/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include "SumoPhysicsController.h" #include "PHY_IMotionState.h" #include "SM_Object.h" #include "MT_Quaternion.h" SumoPhysicsController::SumoPhysicsController( class SM_Scene* sumoScene, DT_SceneHandle solidscene, class SM_Object* sumoObj, class PHY_IMotionState* motionstate, bool dyna) : m_sumoScene(sumoScene), m_solidscene(solidscene), m_sumoObj(sumoObj) , m_bFirstTime(true), m_MotionState(motionstate), m_bDyna(dyna) { if (m_sumoObj) { m_sumoObj->setClientObject(this); //if it is a dyna, register for a callback m_sumoObj->registerCallback(*this); } }; SumoPhysicsController::~SumoPhysicsController() { if (m_sumoObj) { m_sumoScene->remove(*m_sumoObj); DT_ObjectHandle objhandle = (DT_ObjectHandle) m_sumoObj->getObjectHandle(); if (objhandle) { DT_RemoveObject(m_solidscene,objhandle); } delete m_sumoObj; } } float SumoPhysicsController::getMass() { if (m_sumoObj) { const SM_ShapeProps *shapeprops = m_sumoObj->getShapeProps(); return shapeprops->m_mass; } return 0.f; } bool SumoPhysicsController::SynchronizeMotionStates(float time) { if (m_bFirstTime) { setSumoTransform(false); m_bFirstTime = false; } if (!m_bDyna) { if (m_sumoObj) { MT_Point3 pos; GetWorldPosition(pos); m_sumoObj->setPosition(pos); if (m_bDyna) { m_sumoObj->setScaling(MT_Vector3(1,1,1)); } else { MT_Vector3 scaling; GetWorldScaling(scaling); m_sumoObj->setScaling(scaling); } MT_Matrix3x3 orn; GetWorldOrientation(orn); m_sumoObj->setOrientation(orn.getRotation()); m_sumoObj->calcXform(); } } return false; // physics object are not part of // hierarchy, or ignore it ?? } void SumoPhysicsController::GetWorldOrientation(MT_Matrix3x3& mat) { float orn[4]; m_MotionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]); MT_Quaternion quat(orn); mat.setRotation(quat); } void SumoPhysicsController::GetWorldPosition(MT_Point3& pos) { float worldpos[3]; m_MotionState->getWorldPosition(worldpos[0],worldpos[1],worldpos[2]); pos[0]=worldpos[0]; pos[1]=worldpos[1]; pos[2]=worldpos[2]; } void SumoPhysicsController::GetWorldScaling(MT_Vector3& scale) { float worldscale[3]; m_MotionState->getWorldScaling(worldscale[0],worldscale[1],worldscale[2]); scale[0]=worldscale[0]; scale[1]=worldscale[1]; scale[2]=worldscale[2]; } // kinematic methods void SumoPhysicsController::RelativeTranslate(float dlocX,float dlocY,float dlocZ,bool local) { if (m_sumoObj) { MT_Matrix3x3 mat; GetWorldOrientation(mat); MT_Vector3 dloc(dlocX,dlocY,dlocZ); MT_Point3 newpos = m_sumoObj->getPosition(); newpos += (local ? mat * dloc : dloc); m_sumoObj->setPosition(newpos); } } void SumoPhysicsController::RelativeRotate(const float drot[9],bool local) { if (m_sumoObj ) { MT_Matrix3x3 drotmat(drot); MT_Matrix3x3 currentOrn; GetWorldOrientation(currentOrn); m_sumoObj->setOrientation(m_sumoObj->getOrientation()*(local ? drotmat.getRotation() : (currentOrn.inverse() * drotmat * currentOrn)).getRotation()); } } void SumoPhysicsController::setOrientation(float quatImag0,float quatImag1,float quatImag2,float quatReal) { float orn [4]={quatImag0,quatImag1,quatImag2,quatReal}; MT_Quaternion quat(orn); m_sumoObj->setOrientation(orn); } void SumoPhysicsController::getOrientation(float &quatImag0,float &quatImag1,float &quatImag2,float &quatReal) { const MT_Quaternion& q = m_sumoObj->getOrientation(); quatImag0 = q[0]; quatImag1 = q[1]; quatImag2 = q[2]; quatReal = q[3]; } void SumoPhysicsController::setPosition(float posX,float posY,float posZ) { m_sumoObj->setPosition(MT_Point3(posX,posY,posZ)); } void SumoPhysicsController::setScaling(float scaleX,float scaleY,float scaleZ) { m_sumoObj->setScaling(MT_Vector3(scaleX,scaleY,scaleZ)); } // physics methods void SumoPhysicsController::ApplyTorque(float torqueX,float torqueY,float torqueZ,bool local) { if (m_sumoObj) { MT_Vector3 torque(torqueX,torqueY,torqueZ); MT_Matrix3x3 orn; GetWorldOrientation(orn); m_sumoObj->applyTorque(local ? orn * torque : torque); } } void SumoPhysicsController::ApplyForce(float forceX,float forceY,float forceZ,bool local) { if (m_sumoObj) { MT_Vector3 force(forceX,forceY,forceZ); MT_Matrix3x3 orn; GetWorldOrientation(orn); m_sumoObj->applyCenterForce(local ? orn * force : force); } } void SumoPhysicsController::SetAngularVelocity(float ang_velX,float