/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "CcdPhysicsController.h" #include "btBulletDynamicsCommon.h" #include "PHY_IMotionState.h" #include "CcdPhysicsEnvironment.h" class BP_Proxy; ///todo: fill all the empty CcdPhysicsController methods, hook them up to the btRigidBody class //'temporarily' global variables //float gDeactivationTime = 2.f; //bool gDisableDeactivation = false; extern float gDeactivationTime; extern bool gDisableDeactivation; float gLinearSleepingTreshold = 0.8f; float gAngularSleepingTreshold = 1.0f; btVector3 startVel(0,0,0);//-10000); CcdPhysicsController::CcdPhysicsController (const CcdConstructionInfo& ci) :m_cci(ci) { m_collisionDelay = 0; m_newClientInfo = 0; m_registerCount = 0; m_MotionState = ci.m_MotionState; m_bulletMotionState = 0; CreateRigidbody(); #ifdef WIN32 if (m_body->getInvMass()) m_body->setLinearVelocity(startVel); #endif } btTransform CcdPhysicsController::GetTransformFromMotionState(PHY_IMotionState* motionState) { btTransform trans; float tmp[3]; motionState->getWorldPosition(tmp[0],tmp[1],tmp[2]); trans.setOrigin(btVector3(tmp[0],tmp[1],tmp[2])); btQuaternion orn; motionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]); trans.setRotation(orn); return trans; } class BlenderBulletMotionState : public btMotionState { PHY_IMotionState* m_blenderMotionState; public: BlenderBulletMotionState(PHY_IMotionState* bms) :m_blenderMotionState(bms) { } virtual void getWorldTransform(btTransform& worldTrans ) const { float pos[3]; float quatOrn[4]; m_blenderMotionState->getWorldPosition(pos[0],pos[1],pos[2]); m_blenderMotionState->getWorldOrientation(quatOrn[0],quatOrn[1],quatOrn[2],quatOrn[3]); worldTrans.setOrigin(btVector3(pos[0],pos[1],pos[2])); worldTrans.setBasis(btMatrix3x3(btQuaternion(quatOrn[0],quatOrn[1],quatOrn[2],quatOrn[3]))); } virtual void setWorldTransform(const btTransform& worldTrans) { m_blenderMotionState->setWorldPosition(worldTrans.getOrigin().getX(),worldTrans.getOrigin().getY(),worldTrans.getOrigin().getZ()); btQuaternion rotQuat = worldTrans.getRotation(); m_blenderMotionState->setWorldOrientation(rotQuat[0],rotQuat[1],rotQuat[2],rotQuat[3]); m_blenderMotionState->calculateWorldTransformations(); } }; void CcdPhysicsController::CreateRigidbody() { btTransform trans = GetTransformFromMotionState(m_MotionState); m_bulletMotionState = new BlenderBulletMotionState(m_MotionState); m_body = new btRigidBody(m_cci.m_mass, m_bulletMotionState, m_cci.m_collisionShape, m_cci.m_localInertiaTensor * m_cci.m_inertiaFactor, m_cci.m_linearDamping,m_cci.m_angularDamping, m_cci.m_friction,m_cci.m_restitution); // // init the rigidbody properly // //setMassProps this also sets collisionFlags //convert collision flags! //special case: a near/radar sensor controller should not be defined static or it will //generate loads of static-static collision messages on the console if ((m_cci.m_collisionFilterGroup & CcdConstructionInfo::SensorFilter) != 0) { // reset the flags that have been set so far m_body->setCollisionFlags(0); } m_body->setCollisionFlags(m_body->getCollisionFlags() | m_cci.m_collisionFlags); m_body->setGravity( m_cci.m_gravity); m_body->setDamping(m_cci.m_linearDamping, m_cci.m_angularDamping); if (!m_cci.m_bRigid) { m_body->setAngularFactor(0.f); } } CcdPhysicsController::~CcdPhysicsController() { //will be reference counted, due to sharing if (m_cci.m_physicsEnv) m_cci.m_physicsEnv->removeCcdPhysicsController(this); if (m_MotionState) delete m_MotionState; if (m_bulletMotionState) delete m_bulletMotionState; delete m_body; } /** SynchronizeMotionStates ynchronizes dynas, kinematic and deformable entities (and do 'late binding') */ bool CcdPhysicsController::SynchronizeMotionStates(float time) { //sync non-static to motionstate, and static from motionstate (todo: add kinematic etc.) if (!m_body->isStaticObject()) { const btVector3& worldPos = m_body->getCenterOfMassPosition(); m_MotionState->setWorldPosition(worldPos[0],worldPos[1],worldPos[2]); const btQuaternion& worldquat = m_body->getOrientation(); m_MotionState->setWorldOrientation(worldquat[0],worldquat[1],worldquat[2],worldquat[3]); m_MotionState->calculateWorldTransformations(); float scale[3]; m_MotionState->getWorldScaling(scale[0],scale[1],scale[2]); btVector3 scaling(scale[0],scale[1],scale[2]); GetCollisionShape()->setLocalScaling(scaling); } else { btVector3 worldPos; btQuaternion worldquat; /* m_MotionState->getWorldPosition(worldPos[0],worldPos[1],worldPos[2]); m_MotionState->getWorldOrientation(worldquat[0],worldquat[1],worldquat[2],worldquat[3]); btTransform oldTrans = m_body->getCenterOfMassTransform(); btTransform newTrans(worldquat,worldPos); m_body->setCenterOfMassTransform(newTrans); //need to keep track of previous position for friction effects... m_MotionState->calculateWorldTransformations(); */ float scale[3]; m_MotionState->getWorldScaling(scale[0],scale[1],scale[2]); btVector3 scaling(scale[0],scale[1],scale[2]); GetCollisionShape()->setLocalScaling(scaling); } return true; } /** WriteMotionStateToDynamics synchronizes dynas, kinematic and deformable entities (and do 'late binding') */ void CcdPhysicsController::WriteMotionStateToDynamics(bool nondynaonly) { } void CcdPhysicsController::WriteDynamicsToMotionState() { } // controller replication void CcdPhysicsController::PostProcessReplica(class PHY_IMotionState* motionstate,class PHY_IPhysicsController* parentctrl) { m_MotionState = motionstate; m_registerCount = 0; m_body = 0; CreateRigidbody(); m_cci.m_physicsEnv->addCcdPhysicsController(this); /* SM_Object* dynaparent=0; SumoPhysicsController* sumoparentctrl = (SumoPhysicsController* )parentctrl; if (sumoparentctrl) { dynaparent = sumoparentctrl->GetSumoObject(); } SM_Object* orgsumoobject = m_sumoObj; m_sumoObj = new SM_Object( orgsumoobject->getShapeHandle(), orgsumoobject->getMaterialProps(), orgsumoobject->getShapeProps(), dynaparent); m_sumoObj->setRigidBody(orgsumoobject->isRigidBody()); m_sumoObj->setMargin(orgsumoobject->getMargin()); m_sumoObj->setPosition(orgsumoobject->getPosition()); m_sumoObj->setOrientation(orgsumoobject->getOrientation()); //if it is a dyna, register for a callback m_sumoObj->registerCallback(*this); m_sumoScene->add(* (m_sumoObj)); */ } // kinematic methods void CcdPhysicsController::RelativeTranslate(float dlocX,float dlocY,float dlocZ,bool local) { if (m_body) { m_body->activate(true); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } btVector3 dloc(dlocX,dlocY,dlocZ); btTransform xform = m_body->getCenterOfMassTransform(); if (local) { dloc = xform.getBasis()*dloc; } xform.setOrigin(xform.getOrigin() + dloc); m_body->setCenterOfMassTransform(xform); } } void CcdPhysicsController::RelativeRotate(const float rotval[9],bool local) { if (m_body) { m_body->activate(true); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } btMatrix3x3 drotmat( rotval[0],rotval[4],rotval[8], rotval[1],rotval[5],rotval[9], rotval[2],rotval[6],rotval[10]); btMatrix3x3 currentOrn; GetWorldOrientation(currentOrn); btTransform xform = m_body->getCenterOfMassTransform(); xform.setBasis(xform.getBasis()*(local ? drotmat : (currentOrn.inverse() * drotmat * currentOrn))); m_body->setCenterOfMassTransform(xform); } } void CcdPhysicsController::GetWorldOrientation(btMatrix3x3& mat) { float orn[4]; m_MotionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]); btQuaternion quat(orn[0],orn[1],orn[2],orn[3]); mat.setRotation(quat); } void CcdPhysicsController::getOrientation(float &quatImag0,float &quatImag1,float &quatImag2,float &quatReal) { btQuaternion q = m_body->getCenterOfMassTransform().getRotation(); quatImag0 = q[0]; quatImag1 = q[1]; quatImag2 = q[2]; quatReal = q[3]; } void CcdPhysicsController::setOrientation(float quatImag0,float quatImag1,float quatImag2,float quatReal) { if (m_body) { m_body->activate(true); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } // not required //m_MotionState->setWorldOrientation(quatImag0,quatImag1,quatImag2,quatReal); btTransform xform = m_body->getCenterOfMassTransform(); xform.setRotation(btQuaternion(quatImag0,quatImag1,quatImag2,quatReal)); m_body->setCenterOfMassTransform(xform); // not