScreen", (PyCFunction) gPyGetFullScreen, METH_NOARGS, ""}, {"setMipmapping", (PyCFunction) gPySetMipmapping, METH_VARARGS, ""}, {"getMipmapping", (PyCFunction) gPyGetMipmapping, METH_NOARGS, ""}, {"setVsync", (PyCFunction) gPySetVsync, METH_VARARGS, ""}, {"getVsync", (PyCFunction) gPyGetVsync, METH_NOARGS, ""}, {"showFramerate",(PyCFunction) gPyShowFramerate, METH_VARARGS, "show or hide the framerate"}, {"showProfile",(PyCFunction) gPyShowProfile, METH_VARARGS, "show or hide the profile"}, {"showProperties",(PyCFunction) gPyShowProperties, METH_VARARGS, "show or hide the debug properties"}, {"autoDebugList",(PyCFunction) gPyAutoDebugList, METH_VARARGS, "enable or disable auto adding debug properties to the debug list"}, {"clearDebugList",(PyCFunction) gPyClearDebugList, METH_NOARGS, "clears the debug property list"}, { NULL, (PyCFunction) NULL, 0, NULL } }; // Initialization function for the module (*must* be called initGameLogic) static char GameLogic_module_documentation[] = "This is the Python API for the game engine of bge.logic" ; static char Rasterizer_module_documentation[] = "This is the Python API for the game engine of Rasterizer" ; static struct PyModuleDef GameLogic_module_def = { {}, /* m_base */ "GameLogic", /* m_name */ GameLogic_module_documentation, /* m_doc */ 0, /* m_size */ game_methods, /* m_methods */ 0, /* m_reload */ 0, /* m_traverse */ 0, /* m_clear */ 0, /* m_free */ }; PyObject *initGameLogic(KX_KetsjiEngine *engine, KX_Scene* scene) // quick hack to get gravity hook { PyObject *m; PyObject *d; PyObject *item; /* temp PyObject *storage */ gp_KetsjiEngine = engine; gp_KetsjiScene = scene; gUseVisibilityTemp=false; PyObjectPlus::ClearDeprecationWarning(); /* Not that nice to call here but makes sure warnings are reset between loading scenes */ /* Use existing module where possible * be careful not to init any runtime vars after this */ m = PyImport_ImportModule( "GameLogic" ); if (m) { Py_DECREF(m); return m; } else { PyErr_Clear(); // Create the module and add the functions m = PyModule_Create(&GameLogic_module_def); PyDict_SetItemString(PySys_GetObject("modules"), GameLogic_module_def.m_name, m); } // Add some symbolic constants to the module d = PyModule_GetDict(m); // can be overwritten later for gameEngine instances that can load new blend files and re-initialize this module // for now its safe to make sure it exists for other areas such as the web plugin PyDict_SetItemString(d, "globalDict", item=PyDict_New()); Py_DECREF(item); // Add keyboard and mouse attributes to this module MT_assert(!gp_PythonKeyboard); gp_PythonKeyboard = new SCA_PythonKeyboard(gp_KetsjiEngine->GetKeyboardDevice()); PyDict_SetItemString(d, "keyboard", gp_PythonKeyboard->NewProxy(true)); MT_assert(!gp_PythonMouse); gp_PythonMouse = new SCA_PythonMouse(gp_KetsjiEngine->GetMouseDevice(), gp_Canvas); PyDict_SetItemString(d, "mouse", gp_PythonMouse->NewProxy(true)); PyObject* joylist = PyList_New(JOYINDEX_MAX); for (int i=0; iConnected()) { gp_PythonJoysticks[i] = new SCA_PythonJoystick(joy); PyObject* tmp = gp_PythonJoysticks[i]->NewProxy(true); Py_INCREF(tmp); PyList_SET_ITEM(joylist, i, tmp); } else { joy->ReleaseInstance(); Py_INCREF(Py_None); PyList_SET_ITEM(joylist, i, Py_None); } } PyDict_SetItemString(d, "joysticks", joylist); ErrorObject = PyUnicode_FromString("GameLogic.error"); PyDict_SetItemString(d, "error", ErrorObject); Py_DECREF(ErrorObject); // XXXX Add constants here /* To use logic bricks, we need some sort of constants. Here, we associate */ /* constants and sumbolic names. Add them to dictionary d. */ /* 1. true and false: needed for everyone */ KX_MACRO_addTypesToDict(d, KX_TRUE, SCA_ILogicBrick::KX_TRUE); KX_MACRO_addTypesToDict(d, KX_FALSE, SCA_ILogicBrick::KX_FALSE); /* 2. Property sensor */ KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_EQUAL, SCA_PropertySensor::KX_PROPSENSOR_EQUAL); KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_NOTEQUAL, SCA_PropertySensor::KX_PROPSENSOR_NOTEQUAL); KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_INTERVAL, SCA_PropertySensor::KX_PROPSENSOR_INTERVAL); KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_CHANGED, SCA_PropertySensor::KX_PROPSENSOR_CHANGED); KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_EXPRESSION, SCA_PropertySensor::KX_PROPSENSOR_EXPRESSION); KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_LESSTHAN, SCA_PropertySensor::KX_PROPSENSOR_LESSTHAN); KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_GREATERTHAN, SCA_PropertySensor::KX_PROPSENSOR_GREATERTHAN); /* 3. Constraint actuator */ KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_LOCX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCX); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_LOCY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCY); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_LOCZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCZ); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ROTX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ROTX); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ROTY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ROTY); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ROTZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ROTZ); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRPX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRPX); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRPY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRPY); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRPZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRPZ); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRNX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRNX); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRNY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRNY); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRNZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRNZ); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ORIX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ORIX); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ORIY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ORIY); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ORIZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ORIZ); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_FHPX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHPX); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_FHPY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHPY); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_FHPZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHPZ); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_FHNX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHNX); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_FHNY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHNY); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_FHNZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHNZ); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_NORMAL, KX_ConstraintActuator::KX_ACT_CONSTRAINT_NORMAL); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_MATERIAL, KX_ConstraintActuator::KX_ACT_CONSTRAINT_MATERIAL); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_PERMANENT, KX_ConstraintActuator::KX_ACT_CONSTRAINT_PERMANENT); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DISTANCE, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DISTANCE); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_LOCAL, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCAL); KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DOROTFH, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DOROTFH); /* 4. Random distribution types */ KX_MACRO_addTypesToDict(d, KX_RANDOMACT_BOOL_CONST, SCA_RandomActuator::KX_RANDOMACT_BOOL_CONST); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_BOOL_UNIFORM, SCA_RandomActuator::KX_RANDOMACT_BOOL_UNIFORM); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_BOOL_BERNOUILLI, SCA_RandomActuator::KX_RANDOMACT_BOOL_BERNOUILLI); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_INT_CONST, SCA_RandomActuator::KX_RANDOMACT_INT_CONST); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_INT_UNIFORM, SCA_RandomActuator::KX_RANDOMACT_INT_UNIFORM); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_INT_POISSON, SCA_RandomActuator::KX_RANDOMACT_INT_POISSON); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_CONST, SCA_RandomActuator::KX_RANDOMACT_FLOAT_CONST); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_UNIFORM, SCA_RandomActuator::KX_RANDOMACT_FLOAT_UNIFORM); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_NORMAL, SCA_RandomActuator::KX_RANDOMACT_FLOAT_NORMAL); KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL, SCA_RandomActuator::KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL); /* 5. Sound actuator */ KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYSTOP, KX_SoundActuator::KX_SOUNDACT_PLAYSTOP); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYEND, KX_SoundActuator::KX_SOUNDACT_PLAYEND); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPSTOP, KX_SoundActuator::KX_SOUNDACT_LOOPSTOP); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPEND, KX_SoundActuator::KX_SOUNDACT_LOOPEND); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP); /* 6. Action actuator */ KX_MACRO_addTypesToDict(d, KX_ACTIONACT_PLAY, ACT_ACTION_PLAY); KX_MACRO_addTypesToDict(d, KX_ACTIONACT_PINGPONG, ACT_ACTION_PINGPONG); KX_MACRO_addTypesToDict(d, KX_ACTIONACT_FLIPPER, ACT_ACTION_FLIPPER); KX_MACRO_addTypesToDict(d, KX_ACTIONACT_LOOPSTOP, ACT_ACTION_LOOP_STOP); KX_MACRO_addTypesToDict(d, KX_ACTIONACT_LOOPEND, ACT_ACTION_LOOP_END); KX_MACRO_addTypesToDict(d, KX_ACTIONACT_PROPERTY, ACT_ACTION_FROM_PROP); /* 7. GL_BlendFunc */ KX_MACRO_addTypesToDict(d, BL_ZERO, GL_ZERO); KX_MACRO_addTypesToDict(d, BL_ONE, GL_ONE); KX_MACRO_addTypesToDict(d, BL_SRC_COLOR, GL_SRC_COLOR); KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR); KX_MACRO_addTypesToDict(d, BL_DST_COLOR, GL_DST_COLOR); KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_DST_COLOR); KX_MACRO_addTypesToDict(d, BL_SRC_ALPHA, GL_SRC_ALPHA); KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); KX_MACRO_addTypesToDict(d, BL_DST_ALPHA, GL_DST_ALPHA); KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA); KX_MACRO_addTypesToDict(d, BL_SRC_ALPHA_SATURATE, GL_SRC_ALPHA_SATURATE); /* 8. UniformTypes */ KX_MACRO_addTypesToDict(d, SHD_TANGENT, BL_Shader::SHD_TANGENT); KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX, BL_Shader::MODELVIEWMATRIX); KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX_TRANSPOSE, BL_Shader::MODELVIEWMATRIX_TRANSPOSE); KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX_INVERSE, BL_Shader::MODELVIEWMATRIX_INVERSE); KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX_INVERSETRANSPOSE, BL_Shader::MODELVIEWMATRIX_INVERSETRANSPOSE); KX_MACRO_addTypesToDict(d, MODELMATRIX, BL_Shader::MODELMATRIX); KX_MACRO_addTypesToDict(d, MODELMATRIX_TRANSPOSE, BL_Shader::MODELMATRIX_TRANSPOSE); KX_MACRO_addTypesToDict(d, MODELMATRIX_INVERSE, BL_Shader::MODELMATRIX_INVERSE); KX_MACRO_addTypesToDict(d, MODELMATRIX_INVERSETRANSPOSE, BL_Shader::MODELMATRIX_INVERSETRANSPOSE); KX_MACRO_addTypesToDict(d, VIEWMATRIX, BL_Shader::VIEWMATRIX); KX_MACRO_addTypesToDict(d, VIEWMATRIX_TRANSPOSE, BL_Shader::VIEWMATRIX_TRANSPOSE); KX_MACRO_addTypesToDict(d, VIEWMATRIX_INVERSE, BL_Shader::VIEWMATRIX_INVERSE); KX_MACRO_addTypesToDict(d, VIEWMATRIX_INVERSETRANSPOSE, BL_Shader::VIEWMATRIX_INVERSETRANSPOSE); KX_MACRO_addTypesToDict(d, CAM_POS, BL_Shader::CAM_POS); KX_MACRO_addTypesToDict(d, CONSTANT_TIMER, BL_Shader::CONSTANT_TIMER); /* 9. state actuator */ KX_MACRO_addTypesToDict(d, KX_STATE1, (1<<0)); KX_MACRO_addTypesToDict(d, KX_STATE2, (1<<1)); KX_MACRO_addTypesToDict(d, KX_STATE3, (1<<2)); KX_MACRO_addTypesToDict(d, KX_STATE4, (1<<3)); KX_MACRO_addTypesToDict(d, KX_STATE5, (1<<4)); KX_MACRO_addTypesToDict(d, KX_STATE6, (1<<5)); KX_MACRO_addTypesToDict(d, KX_STATE7, (1<<6)); KX_MACRO_addTypesToDict(d, KX_STATE8, (1<<7)); KX_MACRO_addTypesToDict(d, KX_STATE9, (1<<8)); KX_MACRO_addTypesToDict(d, KX_STATE10, (1<<9)); KX_MACRO_addTypesToDict(d, KX_STATE11, (1<<10)); KX_MACRO_addTypesToDict(d, KX_STATE12, (1<<11)); KX_MACRO_addTypesToDict(d, KX_STATE13, (1<<12)); KX_MACRO_addTypesToDict(d, KX_STATE14, (1<<13)); KX_MACRO_addTypesToDict(d, KX_STATE15, (1<<14)); KX_MACRO_addTypesToDict(d, KX_STATE16, (1<<15)); KX_MACRO_addTypesToDict(d, KX_STATE17, (1<<16)); KX_MACRO_addTypesToDict(d, KX_STATE18, (1<<17)); KX_MACRO_addTypesToDict(d, KX_STATE19, (1<<18)); KX_MACRO_addTypesToDict(d, KX_STATE20, (1<<19)); KX_MACRO_addTypesToDict(d, KX_STATE21, (1<<20)); KX_MACRO_addTypesToDict(d, KX_STATE22, (1<<21)); KX_MACRO_addTypesToDict(d, KX_STATE23, (1<<22)); KX_MACRO_addTypesToDict(d, KX_STATE24, (1<<23)); KX_MACRO_addTypesToDict(d, KX_STATE25, (1<<24)); KX_MACRO_addTypesToDict(d, KX_STATE26, (1<<25)); KX_MACRO_addTypesToDict(d, KX_STATE27, (1<<26)); KX_MACRO_addTypesToDict(d, KX_STATE28, (1<<27)); KX_MACRO_addTypesToDict(d, KX_STATE29, (1<<28)); KX_MACRO_addTypesToDict(d, KX_STATE30, (1<<29)); /* All Sensors */ KX_MACRO_addTypesToDict(d, KX_SENSOR_JUST_ACTIVATED, SCA_ISensor::KX_SENSOR_JUST_ACTIVATED); KX_MACRO_addTypesToDict(d, KX_SENSOR_ACTIVE, SCA_ISensor::KX_SENSOR_ACTIVE); KX_MACRO_addTypesToDict(d, KX_SENSOR_JUST_DEACTIVATED, SCA_ISensor::KX_SENSOR_JUST_DEACTIVATED); KX_MACRO_addTypesToDict(d, KX_SENSOR_INACTIVE, SCA_ISensor::KX_SENSOR_INACTIVE); /* Radar Sensor */ KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_POS_X, KX_RadarSensor::KX_RADAR_AXIS_POS_X); KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_POS_Y, KX_RadarSensor::KX_RADAR_AXIS_POS_Y); KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_POS_Z, KX_RadarSensor::KX_RADAR_AXIS_POS_Z); KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_NEG_X, KX_RadarSensor::KX_RADAR_AXIS_NEG_X); KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_NEG_Y, KX_RadarSensor::KX_RADAR_AXIS_NEG_Y); KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_NEG_Z, KX_RadarSensor::KX_RADAR_AXIS_NEG_Z); /* Ray Sensor */ KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_POS_X, KX_RaySensor::KX_RAY_AXIS_POS_X); KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_POS_Y, KX_RaySensor::KX_RAY_AXIS_POS_Y); KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_POS_Z, KX_RaySensor::KX_RAY_AXIS_POS_Z); KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_NEG_X, KX_RaySensor::KX_RAY_AXIS_NEG_X); KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_NEG_Y, KX_RaySensor::KX_RAY_AXIS_NEG_Y); KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_NEG_Z, KX_RaySensor::KX_RAY_AXIS_NEG_Z); /* TrackTo Actuator */ KX_MACRO_addTypesToDict(d, KX_TRACK_UPAXIS_POS_X, KX_TrackToActuator::KX_TRACK_UPAXIS_POS_X); KX_MACRO_addTypesToDict(d, KX_TRACK_UPAXIS_POS_Y, KX_TrackToActuator::KX_TRACK_UPAXIS_POS_Y); KX_MACRO_addTypesToDict(d, KX_TRACK_UPAXIS_POS_Z, KX_TrackToActuator::KX_TRACK_UPAXIS_POS_Z); KX_MACRO_addTypesToDict(d, KX_TRACK_TRAXIS_POS_X, KX_TrackToActuator::KX_TRACK_TRAXIS_POS_X); KX_MACRO_addTypesToDict(d, KX_TRACK_TRAXIS_POS_Y, KX_TrackToActuator::KX_TRACK_TRAXIS_POS_Y); KX_MACRO_addTypesToDict(d, KX_TRACK_TRAXIS_POS_Z, KX_TrackToActuator::KX_TRACK_TRAXIS_POS_Z); KX_MACRO_addTypesToDict(d, KX_TRACK_TRAXIS_NEG_X, KX_TrackToActuator::KX_TRACK_TRAXIS_NEG_X); KX_MACRO_addTypesToDict(d, KX_TRACK_TRAXIS_NEG_Y, KX_TrackToActuator::KX_TRACK_TRAXIS_NEG_Y); KX_MACRO_addTypesToDict(d, KX_TRACK_TRAXIS_NEG_Z, KX_TrackToActuator::KX_TRACK_TRAXIS_NEG_Z); /* Dynamic actuator */ KX_MACRO_addTypesToDict(d, KX_DYN_RESTORE_DYNAMICS, KX_SCA_DynamicActuator::KX_DYN_RESTORE_DYNAMICS); KX_MACRO_addTypesToDict(d, KX_DYN_DISABLE_DYNAMICS, KX_SCA_DynamicActuator::KX_DYN_DISABLE_DYNAMICS); KX_MACRO_addTypesToDict(d, KX_DYN_ENABLE_RIGID_BODY, KX_SCA_DynamicActuator::KX_DYN_ENABLE_RIGID_BODY); KX_MACRO_addTypesToDict(d, KX_DYN_DISABLE_RIGID_BODY, KX_SCA_DynamicActuator::KX_DYN_DISABLE_RIGID_BODY); KX_MACRO_addTypesToDict(d, KX_DYN_SET_MASS, KX_SCA_DynamicActuator::KX_DYN_SET_MASS); /* Input & Mouse Sensor */ KX_MACRO_addTypesToDict(d, KX_INPUT_NONE, SCA_InputEvent::KX_NO_INPUTSTATUS); KX_MACRO_addTypesToDict(d, KX_INPUT_JUST_ACTIVATED, SCA_InputEvent::KX_JUSTACTIVATED); KX_MACRO_addTypesToDict(d, KX_INPUT_ACTIVE, SCA_InputEvent::KX_ACTIVE); KX_MACRO_addTypesToDict(d, KX_INPUT_JUST_RELEASED, SCA_InputEvent::KX_JUSTRELEASED); KX_MACRO_addTypesToDict(d, KX_MOUSE_BUT_LEFT, SCA_IInputDevice::KX_LEFTMOUSE); KX_MACRO_addTypesToDict(d, KX_MOUSE_BUT_MIDDLE, SCA_IInputDevice::KX_MIDDLEMOUSE); KX_MACRO_addTypesToDict(d, KX_MOUSE_BUT_RIGHT, SCA_IInputDevice::KX_RIGHTMOUSE); /* 2D Filter Actuator */ KX_MACRO_addTypesToDict(d, RAS_2DFILTER_ENABLED, RAS_2DFilterManager::RAS_2DFILTER_ENABLED); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_DISABLED, RAS_2DFilterManager::RAS_2DFILTER_DISABLED); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_NOFILTER, RAS_2DFilterManager::RAS_2DFILTER_NOFILTER); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_MOTIONBLUR, RAS_2DFilterManager::RAS_2DFILTER_MOTIONBLUR); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_BLUR, RAS_2DFilterManager::RAS_2DFILTER_BLUR); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_SHARPEN, RAS_2DFilterManager::RAS_2DFILTER_SHARPEN); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_DILATION, RAS_2DFilterManager::RAS_2DFILTER_DILATION); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_EROSION, RAS_2DFilterManager::RAS_2DFILTER_EROSION); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_LAPLACIAN, RAS_2DFilterManager::RAS_2DFILTER_LAPLACIAN); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_SOBEL, RAS_2DFilterManager::RAS_2DFILTER_SOBEL); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_PREWITT, RAS_2DFilterManager::RAS_2DFILTER_PREWITT); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_GRAYSCALE, RAS_2DFilterManager::RAS_2DFILTER_GRAYSCALE); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_SEPIA, RAS_2DFilterManager::RAS_2DFILTER_SEPIA); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_INVERT, RAS_2DFilterManager::RAS_2DFILTER_INVERT); KX_MACRO_addTypesToDict(d, RAS_2DFILTER_CUSTOMFILTER, RAS_2DFilterManager::RAS_2DFILTER_CUSTOMFILTER); /* Sound