ang_velY,float ang_velZ,bool local) { if (m_sumoObj) { MT_Vector3 ang_vel(ang_velX,ang_velY,ang_velZ); MT_Matrix3x3 orn; GetWorldOrientation(orn); m_sumoObj->setAngularVelocity(local ? orn * ang_vel : ang_vel); } } void SumoPhysicsController::SetLinearVelocity(float lin_velX,float lin_velY,float lin_velZ,bool local) { if (m_sumoObj ) { MT_Matrix3x3 orn; GetWorldOrientation(orn); MT_Vector3 lin_vel(lin_velX,lin_velY,lin_velZ); m_sumoObj->setLinearVelocity(local ? orn * lin_vel : lin_vel); } } void SumoPhysicsController::applyImpulse(float attachX,float attachY,float attachZ, float impulseX,float impulseY,float impulseZ) { if (m_sumoObj) { MT_Point3 attach(attachX,attachY,attachZ); MT_Vector3 impulse(impulseX,impulseY,impulseZ); m_sumoObj->applyImpulse(attach,impulse); } } void SumoPhysicsController::SuspendDynamics() { m_suspendDynamics=true; if (m_sumoObj) { m_sumoObj->suspendDynamics(); m_sumoObj->setLinearVelocity(MT_Vector3(0,0,0)); m_sumoObj->setAngularVelocity(MT_Vector3(0,0,0)); m_sumoObj->calcXform(); } } void SumoPhysicsController::RestoreDynamics() { m_suspendDynamics=false; if (m_sumoObj) { m_sumoObj->restoreDynamics(); } } /** reading out information from physics */ void SumoPhysicsController::GetLinearVelocity(float& linvX,float& linvY,float& linvZ) { if (m_sumoObj) { // get velocity from the physics object (m_sumoObj) const MT_Vector3& vel = m_sumoObj->getLinearVelocity(); linvX = vel[0]; linvY = vel[1]; linvZ = vel[2]; } else { linvX = 0.f; linvY = 0.f; linvZ = 0.f; } } /** GetVelocity parameters are in geometric coordinates (Origin is not center of mass!). */ void SumoPhysicsController::GetVelocity(const float posX,const float posY,const float posZ,float& linvX,float& linvY,float& linvZ) { if (m_sumoObj) { MT_Point3 pos(posX,posY,posZ); // get velocity from the physics object (m_sumoObj) const MT_Vector3& vel = m_sumoObj->getVelocity(pos); linvX = vel[0]; linvY = vel[1]; linvZ = vel[2]; } else { linvX = 0.f; linvY = 0.f; linvZ = 0.f; } } void SumoPhysicsController::getReactionForce(float& forceX,float& forceY,float& forceZ) { const MT_Vector3& force = m_sumoObj->getReactionForce(); forceX = force[0]; forceY = force[1]; forceZ = force[2]; } void SumoPhysicsController::setRigidBody(bool rigid) { m_sumoObj->setRigidBody(rigid); } void SumoPhysicsController::PostProcessReplica(class PHY_IMotionState* motionstate,class PHY_IPhysicsController* parentctrl) { m_MotionState = motionstate; SM_Object* dynaparent=0; SumoPhysicsController* sumoparentctrl = (SumoPhysicsController* )parentctrl; if (sumoparentctrl) { dynaparent = sumoparentctrl->GetSumoObject(); } SM_Object* orgsumoobject = m_sumoObj; m_sumoObj = new SM_Object( orgsumoobject->getShapeHandle(), orgsumoobject->getMaterialProps(), orgsumoobject->getShapeProps(), dynaparent); m_sumoObj->setRigidBody(orgsumoobject->isRigidBody()); double radius = orgsumoobject->getMargin(); m_sumoObj->setMargin(orgsumoobject->getMargin()); m_sumoObj->setPosition(orgsumoobject->getPosition()); m_sumoObj->setOrientation(orgsumoobject->getOrientation()); m_sumoScene->add(* (m_sumoObj)); if (m_sumoObj) { m_sumoObj->setClientObject(this); //if it is a dyna, register for a callback m_sumoObj->registerCallback(*this); } DT_AddObject(m_solidscene,m_sumoObj->getObjectHandle()); } void SumoPhysicsController::SetSimulatedTime(float time) { } void SumoPhysicsController::WriteMotionStateToDynamics(bool nondynaonly) { } // this is the actual callback from sumo, and the position/orientation //is written to the scenegraph, using the motionstate abstraction void SumoPhysicsController::do_me() { const MT_Point3& pos = m_sumoObj->getPosition(); const MT_Quaternion& orn = m_sumoObj->getOrientation(); m_MotionState->setWorldPosition(pos[0],pos[1],pos[2]); m_MotionState->setWorldOrientation(orn[0],orn[1],orn[2],orn[3]); } void SumoPhysicsController::setSumoTransform(bool nondynaonly) { if (!nondynaonly || !m_bDyna) { if (m_sumoObj) { MT_Point3 pos; GetWorldPosition(pos); m_sumoObj->setPosition(pos); if (m_bDyna) { m_sumoObj->setScaling(MT_Vector3(1,1,1)); } else { MT_Vector3 scale; GetWorldScaling(scale); m_sumoObj->setScaling(scale); } MT_Matrix3x3 orn; GetWorldOrientation(orn); m_sumoObj->setOrientation(orn.getRotation()); m_sumoObj->calcXform(); } } }