// // Replace the mesh for this actuator's parent // // $Id$ // // ***** BEGIN GPL LICENSE BLOCK ***** // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software Foundation, // Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // // The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. // All rights reserved. // // The Original Code is: all of this file. // // Contributor(s): none yet. // // ***** END GPL LICENSE BLOCK ***** // todo: not all trackflags / upflags are implemented/tested ! // m_trackflag is used to determine the forward tracking direction // m_upflag for the up direction // normal situation is +y for forward, +z for up #include "MT_Scalar.h" #include "SCA_IActuator.h" #include "KX_TrackToActuator.h" #include "SCA_IScene.h" #include "SCA_LogicManager.h" #include #include #include "KX_GameObject.h" #ifdef HAVE_CONFIG_H #include #endif /* ------------------------------------------------------------------------- */ /* Native functions */ /* ------------------------------------------------------------------------- */ KX_TrackToActuator::KX_TrackToActuator(SCA_IObject *gameobj, SCA_IObject *ob, int time, bool allow3D, int trackflag, int upflag, PyTypeObject* T) : SCA_IActuator(gameobj, T) { m_time = time; m_allow3D = allow3D; m_object = ob; m_trackflag = trackflag; m_upflag = upflag; m_parentobj = 0; if (m_object) m_object->RegisterActuator(this); if (gameobj->isA(&KX_GameObject::Type)) { // if the object is vertex parented, don't check parent orientation as the link is broken if (!((KX_GameObject*)gameobj)->IsVertexParent()){ m_parentobj = ((KX_GameObject*)gameobj)->GetParent(); // check if the object is parented if (m_parentobj) { // if so, store the initial local rotation // this is needed to revert the effect of the parent inverse node (TBC) m_parentlocalmat = m_parentobj->GetSGNode()->GetLocalOrientation(); } } } } /* End of constructor */ /* old function from Blender */ MT_Matrix3x3 EulToMat3(float *eul) { MT_Matrix3x3 mat; float ci, cj, ch, si, sj, sh, cc, cs, sc, ss; ci = cos(eul[0]); cj = cos(eul[1]); ch = cos(eul[2]); si = sin(eul[0]); sj = sin(eul[1]); sh = sin(eul[2]); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; mat[0][0] = cj*ch; mat[1][0] = sj*sc-cs; mat[2][0] = sj*cc+ss; mat[0][1] = cj*sh; mat[1][1] = sj*ss+cc; mat[2][1] = sj*cs-sc; mat[0][2] = -sj; mat[1][2] = cj*si; mat[2][2] = cj*ci; return mat; } /* old function from Blender */ void Mat3ToEulOld(MT_Matrix3x3 mat, float *eul) { MT_Scalar cy; cy = sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]); if (cy > 16.0*FLT_EPSILON) { eul[0] = atan2(mat[1][2], mat[2][2]); eul[1] = atan2(-mat[0][2], cy); eul[2] = atan2(mat[0][1], mat[0][0]); } else { eul[0] = atan2(-mat[2][1], mat[1][1]); eul[1] = atan2(-mat[0][2], cy); eul[2] = 0.0; } } /* old function from Blender */ void compatible_eulFast(float *eul, float *oldrot) { float dx, dy, dz; /* angular difference of 360 degrees */ dx= eul[0] - oldrot[0]; dy= eul[1] - oldrot[1]; dz= eul[2] - oldrot[2]; if( fabs(dx) > MT_PI) { if(dx > 0.0) eul[0] -= MT_2_PI; else eul[0]+= MT_2_PI; } if( fabs(dy) > MT_PI) { if(dy > 0.0) eul[1] -= MT_2_PI; else eul[1]+= MT_2_PI; } if( fabs(dz) > MT_PI ) { if(dz > 0.0) eul[2] -= MT_2_PI; else eul[2]+= MT_2_PI; } } MT_Matrix3x3 matrix3x3_interpol(MT_Matrix3x3 oldmat, MT_Matrix3x3 mat, int m_time) { float eul[3], oldeul[3]; Mat3ToEulOld(oldmat, oldeul); Mat3ToEulOld(mat, eul); compatible_eulFast(eul, oldeul); eul[0]= (m_time*oldeul[0] + eul[0])/(1.0+m_time); eul[1]= (m_time*oldeul[1] + eul[1])/(1.0+m_time); eul[2]= (m_time*oldeul[2] + eul[2])/(1.0+m_time); return EulToMat3(eul); } KX_TrackToActuator::~KX_TrackToActuator() { if (m_object) m_object->UnregisterActuator(this); if (m_parentobj) m_parentobj->Release(); } /* end of destructor */ void KX_TrackToActuator::ProcessReplica() { // the replica is tracking the same object => register it if (m_object) m_object->RegisterActuator(this); if (m_parentobj) m_parentobj->AddRef(); SCA_IActuator::ProcessReplica(); } bool KX_TrackToActuator::UnlinkObject(SCA_IObject* clientobj) { if (clientobj == m_object) { // this object is being deleted, we cannot continue to track it. m_object = NULL; return true; } return false; } void KX_TrackToActuator::Relink(GEN_Map *obj_map) { void **h_obj = (*obj_map)[m_object]; if (h_obj) { if (m_object) m_object->UnregisterActuator(this); m_object = (SCA_IObject*)(*h_obj); m_object->RegisterActuator(this); } void **h_parobj = (*obj_map)[m_parentobj]; if (h_parobj) { if (m_parentobj) m_parentobj->Release(); m_parentobj= (KX_GameObject*)(*h_parobj); m_parentobj->AddRef(); } } bool KX_TrackToActuator::Update(double curtime, bool frame) { bool result = false; bool bNegativeEvent = IsNegativeEvent(); RemoveAllEvents(); if (bNegativeEvent) { // do nothing on negative events } else if (m_object) { KX_GameObject* curobj = (KX_GameObject*) GetParent(); MT_Vector3 dir = ((KX_GameObject*)m_object)->NodeGetWorldPosition() - curobj->NodeGetWorldPosition(); if (dir.length2()) dir.normalize(); MT_Vector3 up(0,0,1); #ifdef DSADSA switch (m_upflag) { case 0: { up = MT_Vector3(1.0,0,0); break; } case 1: { up = MT_Vector3(0,1.0,0); break; } case 2: default: { up = MT_Vector3(0,0,1.0); } } #endif if (m_allow3D) { up = (up - up.dot(dir) * dir).safe_normalized(); } else { dir = (dir - up.dot(dir)*up).safe_normalized(); } MT_Vector3 left; MT_Matrix3x3 mat; switch (m_trackflag) { case 0: // TRACK X { // (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up left = dir.safe_normalized(); dir = (left.cross(up)).safe_normalized(); mat.setValue ( left[0], dir[0],up[0], left[1], dir[1],up[1], left[2], dir[2],up[2] ); break; }; case 1: // TRACK Y { // (0.0 , 1.0 , 0.0 ) y direction is forward, z (0.0 , 0.0 , 1.0 ) up left = (dir.cross(up)).safe_normalized(); mat.setValue ( left[0], dir[0],up[0], left[1], dir[1],up[1], left[2], dir[2],up[2] ); break; } case 2: // track Z { left = up.safe_normalized(); up = dir.safe_normalized(); dir = left; left = (dir.cross(up)).safe_normalized(); mat.setValue ( left[0], dir[0],up[0], left[1], dir[1],up[1], left[2], dir[2],up[2] ); break; } case 3: // TRACK -X { // (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up left = -dir.safe_normalized(); dir = -(left.cross(up)).safe_normalized(); mat.setValue ( left[0], dir[0],up[0], left[1], dir[1],up[1], left[2], dir[2],up[2] ); break; }; case 4: // TRACK -Y { // (0.0 , -1.0 , 0.0 ) -y direction is forward, z (0.0 , 0.0 , 1.0 ) up left = (-dir.cross(up)).safe_normalized(); mat.setValue ( left[0], -dir[0],up[0], left[1], -dir[1],up[1], left[2], -dir[2],up[2] ); break; } case 5: // track -Z { left = up.safe_normalized(); up = -dir.safe_normalized(); dir = left; left = (dir.cross(up)).safe_normalized(); mat.setValue ( left[0], dir[0],up[0], left[1], dir[1],up[1], left[2], dir[2],up[2] ); break; } default: { // (1.0 , 0.0 , 0.0 ) -x direction is forward, z (0.0 , 0.0 , 1.0 ) up left = -dir.safe_normalized(); dir = -(left.cross(up)).safe_normalized(); mat.setValue ( left[0], dir[0],up[0], left[1], dir[1],up[1], left[2], dir[2],up[2] ); } } MT_Matrix3x3 oldmat; oldmat= curobj->NodeGetWorldOrientation(); /* erwin should rewrite this! */ mat= matrix3x3_interpol(oldmat, mat, m_time); if(m_parentobj){ // check if the model is parented and calculate the child transform MT_Point3 localpos; localpos = curobj->GetSGNode()->GetLocalPosition(); // Get the inverse of the parent matrix MT_Matrix3x3 parentmatinv; parentmatinv = m_parentobj->NodeGetWorldOrientation ().inverse (); // transform the local coordinate system into the parents system mat = parentmatinv * mat; // append the initial parent local rotation matrix mat = m_parentlocalmat * mat; // set the models tranformation properties curobj->NodeSetLocalOrientation(mat); curobj->NodeSetLocalPosition(localpos); curobj->UpdateTransform(); } else { curobj->NodeSetLocalOrientation(mat); } result = true; } return result; } /* ------------------------------------------------------------------------- */ /* Python functions */ /* ------------------------------------------------------------------------- */ /* Integration hooks ------------------------------------------------------- */ PyTypeObject KX_TrackToActuator::Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "KX_TrackToActuator", sizeof(KX_TrackToActuator), 0, PyDestructor, 0, __getattr, __setattr, 0, //&MyPyCompare, __repr, 0, //&cvalue_as_number, 0, 0, 0, 0 }; PyParentObject KX_TrackToActuator::Parents[] = { &KX_TrackToActuator::Type, &SCA_IActuator::Type, &SCA_ILogicBrick::Type, &CValue::Type, NULL }; PyMethodDef KX_TrackToActuator::Methods[] = { {"setObject", (PyCFunction) KX_TrackToActuator::sPySetObject, METH_O, SetObject_doc}, {"getObject", (PyCFunction) KX_TrackToActuator::sPyGetObject, METH_VARARGS, GetObject_doc}, {"setTime", (PyCFunction) KX_TrackToActuator::sPySetTime, METH_VARARGS, SetTime_doc}, {"getTime", (PyCFunction) KX_TrackToActuator::sPyGetTime, METH_VARARGS, GetTime_doc}, {"setUse3D", (PyCFunction) KX_TrackToActuator::sPySetUse3D, METH_VARARGS, SetUse3D_doc}, {"getUse3D", (PyCFunction) KX_TrackToActuator::sPyGetUse3D, METH_VARARGS, GetUse3D_doc}, {NULL,NULL} //Sentinel }; PyObject* KX_TrackToActuator::_getattr(const STR_String& attr) { _getattr_up(SCA_IActuator); } /* 1. setObject */ char KX_TrackToActuator::SetObject_doc[] = "setObject(object)\n" "\t- object: KX_GameObject, string or None\n" "\tSet the object to track with the parent of this actuator.\n"; PyObject* KX_TrackToActuator::PySetObject(PyObject* self, PyObject* value) { KX_GameObject *gameobj; if (!ConvertPythonToGameObject(value, &gameobj, true)) return NULL; // ConvertPythonToGameObject sets the error if (m_object != NULL) m_object->UnregisterActuator(this); m_object = (SCA_IObject*)gameobj; if (m_object) m_object->RegisterActuator(this); Py_RETURN_NONE; } /* 2. getObject */ char KX_TrackToActuator::GetObject_doc[] = "getObject(name_only = 1)\n" "name_only - optional arg, when true will return the KX_GameObject rather then its name\n" "\tReturns the object to track with the parent of this actuator\n"; PyObject* KX_TrackToActuator::PyGetObject(PyObject* self, PyObject* args) { int ret_name_only = 1; if (!PyArg_ParseTuple(args, "|i", &ret_name_only)) return NULL; if (!m_object) Py_RETURN_NONE; if (ret_name_only) return PyString_FromString(m_object->GetName()); else return m_object->AddRef(); } /* 3. setTime */ char KX_TrackToActuator::SetTime_doc[] = "setTime(time)\n" "\t- time: integer\n" "\tSet the time in frames with which to delay the tracking motion.\n"; PyObject* KX_TrackToActuator::PySetTime(PyObject* self, PyObject* args, PyObject* kwds) { int timeArg; if (!PyArg_ParseTuple(args, "i", &timeArg)) { return NULL; } m_time= timeArg; Py_Return; } /* 4.getTime */ char KX_TrackToActuator::GetTime_doc[] = "getTime()\n" "\t- time: integer\n" "\tReturn the time in frames with which the tracking motion is delayed.\n"; PyObject* KX_TrackToActuator::PyGetTime(PyObject* self, PyObject* args, PyObject* kwds) { return PyInt_FromLong(m_time); } /* 5. getUse3D */ char KX_TrackToActuator::GetUse3D_doc[] = "getUse3D()\n" "\tReturns 1 if the motion is allowed to extend in the z-direction.\n"; PyObject* KX_TrackToActuator::PyGetUse3D(PyObject* self, PyObject* args, PyObject* kwds) { return PyInt_FromLong(!(m_allow3D == 0)); } /* 6. setUse3D */ char KX_TrackToActuator::SetUse3D_doc[] = "setUse3D(value)\n" "\t- value: 0 or 1\n" "\tSet to 1 to allow the tracking motion to extend in the z-direction,\n" "\tset to 0 to lock the tracking motion to the x-y plane.\n"; PyObject* KX_TrackToActuator::PySetUse3D(PyObject* self, PyObject* args, PyObject* kwds) { int boolArg; if (!PyArg_ParseTuple(args, "i", &boolArg)) { return NULL; } m_allow3D = !(boolArg == 0); Py_Return; } /* eof */