Actuator */ KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYSTOP, KX_SoundActuator::KX_SOUNDACT_PLAYSTOP); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYEND, KX_SoundActuator::KX_SOUNDACT_PLAYEND); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPSTOP, KX_SoundActuator::KX_SOUNDACT_LOOPSTOP); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPEND, KX_SoundActuator:: KX_SOUNDACT_LOOPEND); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL); KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP); /* State Actuator */ KX_MACRO_addTypesToDict(d, KX_STATE_OP_CPY, KX_StateActuator::OP_CPY); KX_MACRO_addTypesToDict(d, KX_STATE_OP_SET, KX_StateActuator::OP_SET); KX_MACRO_addTypesToDict(d, KX_STATE_OP_CLR, KX_StateActuator::OP_CLR); KX_MACRO_addTypesToDict(d, KX_STATE_OP_NEG, KX_StateActuator::OP_NEG); /* Game Actuator Modes */ KX_MACRO_addTypesToDict(d, KX_GAME_LOAD, KX_GameActuator::KX_GAME_LOAD); KX_MACRO_addTypesToDict(d, KX_GAME_START, KX_GameActuator::KX_GAME_START); KX_MACRO_addTypesToDict(d, KX_GAME_RESTART, KX_GameActuator::KX_GAME_RESTART); KX_MACRO_addTypesToDict(d, KX_GAME_QUIT, KX_GameActuator::KX_GAME_QUIT); KX_MACRO_addTypesToDict(d, KX_GAME_SAVECFG, KX_GameActuator::KX_GAME_SAVECFG); KX_MACRO_addTypesToDict(d, KX_GAME_LOADCFG, KX_GameActuator::KX_GAME_LOADCFG); /* Scene Actuator Modes */ KX_MACRO_addTypesToDict(d, KX_SCENE_RESTART, KX_SceneActuator::KX_SCENE_RESTART); KX_MACRO_addTypesToDict(d, KX_SCENE_SET_SCENE, KX_SceneActuator::KX_SCENE_SET_SCENE); KX_MACRO_addTypesToDict(d, KX_SCENE_SET_CAMERA, KX_SceneActuator::KX_SCENE_SET_CAMERA); KX_MACRO_addTypesToDict(d, KX_SCENE_ADD_FRONT_SCENE, KX_SceneActuator::KX_SCENE_ADD_FRONT_SCENE); KX_MACRO_addTypesToDict(d, KX_SCENE_ADD_BACK_SCENE, KX_SceneActuator::KX_SCENE_ADD_BACK_SCENE); KX_MACRO_addTypesToDict(d, KX_SCENE_REMOVE_SCENE, KX_SceneActuator::KX_SCENE_REMOVE_SCENE); KX_MACRO_addTypesToDict(d, KX_SCENE_SUSPEND, KX_SceneActuator::KX_SCENE_SUSPEND); KX_MACRO_addTypesToDict(d, KX_SCENE_RESUME, KX_SceneActuator::KX_SCENE_RESUME); /* Parent Actuator Modes */ KX_MACRO_addTypesToDict(d, KX_PARENT_SET, KX_ParentActuator::KX_PARENT_SET); KX_MACRO_addTypesToDict(d, KX_PARENT_REMOVE, KX_ParentActuator::KX_PARENT_REMOVE); /* BL_ArmatureConstraint type */ KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_TRACKTO, CONSTRAINT_TYPE_TRACKTO); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_KINEMATIC, CONSTRAINT_TYPE_KINEMATIC); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_ROTLIKE, CONSTRAINT_TYPE_ROTLIKE); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_LOCLIKE, CONSTRAINT_TYPE_LOCLIKE); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_MINMAX, CONSTRAINT_TYPE_MINMAX); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_SIZELIKE, CONSTRAINT_TYPE_SIZELIKE); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_LOCKTRACK, CONSTRAINT_TYPE_LOCKTRACK); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_STRETCHTO, CONSTRAINT_TYPE_STRETCHTO); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_CLAMPTO, CONSTRAINT_TYPE_CLAMPTO); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_TRANSFORM, CONSTRAINT_TYPE_TRANSFORM); KX_MACRO_addTypesToDict(d, CONSTRAINT_TYPE_DISTLIMIT, CONSTRAINT_TYPE_DISTLIMIT); /* BL_ArmatureConstraint ik_type */ KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_COPYPOSE, CONSTRAINT_IK_COPYPOSE); KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_DISTANCE, CONSTRAINT_IK_DISTANCE); /* BL_ArmatureConstraint ik_mode */ KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_MODE_INSIDE, LIMITDIST_INSIDE); KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_MODE_OUTSIDE, LIMITDIST_OUTSIDE); KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_MODE_ONSURFACE, LIMITDIST_ONSURFACE); /* BL_ArmatureConstraint ik_flag */ KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_FLAG_TIP, CONSTRAINT_IK_TIP); KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_FLAG_ROT, CONSTRAINT_IK_ROT); KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_FLAG_STRETCH, CONSTRAINT_IK_STRETCH); KX_MACRO_addTypesToDict(d, CONSTRAINT_IK_FLAG_POS, CONSTRAINT_IK_POS); /* KX_ArmatureSensor type */ KX_MACRO_addTypesToDict(d, KX_ARMSENSOR_STATE_CHANGED, SENS_ARM_STATE_CHANGED); KX_MACRO_addTypesToDict(d, KX_ARMSENSOR_LIN_ERROR_BELOW, SENS_ARM_LIN_ERROR_BELOW); KX_MACRO_addTypesToDict(d, KX_ARMSENSOR_LIN_ERROR_ABOVE, SENS_ARM_LIN_ERROR_ABOVE); KX_MACRO_addTypesToDict(d, KX_ARMSENSOR_ROT_ERROR_BELOW, SENS_ARM_ROT_ERROR_BELOW); KX_MACRO_addTypesToDict(d, KX_ARMSENSOR_ROT_ERROR_ABOVE, SENS_ARM_ROT_ERROR_ABOVE); /* BL_ArmatureActuator type */ KX_MACRO_addTypesToDict(d, KX_ACT_ARMATURE_RUN, ACT_ARM_RUN); KX_MACRO_addTypesToDict(d, KX_ACT_ARMATURE_ENABLE, ACT_ARM_ENABLE); KX_MACRO_addTypesToDict(d, KX_ACT_ARMATURE_DISABLE, ACT_ARM_DISABLE); KX_MACRO_addTypesToDict(d, KX_ACT_ARMATURE_SETTARGET, ACT_ARM_SETTARGET); KX_MACRO_addTypesToDict(d, KX_ACT_ARMATURE_SETWEIGHT, ACT_ARM_SETWEIGHT); KX_MACRO_addTypesToDict(d, KX_ACT_ARMATURE_SETINFLUENCE, ACT_ARM_SETINFLUENCE); /* BL_Armature Channel rotation_mode */ KX_MACRO_addTypesToDict(d, ROT_MODE_QUAT, ROT_MODE_QUAT); KX_MACRO_addTypesToDict(d, ROT_MODE_XYZ, ROT_MODE_XYZ); KX_MACRO_addTypesToDict(d, ROT_MODE_XZY, ROT_MODE_XZY); KX_MACRO_addTypesToDict(d, ROT_MODE_YXZ, ROT_MODE_YXZ); KX_MACRO_addTypesToDict(d, ROT_MODE_YZX, ROT_MODE_YZX); KX_MACRO_addTypesToDict(d, ROT_MODE_ZXY, ROT_MODE_ZXY); KX_MACRO_addTypesToDict(d, ROT_MODE_ZYX, ROT_MODE_ZYX); /* Steering actuator */ KX_MACRO_addTypesToDict(d, KX_STEERING_SEEK, KX_SteeringActuator::KX_STEERING_SEEK); KX_MACRO_addTypesToDict(d, KX_STEERING_FLEE, KX_SteeringActuator::KX_STEERING_FLEE); KX_MACRO_addTypesToDict(d, KX_STEERING_PATHFOLLOWING, KX_SteeringActuator::KX_STEERING_PATHFOLLOWING); /* KX_NavMeshObject render mode */ KX_MACRO_addTypesToDict(d, RM_WALLS, KX_NavMeshObject::RM_WALLS); KX_MACRO_addTypesToDict(d, RM_POLYS, KX_NavMeshObject::RM_POLYS); KX_MACRO_addTypesToDict(d, RM_TRIS, KX_NavMeshObject::RM_TRIS); /* BL_Action play modes */ KX_MACRO_addTypesToDict(d, KX_ACTION_MODE_PLAY, BL_Action::ACT_MODE_PLAY); KX_MACRO_addTypesToDict(d, KX_ACTION_MODE_LOOP, BL_Action::ACT_MODE_LOOP); KX_MACRO_addTypesToDict(d, KX_ACTION_MODE_PING_PONG, BL_Action::ACT_MODE_PING_PONG); /* BL_Action blend modes */ KX_MACRO_addTypesToDict(d, KX_ACTION_BLEND_BLEND, BL_Action::ACT_BLEND_BLEND); KX_MACRO_addTypesToDict(d, KX_ACTION_BLEND_ADD, BL_Action::ACT_BLEND_ADD); /* Mouse Actuator object axis*/ KX_MACRO_addTypesToDict(d, KX_ACT_MOUSE_OBJECT_AXIS_X, KX_MouseActuator::KX_ACT_MOUSE_OBJECT_AXIS_X); KX_MACRO_addTypesToDict(d, KX_ACT_MOUSE_OBJECT_AXIS_Y, KX_MouseActuator::KX_ACT_MOUSE_OBJECT_AXIS_Y); KX_MACRO_addTypesToDict(d, KX_ACT_MOUSE_OBJECT_AXIS_Z, KX_MouseActuator::KX_ACT_MOUSE_OBJECT_AXIS_Z); // Check for errors if (PyErr_Occurred()) { Py_FatalError("can't initialize module bge.logic"); } return m; } /* Explanation of * * - backupPySysObjects() : stores sys.path in gp_OrigPythonSysPath * - initPySysObjects(main) : initializes the blendfile and library paths * - restorePySysObjects() : restores sys.path from gp_OrigPythonSysPath * * These exist so the current blend dir "//" can always be used to import modules from. * the reason we need a few functions for this is that python is not only used by the game engine * so we cant just add to sys.path all the time, it would leave pythons state in a mess. * It would also be incorrect since loading blend files for new levels etc would always add to sys.path * * To play nice with blenders python, the sys.path is backed up and the current blendfile along * with all its lib paths are added to the sys path. * When loading a new blendfile, the original sys.path is restored and the new paths are added over the top. */ /** * So we can have external modules mixed with our blend files. */ static void backupPySysObjects(void) { PyObject *sys_path= PySys_GetObject("path"); /* should never fail */ PyObject *sys_mods= PySys_GetObject("modules"); /* should never fail */ /* paths */ Py_XDECREF(gp_OrigPythonSysPath); /* just in case its set */ gp_OrigPythonSysPath = PyList_GetSlice(sys_path, 0, INT_MAX); /* copy the list */ /* modules */ Py_XDECREF(gp_OrigPythonSysModules); /* just in case its set */ gp_OrigPythonSysModules = PyDict_Copy(sys_mods); /* copy the list */ } /* for initPySysObjects only, * takes a blend path and adds a scripts dir from it * * "/home/me/foo.blend" -> "/home/me/scripts" */ static void initPySysObjects__append(PyObject *sys_path, const char *filename) { PyObject *item; char expanded[FILE_MAX]; BLI_split_dir_part(filename, expanded, sizeof(expanded)); /* get the dir part of filename only */ BLI_path_abs(expanded, gp_GamePythonPath); /* filename from lib->filename is (always?) absolute, so this may not be needed but it wont hurt */ BLI_cleanup_file(gp_GamePythonPath, expanded); /* Don't use BLI_cleanup_dir because it adds a slash - BREAKS WIN32 ONLY */ item = PyC_UnicodeFromByte(expanded); // printf("SysPath - '%s', '%s', '%s'\n", expanded, filename, gp_GamePythonPath); if (PySequence_Index(sys_path, item) == -1) { PyErr_Clear(); /* PySequence_Index sets a ValueError */ PyList_Insert(sys_path, 0, item); } Py_DECREF(item); } static void initPySysObjects(Main *maggie) { PyObject *sys_path= PySys_GetObject("path"); /* should never fail */ if (gp_OrigPythonSysPath==NULL) { /* backup */ backupPySysObjects(); } else { /* get the original sys path when the BGE started */ PyList_SetSlice(sys_path, 0, INT_MAX, gp_OrigPythonSysPath); } Library *lib= (Library *)maggie->library.first; while (lib) { /* lib->name wont work in some cases (on win32), * even when expanding with gp_GamePythonPath, using lib->filename is less trouble */ initPySysObjects__append(sys_path, lib->filepath); lib= (Library *)lib->id.next; } initPySysObjects__append(sys_path, gp_GamePythonPath); // fprintf(stderr, "\nNew Path: %d ", PyList_GET_SIZE(sys_path)); // PyObject_Print(sys_path, stderr, 0); } static void restorePySysObjects(void) { if (gp_OrigPythonSysPath==NULL) return; PyObject *sys_path= PySys_GetObject("path"); /* should never fail */ PyObject *sys_mods= PySys_GetObject("modules"); /* should never fail */ /* paths */ PyList_SetSlice(sys_path, 0, INT_MAX, gp_OrigPythonSysPath); Py_DECREF(gp_OrigPythonSysPath); gp_OrigPythonSysPath= NULL; /* modules */ PyDict_Clear(sys_mods); PyDict_Update(sys_mods, gp_OrigPythonSysModules); Py_DECREF(gp_OrigPythonSysModules); gp_OrigPythonSysModules= NULL; // fprintf(stderr, "\nRestore Path: %d ", PyList_GET_SIZE(sys_path)); // PyObject_Print(sys_path, stderr, 0); } void addImportMain(struct Main *maggie) { bpy_import_main_extra_add(maggie); } void removeImportMain(struct Main *maggie) { bpy_import_main_extra_remove(maggie); } // Copied from bpy_interface.c static struct _inittab bge_internal_modules[] = { {"mathutils", PyInit_mathutils}, {"bgl", BPyInit_bgl}, {"blf", BPyInit_blf}, {"aud", AUD_initPython}, {NULL, NULL} }; /** * Python is not initialized. * see bpy_interface.c's BPY_python_start() which shares the same functionality in blender. */ PyObject *initGamePlayerPythonScripting(const STR_String& progname, TPythonSecurityLevel level, Main *maggie, int argc, char** argv) { /* Yet another gotcha in the py api * Cant run PySys_SetArgv more than once because this adds the * binary dir to the sys.path each time. * Id have thought python being totally restarted would make this ok but * somehow it remembers the sys.path - Campbell */ static bool first_time = true; const char * const py_path_bundle = BLI_get_folder(BLENDER_SYSTEM_PYTHON, NULL); #if 0 // TODO - py3 STR_String pname = progname; Py_SetProgramName(pname.Ptr()); #endif if (py_path_bundle != NULL) { Py_NoSiteFlag = 1; } Py_FrozenFlag = 1; /* must run before python initializes */ PyImport_ExtendInittab(bge_internal_modules); /* find local python installation */ PyC_SetHomePath(py_path_bundle); Py_Initialize(); if (argv && first_time) { /* browser plugins don't currently set this */ // Until python support ascii again, we use our own. // PySys_SetArgv(argc, argv); int i; PyObject *py_argv= PyList_New(argc); for (i=0; iSetPyNamespace(dictionaryobject); initRasterizer(ketsjiengine->GetRasterizer(), ketsjiengine->GetCanvas()); *gameLogic = initGameLogic(ketsjiengine, startscene); /* is set in initGameLogic so only set here if we want it to persist between scenes */ if (pyGlobalDict) PyDict_SetItemString(PyModule_GetDict(*gameLogic), "globalDict", pyGlobalDict); // Same as importing the module. *gameLogic_keys = PyDict_Keys(PyModule_GetDict(*gameLogic)); initGameKeys(); initPythonConstraintBinding(); initVideoTexture(); /* could be done a lot more nicely, but for now a quick way to get bge.* working */ PyRun_SimpleString("sys = __import__('sys');" "bge = type(sys)('bge');" "bge.__dict__.update({'logic':__import__('GameLogic'), " "'render':__import__('Rasterizer'), " "'events':__import__('GameKeys'), " "'constraints':__import__('PhysicsConstraints'), " "'physics':__import__('PhysicsConstraints')," "'types':__import__('GameTypes'), " "'texture':__import__('VideoTexture')});" /* so we can do 'import bge.foo as bar' */ "sys.modules.update({'bge': bge, " "'bge.logic':bge.logic, " "'bge.render':bge.render, " "'bge.events':bge.events, " "'bge.constraints':bge.constraints, " "'bge.physics':bge.physics," "'bge.types':bge.types, " "'bge.texture':bge.texture})" ); } static struct PyModuleDef Rasterizer_module_def = { {}, /* m_base */ "Rasterizer", /* m_name */ Rasterizer_module_documentation, /* m_doc */ 0, /* m_size */ rasterizer_methods, /* m_methods */ 0, /* m_reload */ 0, /* m_traverse */ 0, /* m_clear */ 0, /* m_free */ }; PyObject *initRasterizer(RAS_IRasterizer* rasty,RAS_ICanvas* canvas) { gp_Canvas = canvas; gp_Rasterizer = rasty; PyObject *m; PyObject *d; /* Use existing module where possible * be careful not to init any runtime vars after this */ m = PyImport_ImportModule( "Rasterizer" ); if (m) { Py_DECREF(m); return m; } else { PyErr_Clear(); // Create the module and add the functions m = PyModule_Create(&Rasterizer_module_def); PyDict_SetItemString(PySys_GetObject("modules"), Rasterizer_module_def.m_name, m); } // Add some symbolic constants to the module d = PyModule_GetDict(m); ErrorObject = PyUnicode_FromString("Rasterizer.error"); PyDict_SetItemString(d, "error", ErrorObject); Py_DECREF(ErrorObject); /* needed for get/setMaterialType */ KX_MACRO_addTypesToDict(d, KX_BLENDER_MULTITEX_MATERIAL, KX_BLENDER_MULTITEX_MATERIAL); KX_MACRO_addTypesToDict(d, KX_BLENDER_GLSL_MATERIAL, KX_BLENDER_GLSL_MATERIAL); KX_MACRO_addTypesToDict(d, RAS_MIPMAP_NONE, RAS_IRasterizer::RAS_MIPMAP_NONE); KX_MACRO_addTypesToDict(d, RAS_MIPMAP_NEAREST, RAS_IRasterizer::RAS_MIPMAP_NEAREST); KX_MACRO_addTypesToDict(d, RAS_MIPMAP_LINEAR, RAS_IRasterizer::RAS_MIPMAP_LINEAR); /* for get/setVsync */ KX_MACRO_addTypesToDict(d, VSYNC_OFF, VSYNC_OFF); KX_MACRO_addTypesToDict(d, VSYNC_ON, VSYNC_ON); KX_MACRO_addTypesToDict(d, VSYNC_ADAPTIVE, VSYNC_ADAPTIVE); // XXXX Add constants here // Check for errors if (PyErr_Occurred()) { Py_FatalError("can't initialize module Rasterizer"); } return d; } /* ------------------------------------------------------------------------- */ /* GameKeys: symbolic constants for key mapping */ /* ------------------------------------------------------------------------- */ static char GameKeys_module_documentation[] = "This modules provides defines for key-codes" ; static char gPyEventToString_doc[] = "EventToString(event) - Take a valid event from the GameKeys module or Keyboard Sensor and return a name" ; static PyObject *gPyEventToString(PyObject *, PyObject *value) { PyObject *mod, *dict, *key, *val, *ret = NULL; Py_ssize_t pos = 0; mod = PyImport_ImportModule( "GameKeys" ); if (!mod) return NULL; dict = PyModule_GetDict(mod); while (PyDict_Next(dict, &pos, &key, &val)) { if (PyObject_RichCompareBool(value, val, Py_EQ)) { ret = key; break; } } PyErr_Clear(); // in case there was an error clearing Py_DECREF(mod); if (!ret) PyErr_SetString(PyExc_ValueError, "GameKeys.EventToString(int): expected a valid int keyboard event"); else Py_INCREF(ret); return ret; } static char gPyEventToCharacter_doc[] = "EventToCharacter(event, is_shift) - Take a valid event from the GameKeys module or Keyboard Sensor and return a character" ; static PyObject *gPyEventToCharacter(PyObject *, PyObject *args) { int event, shift; if (!PyArg_ParseTuple(args,"ii:EventToCharacter", &event, &shift)) return NULL; if (IsPrintable(event)) { char ch[2] = {'\0', '\0'}; ch[0] = ToCharacter(event, (bool)shift); return PyUnicode_FromString(ch); } else { return PyUnicode_FromString(""); } } static struct PyMethodDef gamekeys_methods[] = { {"EventToCharacter", (PyCFunction)gPyEventToCharacter, METH_VARARGS, (const char *)gPyEventToCharacter_doc}, {"EventToString", (PyCFunction)gPyEventToString, METH_O, (const char *)gPyEventToString_doc}, { NULL, (PyCFunction) NULL, 0, NULL } }; static struct PyModuleDef