required //m_bulletMotionState->setWorldTransform(xform); } } void CcdPhysicsController::setWorldOrientation(const btMatrix3x3& orn) { if (m_body) { m_body->activate(true); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } // not required //m_MotionState->setWorldOrientation(quatImag0,quatImag1,quatImag2,quatReal); btTransform xform = m_body->getCenterOfMassTransform(); xform.setBasis(orn); m_body->setCenterOfMassTransform(xform); // not required //m_bulletMotionState->setWorldTransform(xform); } } void CcdPhysicsController::setPosition(float posX,float posY,float posZ) { if (m_body) { m_body->activate(true); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } // not required, this function is only used to update the physic controller //m_MotionState->setWorldPosition(posX,posY,posZ); btTransform xform = m_body->getCenterOfMassTransform(); xform.setOrigin(btVector3(posX,posY,posZ)); m_body->setCenterOfMassTransform(xform); // not required //m_bulletMotionState->setWorldTransform(xform); } } void CcdPhysicsController::resolveCombinedVelocities(float linvelX,float linvelY,float linvelZ,float angVelX,float angVelY,float angVelZ) { } void CcdPhysicsController::getPosition(PHY__Vector3& pos) const { const btTransform& xform = m_body->getCenterOfMassTransform(); pos[0] = xform.getOrigin().x(); pos[1] = xform.getOrigin().y(); pos[2] = xform.getOrigin().z(); } void CcdPhysicsController::setScaling(float scaleX,float scaleY,float scaleZ) { if (!btFuzzyZero(m_cci.m_scaling.x()-scaleX) || !btFuzzyZero(m_cci.m_scaling.y()-scaleY) || !btFuzzyZero(m_cci.m_scaling.z()-scaleZ)) { m_cci.m_scaling = btVector3(scaleX,scaleY,scaleZ); if (m_body && m_body->getCollisionShape()) { m_body->getCollisionShape()->setLocalScaling(m_cci.m_scaling); //printf("no inertia recalc for fixed objects with mass=0\n"); if (m_cci.m_mass) { m_body->getCollisionShape()->calculateLocalInertia(m_cci.m_mass, m_cci.m_localInertiaTensor); m_body->setMassProps(m_cci.m_mass, m_cci.m_localInertiaTensor * m_cci.m_inertiaFactor); } } } } // physics methods void CcdPhysicsController::ApplyTorque(float torqueX,float torqueY,float torqueZ,bool local) { btVector3 torque(torqueX,torqueY,torqueZ); btTransform xform = m_body->getCenterOfMassTransform(); if (m_body && torque.length2() > (SIMD_EPSILON*SIMD_EPSILON)) { m_body->activate(); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } if (local) { torque = xform.getBasis()*torque; } m_body->applyTorque(torque); } } void CcdPhysicsController::ApplyForce(float forceX,float forceY,float forceZ,bool local) { btVector3 force(forceX,forceY,forceZ); if (m_body && force.length2() > (SIMD_EPSILON*SIMD_EPSILON)) { m_body->activate(); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } { btTransform xform = m_body->getCenterOfMassTransform(); if (local) { force = xform.getBasis()*force; } } m_body->applyCentralForce(force); } } void CcdPhysicsController::SetAngularVelocity(float ang_velX,float ang_velY,float ang_velZ,bool local) { btVector3 angvel(ang_velX,ang_velY,ang_velZ); if (m_body && angvel.length2() > (SIMD_EPSILON*SIMD_EPSILON)) { m_body->activate(true); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } { btTransform xform = m_body->getCenterOfMassTransform(); if (local) { angvel = xform.getBasis()*angvel; } } m_body->setAngularVelocity(angvel); } } void CcdPhysicsController::SetLinearVelocity(float lin_velX,float lin_velY,float lin_velZ,bool local) { btVector3 linVel(lin_velX,lin_velY,lin_velZ); if (m_body && linVel.length2() > (SIMD_EPSILON*SIMD_EPSILON)) { m_body->activate(true); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } { btTransform xform = m_body->getCenterOfMassTransform(); if (local) { linVel = xform.getBasis()*linVel; } } m_body->setLinearVelocity(linVel); } } void CcdPhysicsController::applyImpulse(float attachX,float attachY,float attachZ, float impulseX,float impulseY,float impulseZ) { btVector3 impulse(impulseX,impulseY,impulseZ); if (m_body && impulse.length2() > (SIMD_EPSILON*SIMD_EPSILON)) { m_body->activate(); if (m_body->isStaticObject()) { m_body->setCollisionFlags(m_body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } btVector3 pos(attachX,attachY,attachZ); m_body->applyImpulse(impulse,pos); } } void CcdPhysicsController::SetActive(bool active) { } // reading out information from physics void CcdPhysicsController::GetLinearVelocity(float& linvX,float& linvY,float& linvZ) { const btVector3& linvel = this->m_body->getLinearVelocity(); linvX = linvel.x(); linvY = linvel.y(); linvZ = linvel.z(); } void CcdPhysicsController::GetAngularVelocity(float& angVelX,float& angVelY,float& angVelZ) { const btVector3& angvel= m_body->getAngularVelocity(); angVelX = angvel.x(); angVelY = angvel.y(); angVelZ = angvel.z(); } void CcdPhysicsController::GetVelocity(const float posX,const float posY,const float posZ,float& linvX,float& linvY,float& linvZ) { btVector3 pos(posX,posY,posZ); btVector3 rel_pos = pos-m_body->getCenterOfMassPosition(); btVector3 linvel = m_body->getVelocityInLocalPoint(rel_pos); linvX = linvel.x(); linvY = linvel.y(); linvZ = linvel.z(); } void CcdPhysicsController::getReactionForce(float& forceX,float& forceY,float& forceZ) { } // dyna's that are rigidbody are free in orientation, dyna's with non-rigidbody are restricted void CcdPhysicsController::setRigidBody(bool rigid) { if (!rigid) { //fake it for now btVector3 inertia = m_body->getInvInertiaDiagLocal(); inertia[1] = 0.f; m_body->setInvInertiaDiagLocal(inertia); m_body->updateInertiaTensor(); } } // clientinfo for raycasts for example void* CcdPhysicsController::getNewClientInfo() { return m_newClientInfo; } void CcdPhysicsController::setNewClientInfo(void* clientinfo) { m_newClientInfo = clientinfo; } void CcdPhysicsController::UpdateDeactivation(float timeStep) { m_body->updateDeactivation( timeStep); } bool CcdPhysicsController::wantsSleeping() { return m_body->wantsSleeping(); } PHY_IPhysicsController* CcdPhysicsController::GetReplica() { //very experimental, shape sharing is not implemented yet. //just support btSphereShape/ConeShape for now CcdConstructionInfo cinfo = m_cci; if (cinfo.m_collisionShape) { switch (cinfo.m_collisionShape->getShapeType()) { case SPHERE_SHAPE_PROXYTYPE: { btSphereShape* orgShape = (btSphereShape*)cinfo.m_collisionShape; cinfo.m_collisionShape = new btSphereShape(*orgShape); break; } case CONE_SHAPE_PROXYTYPE: { btConeShape* orgShape = (btConeShape*)cinfo.m_collisionShape; cinfo.m_collisionShape = new btConeShape(*orgShape); break; } default: { return 0; } } } cinfo.m_MotionState = new DefaultMotionState(); CcdPhysicsController* replica = new CcdPhysicsController(cinfo); return replica; } /////////////////////////////////////////////////////////// ///A small utility class, DefaultMotionState /// /////////////////////////////////////////////////////////// DefaultMotionState::DefaultMotionState() { m_worldTransform.setIdentity(); m_localScaling.setValue(1.f,1.f,1.f); } DefaultMotionState::~DefaultMotionState() { } void DefaultMotionState::getWorldPosition(float& posX,float& posY,float& posZ) { posX = m_worldTransform.getOrigin().x(); posY = m_worldTransform.getOrigin().y(); posZ = m_worldTransform.getOrigin().z(); } void DefaultMotionState::getWorldScaling(float& scaleX,float& scaleY,float& scaleZ) { scaleX = m_localScaling.getX(); scaleY = m_localScaling.getY(); scaleZ = m_localScaling.getZ(); } void DefaultMotionState::getWorldOrientation(float& quatIma0,float& quatIma1,float& quatIma2,float& quatReal) { quatIma0 = m_worldTransform.getRotation().x(); quatIma1 = m_worldTransform.getRotation().y(); quatIma2 = m_worldTransform.getRotation().z(); quatReal = m_worldTransform.getRotation()[3]; } void DefaultMotionState::setWorldPosition(float posX,float posY,float posZ) { btPoint3 pos(posX,posY,posZ); m_worldTransform.setOrigin( pos ); } void DefaultMotionState::setWorldOrientation(float quatIma0,float quatIma1,float quatIma2,float quatReal) { btQuaternion orn(quatIma0,quatIma1,quatIma2,quatReal); m_worldTransform.setRotation( orn ); } void DefaultMotionState::calculateWorldTransformations() { }