#include "testing/testing.h" // Keep first since utildefines defines AT which conflicts with fucking STL #include "intern/abc_util.h" extern "C" { #include "BLI_utildefines.h" #include "BLI_math.h" } TEST(abc_matrix, CreateRotationMatrixY_YfromZ) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; float euler[3] = {0.f, M_PI_4, 0.f}; // Construct expected matrices float unit[3][3]; float rot_z_min_quart_pi[3][3]; // rotation of -pi/4 radians over z-axis unit_m3(unit); unit_m3(rot_z_min_quart_pi); rot_z_min_quart_pi[0][0] = M_SQRT1_2; rot_z_min_quart_pi[0][1] = -M_SQRT1_2; rot_z_min_quart_pi[1][0] = M_SQRT1_2; rot_z_min_quart_pi[1][1] = M_SQRT1_2; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_YUP_FROM_ZUP); EXPECT_M3_NEAR(rot_x_mat, unit, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, unit, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, rot_z_min_quart_pi, 1e-5f); } TEST(abc_matrix, CreateRotationMatrixZ_YfromZ) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; float euler[3] = {0.f, 0.f, M_PI_4}; // Construct expected matrices float unit[3][3]; float rot_y_quart_pi[3][3]; // rotation of pi/4 radians over y-axis unit_m3(unit); unit_m3(rot_y_quart_pi); rot_y_quart_pi[0][0] = M_SQRT1_2; rot_y_quart_pi[0][2] = -M_SQRT1_2; rot_y_quart_pi[2][0] = M_SQRT1_2; rot_y_quart_pi[2][2] = M_SQRT1_2; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_YUP_FROM_ZUP); EXPECT_M3_NEAR(rot_x_mat, unit, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, rot_y_quart_pi, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, unit, 1e-5f); } TEST(abc_matrix, CreateRotationMatrixXYZ_YfromZ) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; // in degrees: X=10, Y=20, Z=30 float euler[3] = {0.1745329201221466f, 0.3490658104419708f, 0.5235987901687622f}; // Construct expected matrices float rot_x_p10[3][3]; // rotation of +10 degrees over x-axis float rot_y_p30[3][3]; // rotation of +30 degrees over y-axis float rot_z_m20[3][3]; // rotation of -20 degrees over z-axis unit_m3(rot_x_p10); rot_x_p10[1][1] = 0.9848077297210693f; rot_x_p10[1][2] = 0.1736481785774231f; rot_x_p10[2][1] = -0.1736481785774231f; rot_x_p10[2][2] = 0.9848077297210693f; unit_m3(rot_y_p30); rot_y_p30[0][0] = 0.8660253882408142f; rot_y_p30[0][2] = -0.5f; rot_y_p30[2][0] = 0.5f; rot_y_p30[2][2] = 0.8660253882408142f; unit_m3(rot_z_m20); rot_z_m20[0][0] = 0.9396926164627075f; rot_z_m20[0][1] = -0.3420201241970062f; rot_z_m20[1][0] = 0.3420201241970062f; rot_z_m20[1][1] = 0.9396926164627075f; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_YUP_FROM_ZUP); EXPECT_M3_NEAR(rot_x_mat, rot_x_p10, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, rot_y_p30, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, rot_z_m20, 1e-5f); } TEST(abc_matrix, CreateRotationMatrixXYZ_ZfromY) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; // in degrees: X=10, Y=20, Z=30 float euler[3] = {0.1745329201221466f, 0.3490658104419708f, 0.5235987901687622f}; // Construct expected matrices float rot_x_p10[3][3]; // rotation of +10 degrees over x-axis float rot_y_m30[3][3]; // rotation of -30 degrees over y-axis float rot_z_p20[3][3]; // rotation of +20 degrees over z-axis unit_m3(rot_x_p10); rot_x_p10[1][1] = 0.9848077297210693f; rot_x_p10[1][2] = 0.1736481785774231f; rot_x_p10[2][1] = -0.1736481785774231f; rot_x_p10[2][2] = 0.9848077297210693f; unit_m3(rot_y_m30); rot_y_m30[0][0] = 0.8660253882408142f; rot_y_m30[0][2] = 0.5f; rot_y_m30[2][0] = -0.5f; rot_y_m30[2][2] = 0.8660253882408142f; unit_m3(rot_z_p20); rot_z_p20[0][0] = 0.9396926164627075f; rot_z_p20[0][1] = 0.3420201241970062f; rot_z_p20[1][0] = -0.3420201241970062f; rot_z_p20[1][1] = 0.9396926164627075f; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_ZUP_FROM_YUP); EXPECT_M3_NEAR(rot_x_mat, rot_x_p10, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, rot_y_m30, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, rot_z_p20, 1e-5f); }