GameKeys_module_def = { {}, /* m_base */ "GameKeys", /* m_name */ GameKeys_module_documentation, /* m_doc */ 0, /* m_size */ gamekeys_methods, /* m_methods */ 0, /* m_reload */ 0, /* m_traverse */ 0, /* m_clear */ 0, /* m_free */ }; PyObject *initGameKeys() { PyObject *m; PyObject *d; /* Use existing module where possible */ m = PyImport_ImportModule( "GameKeys" ); if (m) { Py_DECREF(m); return m; } else { PyErr_Clear(); // Create the module and add the functions m = PyModule_Create(&GameKeys_module_def); PyDict_SetItemString(PySys_GetObject("modules"), GameKeys_module_def.m_name, m); } // Add some symbolic constants to the module d = PyModule_GetDict(m); // XXXX Add constants here KX_MACRO_addTypesToDict(d, AKEY, SCA_IInputDevice::KX_AKEY); KX_MACRO_addTypesToDict(d, BKEY, SCA_IInputDevice::KX_BKEY); KX_MACRO_addTypesToDict(d, CKEY, SCA_IInputDevice::KX_CKEY); KX_MACRO_addTypesToDict(d, DKEY, SCA_IInputDevice::KX_DKEY); KX_MACRO_addTypesToDict(d, EKEY, SCA_IInputDevice::KX_EKEY); KX_MACRO_addTypesToDict(d, FKEY, SCA_IInputDevice::KX_FKEY); KX_MACRO_addTypesToDict(d, GKEY, SCA_IInputDevice::KX_GKEY); KX_MACRO_addTypesToDict(d, HKEY, SCA_IInputDevice::KX_HKEY); KX_MACRO_addTypesToDict(d, IKEY, SCA_IInputDevice::KX_IKEY); KX_MACRO_addTypesToDict(d, JKEY, SCA_IInputDevice::KX_JKEY); KX_MACRO_addTypesToDict(d, KKEY, SCA_IInputDevice::KX_KKEY); KX_MACRO_addTypesToDict(d, LKEY, SCA_IInputDevice::KX_LKEY); KX_MACRO_addTypesToDict(d, MKEY, SCA_IInputDevice::KX_MKEY); KX_MACRO_addTypesToDict(d, NKEY, SCA_IInputDevice::KX_NKEY); KX_MACRO_addTypesToDict(d, OKEY, SCA_IInputDevice::KX_OKEY); KX_MACRO_addTypesToDict(d, PKEY, SCA_IInputDevice::KX_PKEY); KX_MACRO_addTypesToDict(d, QKEY, SCA_IInputDevice::KX_QKEY); KX_MACRO_addTypesToDict(d, RKEY, SCA_IInputDevice::KX_RKEY); KX_MACRO_addTypesToDict(d, SKEY, SCA_IInputDevice::KX_SKEY); KX_MACRO_addTypesToDict(d, TKEY, SCA_IInputDevice::KX_TKEY); KX_MACRO_addTypesToDict(d, UKEY, SCA_IInputDevice::KX_UKEY); KX_MACRO_addTypesToDict(d, VKEY, SCA_IInputDevice::KX_VKEY); KX_MACRO_addTypesToDict(d, WKEY, SCA_IInputDevice::KX_WKEY); KX_MACRO_addTypesToDict(d, XKEY, SCA_IInputDevice::KX_XKEY); KX_MACRO_addTypesToDict(d, YKEY, SCA_IInputDevice::KX_YKEY); KX_MACRO_addTypesToDict(d, ZKEY, SCA_IInputDevice::KX_ZKEY); KX_MACRO_addTypesToDict(d, ZEROKEY, SCA_IInputDevice::KX_ZEROKEY); KX_MACRO_addTypesToDict(d, ONEKEY, SCA_IInputDevice::KX_ONEKEY); KX_MACRO_addTypesToDict(d, TWOKEY, SCA_IInputDevice::KX_TWOKEY); KX_MACRO_addTypesToDict(d, THREEKEY, SCA_IInputDevice::KX_THREEKEY); KX_MACRO_addTypesToDict(d, FOURKEY, SCA_IInputDevice::KX_FOURKEY); KX_MACRO_addTypesToDict(d, FIVEKEY, SCA_IInputDevice::KX_FIVEKEY); KX_MACRO_addTypesToDict(d, SIXKEY, SCA_IInputDevice::KX_SIXKEY); KX_MACRO_addTypesToDict(d, SEVENKEY, SCA_IInputDevice::KX_SEVENKEY); KX_MACRO_addTypesToDict(d, EIGHTKEY, SCA_IInputDevice::KX_EIGHTKEY); KX_MACRO_addTypesToDict(d, NINEKEY, SCA_IInputDevice::KX_NINEKEY); KX_MACRO_addTypesToDict(d, CAPSLOCKKEY, SCA_IInputDevice::KX_CAPSLOCKKEY); KX_MACRO_addTypesToDict(d, LEFTCTRLKEY, SCA_IInputDevice::KX_LEFTCTRLKEY); KX_MACRO_addTypesToDict(d, LEFTALTKEY, SCA_IInputDevice::KX_LEFTALTKEY); KX_MACRO_addTypesToDict(d, RIGHTALTKEY, SCA_IInputDevice::KX_RIGHTALTKEY); KX_MACRO_addTypesToDict(d, RIGHTCTRLKEY, SCA_IInputDevice::KX_RIGHTCTRLKEY); KX_MACRO_addTypesToDict(d, RIGHTSHIFTKEY, SCA_IInputDevice::KX_RIGHTSHIFTKEY); KX_MACRO_addTypesToDict(d, LEFTSHIFTKEY, SCA_IInputDevice::KX_LEFTSHIFTKEY); KX_MACRO_addTypesToDict(d, ESCKEY, SCA_IInputDevice::KX_ESCKEY); KX_MACRO_addTypesToDict(d, TABKEY, SCA_IInputDevice::KX_TABKEY); KX_MACRO_addTypesToDict(d, RETKEY, SCA_IInputDevice::KX_RETKEY); KX_MACRO_addTypesToDict(d, ENTERKEY, SCA_IInputDevice::KX_RETKEY); KX_MACRO_addTypesToDict(d, SPACEKEY, SCA_IInputDevice::KX_SPACEKEY); KX_MACRO_addTypesToDict(d, LINEFEEDKEY, SCA_IInputDevice::KX_LINEFEEDKEY); KX_MACRO_addTypesToDict(d, BACKSPACEKEY, SCA_IInputDevice::KX_BACKSPACEKEY); KX_MACRO_addTypesToDict(d, DELKEY, SCA_IInputDevice::KX_DELKEY); KX_MACRO_addTypesToDict(d, SEMICOLONKEY, SCA_IInputDevice::KX_SEMICOLONKEY); KX_MACRO_addTypesToDict(d, PERIODKEY, SCA_IInputDevice::KX_PERIODKEY); KX_MACRO_addTypesToDict(d, COMMAKEY, SCA_IInputDevice::KX_COMMAKEY); KX_MACRO_addTypesToDict(d, QUOTEKEY, SCA_IInputDevice::KX_QUOTEKEY); KX_MACRO_addTypesToDict(d, ACCENTGRAVEKEY, SCA_IInputDevice::KX_ACCENTGRAVEKEY); KX_MACRO_addTypesToDict(d, MINUSKEY, SCA_IInputDevice::KX_MINUSKEY); KX_MACRO_addTypesToDict(d, SLASHKEY, SCA_IInputDevice::KX_SLASHKEY); KX_MACRO_addTypesToDict(d, BACKSLASHKEY, SCA_IInputDevice::KX_BACKSLASHKEY); KX_MACRO_addTypesToDict(d, EQUALKEY, SCA_IInputDevice::KX_EQUALKEY); KX_MACRO_addTypesToDict(d, LEFTBRACKETKEY, SCA_IInputDevice::KX_LEFTBRACKETKEY); KX_MACRO_addTypesToDict(d, RIGHTBRACKETKEY, SCA_IInputDevice::KX_RIGHTBRACKETKEY); KX_MACRO_addTypesToDict(d, LEFTARROWKEY, SCA_IInputDevice::KX_LEFTARROWKEY); KX_MACRO_addTypesToDict(d, DOWNARROWKEY, SCA_IInputDevice::KX_DOWNARROWKEY); KX_MACRO_addTypesToDict(d, RIGHTARROWKEY, SCA_IInputDevice::KX_RIGHTARROWKEY); KX_MACRO_addTypesToDict(d, UPARROWKEY, SCA_IInputDevice::KX_UPARROWKEY); KX_MACRO_addTypesToDict(d, PAD2 , SCA_IInputDevice::KX_PAD2); KX_MACRO_addTypesToDict(d, PAD4 , SCA_IInputDevice::KX_PAD4); KX_MACRO_addTypesToDict(d, PAD6 , SCA_IInputDevice::KX_PAD6); KX_MACRO_addTypesToDict(d, PAD8 , SCA_IInputDevice::KX_PAD8); KX_MACRO_addTypesToDict(d, PAD1 , SCA_IInputDevice::KX_PAD1); KX_MACRO_addTypesToDict(d, PAD3 , SCA_IInputDevice::KX_PAD3); KX_MACRO_addTypesToDict(d, PAD5 , SCA_IInputDevice::KX_PAD5); KX_MACRO_addTypesToDict(d, PAD7 , SCA_IInputDevice::KX_PAD7); KX_MACRO_addTypesToDict(d, PAD9 , SCA_IInputDevice::KX_PAD9); KX_MACRO_addTypesToDict(d, PADPERIOD, SCA_IInputDevice::KX_PADPERIOD); KX_MACRO_addTypesToDict(d, PADSLASHKEY, SCA_IInputDevice::KX_PADSLASHKEY); KX_MACRO_addTypesToDict(d, PADASTERKEY, SCA_IInputDevice::KX_PADASTERKEY); KX_MACRO_addTypesToDict(d, PAD0, SCA_IInputDevice::KX_PAD0); KX_MACRO_addTypesToDict(d, PADMINUS, SCA_IInputDevice::KX_PADMINUS); KX_MACRO_addTypesToDict(d, PADENTER, SCA_IInputDevice::KX_PADENTER); KX_MACRO_addTypesToDict(d, PADPLUSKEY, SCA_IInputDevice::KX_PADPLUSKEY); KX_MACRO_addTypesToDict(d, F1KEY, SCA_IInputDevice::KX_F1KEY); KX_MACRO_addTypesToDict(d, F2KEY, SCA_IInputDevice::KX_F2KEY); KX_MACRO_addTypesToDict(d, F3KEY, SCA_IInputDevice::KX_F3KEY); KX_MACRO_addTypesToDict(d, F4KEY, SCA_IInputDevice::KX_F4KEY); KX_MACRO_addTypesToDict(d, F5KEY, SCA_IInputDevice::KX_F5KEY); KX_MACRO_addTypesToDict(d, F6KEY, SCA_IInputDevice::KX_F6KEY); KX_MACRO_addTypesToDict(d, F7KEY, SCA_IInputDevice::KX_F7KEY); KX_MACRO_addTypesToDict(d, F8KEY, SCA_IInputDevice::KX_F8KEY); KX_MACRO_addTypesToDict(d, F9KEY, SCA_IInputDevice::KX_F9KEY); KX_MACRO_addTypesToDict(d, F10KEY, SCA_IInputDevice::KX_F10KEY); KX_MACRO_addTypesToDict(d, F11KEY, SCA_IInputDevice::KX_F11KEY); KX_MACRO_addTypesToDict(d, F12KEY, SCA_IInputDevice::KX_F12KEY); KX_MACRO_addTypesToDict(d, F13KEY, SCA_IInputDevice::KX_F13KEY); KX_MACRO_addTypesToDict(d, F14KEY, SCA_IInputDevice::KX_F14KEY); KX_MACRO_addTypesToDict(d, F15KEY, SCA_IInputDevice::KX_F15KEY); KX_MACRO_addTypesToDict(d, F16KEY, SCA_IInputDevice::KX_F16KEY); KX_MACRO_addTypesToDict(d, F17KEY, SCA_IInputDevice::KX_F17KEY); KX_MACRO_addTypesToDict(d, F18KEY, SCA_IInputDevice::KX_F18KEY); KX_MACRO_addTypesToDict(d, F19KEY, SCA_IInputDevice::KX_F19KEY); KX_MACRO_addTypesToDict(d, OSKEY, SCA_IInputDevice::KX_OSKEY); KX_MACRO_addTypesToDict(d, PAUSEKEY, SCA_IInputDevice::KX_PAUSEKEY); KX_MACRO_addTypesToDict(d, INSERTKEY, SCA_IInputDevice::KX_INSERTKEY); KX_MACRO_addTypesToDict(d, HOMEKEY, SCA_IInputDevice::KX_HOMEKEY); KX_MACRO_addTypesToDict(d, PAGEUPKEY, SCA_IInputDevice::KX_PAGEUPKEY); KX_MACRO_addTypesToDict(d, PAGEDOWNKEY, SCA_IInputDevice::KX_PAGEDOWNKEY); KX_MACRO_addTypesToDict(d, ENDKEY, SCA_IInputDevice::KX_ENDKEY); // MOUSE KX_MACRO_addTypesToDict(d, LEFTMOUSE, SCA_IInputDevice::KX_LEFTMOUSE); KX_MACRO_addTypesToDict(d, MIDDLEMOUSE, SCA_IInputDevice::KX_MIDDLEMOUSE); KX_MACRO_addTypesToDict(d, RIGHTMOUSE, SCA_IInputDevice::KX_RIGHTMOUSE); KX_MACRO_addTypesToDict(d, WHEELUPMOUSE, SCA_IInputDevice::KX_WHEELUPMOUSE); KX_MACRO_addTypesToDict(d, WHEELDOWNMOUSE, SCA_IInputDevice::KX_WHEELDOWNMOUSE); KX_MACRO_addTypesToDict(d, MOUSEX, SCA_IInputDevice::KX_MOUSEX); KX_MACRO_addTypesToDict(d, MOUSEY, SCA_IInputDevice::KX_MOUSEY); // Check for errors if (PyErr_Occurred()) { Py_FatalError("can't initialize module GameKeys"); } return d; } // utility function for loading and saving the globalDict int saveGamePythonConfig( char **marshal_buffer) { int marshal_length = 0; PyObject *gameLogic = PyImport_ImportModule("GameLogic"); if (gameLogic) { PyObject *pyGlobalDict = PyDict_GetItemString(PyModule_GetDict(gameLogic), "globalDict"); // Same as importing the module if (pyGlobalDict) { #ifdef Py_MARSHAL_VERSION PyObject *pyGlobalDictMarshal = PyMarshal_WriteObjectToString( pyGlobalDict, 2); // Py_MARSHAL_VERSION == 2 as of Py2.5 #else PyObject *pyGlobalDictMarshal = PyMarshal_WriteObjectToString( pyGlobalDict ); #endif if (pyGlobalDictMarshal) { // for testing only // PyObject_Print(pyGlobalDictMarshal, stderr, 0); char *marshal_cstring; marshal_cstring = PyBytes_AsString(pyGlobalDictMarshal); // py3 uses byte arrays marshal_length= PyBytes_Size(pyGlobalDictMarshal); *marshal_buffer = new char[marshal_length + 1]; memcpy(*marshal_buffer, marshal_cstring, marshal_length); Py_DECREF(pyGlobalDictMarshal); } else { printf("Error, bge.logic.globalDict could not be marshal'd\n"); } } else { printf("Error, bge.logic.globalDict was removed\n"); } Py_DECREF(gameLogic); } else { PyErr_Clear(); printf("Error, bge.logic failed to import bge.logic.globalDict will be lost\n"); } return marshal_length; } int loadGamePythonConfig(char *marshal_buffer, int marshal_length) { /* Restore the dict */ if (marshal_buffer) { PyObject *gameLogic = PyImport_ImportModule("GameLogic"); if (gameLogic) { PyObject *pyGlobalDict = PyMarshal_ReadObjectFromString(marshal_buffer, marshal_length); if (pyGlobalDict) { PyObject *pyGlobalDict_orig = PyDict_GetItemString(PyModule_GetDict(gameLogic), "globalDict"); // Same as importing the module. if (pyGlobalDict_orig) { PyDict_Clear(pyGlobalDict_orig); PyDict_Update(pyGlobalDict_orig, pyGlobalDict); } else { /* this should not happen, but cant find the original globalDict, just assign it then */ PyDict_SetItemString(PyModule_GetDict(gameLogic), "globalDict", pyGlobalDict); // Same as importing the module. } Py_DECREF(gameLogic); Py_DECREF(pyGlobalDict); return 1; } else { Py_DECREF(gameLogic); PyErr_Clear(); printf("Error could not marshall string\n"); } } else { PyErr_Clear(); printf("Error, bge.logic failed to import bge.logic.globalDict will be lost\n"); } } return 0; } void pathGamePythonConfig(char *path) { int len = strlen(gp_GamePythonPathOrig); // Always use the first loaded blend filename BLI_strncpy(path, gp_GamePythonPathOrig, sizeof(gp_GamePythonPathOrig)); /* replace extension */ if (BLI_testextensie(path, ".blend")) { strcpy(path+(len-6), ".bgeconf"); } else { strcpy(path+len, ".bgeconf"); } } void setGamePythonPath(const char *path) { BLI_strncpy(gp_GamePythonPath, path, sizeof(gp_GamePythonPath)); BLI_cleanup_file(NULL, gp_GamePythonPath); /* not absolutely needed but makes resolving path problems less confusing later */ if (gp_GamePythonPathOrig[0] == '\0') BLI_strncpy(gp_GamePythonPathOrig, path, sizeof(gp_GamePythonPathOrig)); } // we need this so while blender is open (not blenderplayer) // loading new blendfiles will reset this on starting the // engine but loading blend files within the BGE wont overwrite gp_GamePythonPathOrig void resetGamePythonPath() { gp_GamePythonPathOrig[0] = '\0'; } #endif // WITH_PYTHON